首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Murad  Zaryab  Ahmad  Ijaz  Waleed  Muhammad  Hashim  Saima  Bibi  Sobia 《Gesunde Pflanzen》2022,74(1):151-158

A pot experiment was conducted at Institute of Biotechnology and Genetic Engineering (IBGE), University of Agriculture Peshawar, Pakistan. To conduct the experiment, eight kilograms of air-dried soil were taken in each pot and the amendment biochar was added and mixed properly at different levels like 0%, 1%, 2% and 4% (w/w), respectively. All pots were spiked with Cd solution at the concentration of 10?mg kg?1. The treatments were arranged in completely randomized design (CRD). Fourteen days old nursery plants of rice Oryza sativa L. were transplanted into pots. Five rice plants were grown in each pot. After transplantation of rice plant, the nitrogenous and phosphatic fertilizers (Urea and DAP) were incorporated at the standard rate. Standing water condition was kept for rice grown in pots. Rice plants were harvested after 70 days germination. Soil samples were collected from each pot after plant harvesting. After soil analysis, the given data elaborated that the concentration of Cd in soil was stabilized by the amendment from 8.7?mg kg?1 (0%) to 4.2?mg kg?1 (4%). Among the other soil parameters the minimum soil pH (7.31), EC (0.151?dSm?1), soil organic matter (0.63%), N (0.13%), P (4.72?mg kg?1) and K (55.6?mg kg?1) were noted at 0% biochar application, while maximum pH (8.23), EC (0.231?dSm?1), soil organic matter (1.67%), N (0.25%), P (8.96?mg kg?1) and K (93?mg kg?1) were found in the pot treated with 4% biochar. Hence, it was concluded that Cd was significantly immobilized with 4% biochar application.

  相似文献   

3.
The vertical diversity and distribution of arbuscular mycorrhizal (AM) fungi were investigated in the Mu Us Desert, northwest China. Soils were sampled to 50?cm in depth in the rhizospheres of Hedysarum laeve, Artemisia ordosica, and Psammochloa villosa and 44 AM fungal species belonging to 10 genera were isolated. Several of these species have peculiar morphological features, which are distinct from other habitats. AM fungal diversity and distribution differed significantly among the three host plants and the five soil layers. Spore density, species richness, and the Shannon-Wiener index of AM fungi were 0.55–4.3 spores g?1 soil, 7–36 and 1.78–2.89, respectively. Spore density and species richness had a significant positive correlation with soil total phosphorus content (0.0377–0.1129?mg?g?1), and a negative correlation with soil pH (7.19–7.64). Nonmetric multidimensional scaling, PerMANOVA, and structural equation model analysis demonstrated that host plant species and soil depth significantly and directly influenced the structure of AM fungal communities. We concluded that diversity and distribution of AM fungi might be influenced by plant species, soil depth patterns, and soil nutrient availability in desert ecosystems. This research into AM fungal communities may lead to the development of AM fungi treatment for the mitigation of soil erosion and desertification using mycorrhizal plants, such as H. laeve, A. ordosica, and P. villosa.  相似文献   

4.
Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] is an organophosphorus insecticide applied to soil to control pests both in agricultural and in urban developments. Typical agricultural soil applications (0.56 to 5.6 kg ha?1) result in initial soil surface residues of 0.3 to 32 μg g?1. In contrast, termiticidal soil barrier treatments, a common urban use pattern, often result in initial soil residues of 1000 μg g?1 or greater. The purpose of the present investigation was to understand better the degradation of chlorpyrifos in soil at termiticidal application rates and factors affecting its behaviour. Therefore, studies with [14C]chlorpyrifos were conducted under a variety of conditions in the laboratory. Initially, the degradation of chlorpyrifos at 1000 μg g?1 initial concentration was examined in five different soils from termite-infested regions (Arizona, Florida, Hawaii, Texas) under standard conditions (25°C, field moisture capacity, darkness). Degradation half-lives in these soils ranged from 175 to 1576 days. The major metabolite formed in chlorpyrifos-treated soils was 3,5,6-trichloro-2-pyrid-inol, which represented up to 61% of applied radiocarbon after 13 months of incubation. Minor quantities of [14C]carbon dioxide (< 5%) and soil-bound residues (? 12%) were also present at that time. Subsequently, a factorial experiment examining chlorpyrifos degradation as affected by initial concentration (10, 100, 1000 μg g?1), soil moisture (field moisture capacity, 1.5 MPa, air dry), and temperature 15, 25, 35°C) was conducted in the two soils which had displayed the most (Texas) and least (Florida) rapid rates of degradation. Chlorpyrifos degradation was significantly retarded at the 1000 μg g?1 rate as compared to the 10 μg g?1 rate. Temperature also had a dramatic effect on degradation rate, which approximately doubled with each 10°C increase in temperature. Results suggest that the extended (3–24 + years) termiticidal efficacy of chlorpyrifos observed in the field may be due both to the high initial concentrations employed (termite LC 50 = 0.2– 2 μg g?1) and the extended persistence which results from employment of these rates. The study also highlights the importance of investigating the behaviour of a pesticide under the diversity of agricultural and urban use scenarios in which it is employed.  相似文献   

5.
Sorghum (Sorghum bicolor (L.) Moench) plants were grown in pots with 12.5 and 50 mg applied N kg?1 soil. With an increase of soil N, the Striga asiatica (L.) Kuntze infestation, as well as the sorghum shoot dry matter losses due to infestation, decreased. The relative differences in stimulant capacity to induce Striga seed germination among the four sorghum genotypes were not consistent over the 0 to 150 mg N 1?1 range. The sorghum root exudate was considerably more active at 0 mg N 1?1, than at 30 mg N 1?1, and the stimulant produced at 150 mg N 1?1 failed to induce Striga seed germination. Presence of N in the growth medium considerably reduced the effectiveness of the stimulating substance produced by sorghum roots, whereas K promoted stimulant activity only in the absence of N. The presence or absence of P in the growth medium did not affect Striga seed germinability, probably due to the inability of this element to interfere with the production or activity of the stimulating substance from the host plants. It can be concluded, therefore, that sorghum plants seem to produce active root exudate only in conditions of N deficiency.  相似文献   

6.
Clubroot (Plasmodiophora brassicae) is a serious soil-borne disease in brassica crops world-wide. We report on a time series of soil samples from Swedish long-term fertility trials started in 1957, 1963 and 1966, which were analyzed for the amount of P. brassicae DNA. The crop rotations included a brassica crop every 4 or 6 years. All experimental sites with a 4-year rotation of oilseed rape, except one with calcium carbonate in the soil profile, showed high (>1000 fg DNA g?1 soil) levels of P. brassicae DNA after 9, 11 and 12 rotations. In contrast, detectable levels (>5 fg DNA g?1 soil) of P. brassicae were found only at one of five sites with a 6-year rotation of spring oilseed rape. In years with high levels of P. brassicae DNA, low yield was reported and a subsequent decline in P. brassicae DNA in soil was observed. Different NPK (nitrogen/phosphorus/potassium) fertiliser regimes resulted in similar P. brassicae DNA levels. The robustness and reliability of the method applied was verified by analyses of soil from individual plots compared with a mixture of plots and by repeated analyses of selected samples, which showed that P. brassicae DNA remained stable during dry storage.  相似文献   

7.
The present study investigated the arsenic (As) remediation potential of barnyard grass (Echinochloa crus‐galli L. Beauv. var. formosensis Ohwi), with a special focus on the behavior of As in the soil in comparison with rice (Oryza sativa L. cv. Nipponbare). For both plants, very little growth inhibition was observed in the As‐contaminated soil. The amount of As in the soil was reduced by the plant's uptake and the level of As in the soil water from the rice‐growing pots was remarkably lower than that in the plant‐free soil water. In the soil with the barnyard grass, the amount of As in the soil water was higher than that in the plant‐free soil water, but the amount of As in the soil and the amount of As that was adsorbed on the soil solid were reduced by the plant's uptake. At the highest As level in the soil (100 mg kg?1), 249.60 and 101.26 µg As pot?1 were taken up by the rice shoot and barnyard grass shoot, respectively, and total amounts of 1468.65 and 1060.57 µg As pot?1 were taken up by the barnyard grass and rice seedlings, respectively. At the same As level in the soil, the As concentrations were 14.99 and 37.76 µg g?1 in the shoot of barnyard grass and rice, respectively, and 486.61 and 339.32 µg g?1 in the root of barnyard grass and rice, respectively. Barnyard grass took up more As than rice, but the As concentration in the shoot of barnyard grass was lower than that in the shoot of rice. A considerable amount of As was taken up by both barnyard grass and rice, suggesting that the plant species have the potential to remediate As‐contaminated soil.  相似文献   

8.
An attempt has been made in the field conditions to evaluate the effect of atmospheric temperature rise on yield, ionic ratio (Na:K), and accumulation of antioxidative pigments in wheat in different growth stages under different soils. Five planting windows (PW) were classified, based on date of wheat sowing where the average temperature difference between a particular PW and PW-I varied from 1.33–4.24°C. Plant leaf area and root length density showed decreasing trend with increasing temperature. A low flag leaf water potential (?1.14?MPa) in sodic soil and high solute potential (?1.34?MPa) in saline-sodic soil was observed under PW-V, where high temperature difference (4.24°C) was recorded. The Na:K ratio was found to be highest in both straw and grain which were 1.802 and 1.126%, respectively, under saline-sodic conditions in PW-V. Proline and malondialdehyde concentration was highest under sodic conditions which varied between 2.82–2.95?mg?g?1 fresh weight (FW) and 18.38–30.18 nmol g?1 FW, respectively, under maximum temperature difference. An increase in temperature (>1°C) significantly reduced grain yield (>10%) that was negatively correlated with Na+ (r?=??0.78) but positively with K+ (r?=?+0.62) concentrations under saline-sodic conditions, however under sodic conditions, it was positively correlated with K+ (r?=?+0.63) concentration. Therefore, looking in to the climate change scenario, shifting planting window of wheat sowing may be helpful in mitigating the negative effects of heat and salt stress on wheat crop.  相似文献   

9.
The movement of the organophosphate nematicide-insecticide ethoprophos (ethoprop; O-ethyl S,S-dipropyl phosphorodithioate) and the carbamate insecticide-nematicide carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yI methylcarbamate) was studied under steady-state flow in small-scale laboratory soil columns. Miscible displacement column experiments, mass balance calculations, and batch incubation studies furnished information on insecticide sorption and degradation processes that occur during transport through soil. Miscible displacement studies demonstrated that ethoprophos degradation could be described as first-order and that both insecticides exhibited non-equilibrium sorption. Both batch and miscible displacement results showed ethoprophos to be more strongly sorbed by soil than carbofuran. Measured equilibrium sorption coefficients were 1.29 cm3 g?1 for ethoprophos and 0.29 cm3 g?1 for carbofuran on a Riverhead soil (0.011 organic carbon fraction); 035 cm3 g?1 for carbofuran on Valois soil (0.016 organic carbon fraction); and 2.38 cm3 g?1 for ethoprophos on Rhinebeck soil (0.031 organic carbon fraction). Two solutions to the convection-dispersion equation, one that incorporated equilibrium sorption and another (bicontinuum model) that included a non-equilibrium sorption term, allowed quantitative evaluation of transport processes. The bicontinuum model used in conjunction with experimental batch and mass balance techniques provided estimates of insecticide sorption and degradation parameters.  相似文献   

10.
No registered fungicide controls Mucor piriformis, a cause of severe postharvest storage rot in pears, but the experimental fungicide RH 886 (active ingredients: 77% 5-chloro-2-methylisothiazol-3-(2H)-one and 23% 2-methylisothiazol-3-(2H)-one) has an ED50 of 23.1 μg ml?1 in 5 min exposure for germination of sporangiospores of M. piriformis and an ED50 of 9.9 μg ml?1 for mycelial growth. Mixing RH 886 into infested, amended soil at 8 mg g?1 soil or mixing copper sulfate into soil at 1 mg g?1 soil prevented sporulation of M. piriformis. Application of RH 886 to pear fruits prior to inoculation, or immersion of fruits in solutions of RH 886 containing sporangiospores of M. piriformis significantly reduced fruit infection.  相似文献   

11.
The toxicity of two fumigants to microsclerotia (MS) of Verticillium dahliae in air and in soil was determined in sealed containers. 1, 2-Dibromoethane (DBE, ethylene dibromide) at 470 μ ml?1 of air, or at 12.5 μ g?1 of soil, killed 97% of the MS, both after incubation for 16 days. 1, 3-Dichloropropene (1, 3-D) at 20 μ ml?1 of air, however, killed 100% of the MS after incubation for 30 h, and at 100 μ g?1 of soil after incubation for 3 days. Higher temperatures increased the toxicity of both DBE and 1, 3-D to the MS. The toxicity of DBE increased with increase in soil moisture between 0–80% of field capacity while the toxicity of 1, 3-D increased between 0–20% of field capacity and was constant between 20–80% of field capacity.  相似文献   

12.
通过对甘南亚高山草甸不同生境的18个植物样地的调查,研究了物种叶片N、P含量及其化学计量学特征,并结合分析土壤养分,探讨了它们与土壤N、P含量、有机质、水分及N∶P比值之间的关系。研究结果显示:甘南亚高山草甸植物叶片N含量在不同坡向之间的变化范围为4.46 ~ 26.59 mg· g-1,平均为16.24 mg·g-1;P含量变化范围为0.71 ~ 1.98 mg·g-1,平均为1.37 mg·g-1;N∶P比值变化范围为6.43~ 17.75,平均为11.60。叶片N含量及N∶P在不同坡向梯度上没有显著差异(P>0.05);叶片P含量在不同生境下差异显著。物种之间叶片N、P含量及N∶P均有显著差异(P<0.05),而物种与生境的交互作用对叶片N、P含量及N∶P之间差异不显著。根据限制性因子的N∶P阈值判断,该地区植物生长受N限制,这也体现了该地区植物对其生境的一种适应。  相似文献   

13.
A procedure was developed for specific and sensitive quantitative detection of Ralstonia (Pseudomonas) solanacearum biovar 2 (race 3) in soil. It is based on immunofluorescence colony-staining (IFC) followed by confirmation of the identity of fluorescent colonies by PCR-amplification or dilution plating on a semi-selective medium, SMSA. Addition of sucrose and the antibiotics cycloheximide and crystal violet to the non-selective trypticase soy broth agar resulted in increased colony size and staining intensity of R. solanacearum in IFC. Verification of IFC-results by picking cells from IFC-positive colonies followed by dilution plating of the suspended cells on SMSA was highly efficient. The success rate was 92% and 96% with spiked and naturally contaminated soils respectively. Several other bacterial species which cross-reacted with polyclonal antibodies in IFC also grew on SMSA and were difficult to distinguish from R. solanacearum, thereby necessitating confirmation of the results. Rapid verification of IFC-positive results directly by PCR-amplification with primers D2/B specific to division 2 of R. solanacearum had a success rate of 86% and 96% with spiked and naturally contaminated soil samples, respectively. Primers D2/B reacted with all R. solanacearum division 2 strains, and strains of R. syzygii and the banana blood disease bacterium, but not with saprophytic bacteria cross-reacting in IFC with R. solanacearum antibodies. In comparative tests, IFC was able to detect consistently ca. 100 cfu g–1 of soil, a detection level similar to that found with direct plating on SMSA, but less laboriously, whereas detection level with a bioassay on tomato plants was only 104–105 cfu g–1 of soil.  相似文献   

14.
Verticillium wilt can cause high losses in tree nurseries. To be able to predict disease and unravel disease dynamics over time and space, the relationship between verticillium wilt and soil inoculum densities of Verticillium dahliae and the nematode Pratylenchus fallax was studied in two 4-year field experiments with Acer platanoides and Catalpa bignonioides in the Netherlands. Best-fit regression equations showed that pre-planting inoculum densities of V. dahliae can be used to predict verticillium wilt over a period of at least 4 years. Pratylenchus fallax contributed significantly to disease severity in A. platanoides in some years. Disease can already occur at the detection limit of the pathogens. The 5% infection thresholds for V. dahliae were at 1 (A. platanoides) vs. 3 (C. bignonioides) colony-forming units (CFU) g−1 soil. Analysis of spatial relationships indicated that diseased plants had a higher influence on neighbouring plants at low V. dahliae inoculum densities (<5 CFU g−1 soil) than at high densities (≥5 CFU g−1 soil). Seventy-four percent of the diseased plants recovered during the following year. After that year, recovered plants had a significantly higher probability of becoming diseased again than plants that were healthy during the two previous years, at high inoculum densities of V. dahliae, indicating that inoculum density in the soil, rather than incomplete recovery, was the most important factor for disease development.  相似文献   

15.
The molluscicide N-tritylmorpholine (FRESCON,
  • 1 FRESCON is a Shell trade mark.
  • trifenmorph) is used for the control of the intermediate snail hosts of fascioliasis in livestock. Laboratory and field studies have been undertaken to establish the fate of the compound following its use on pasture. Radiochemical techniques have been used under laboratory conditions to identify the potential degradation products. The major one has been shown to be triphenylcarbinol. Triphenylcarbinol was detected on pastures treated at 0.4 to 0.5 kg/ha under practical conditions but the residues of it and of the parent molluscicide were generally below 0.3 mg/kg within 8 weeks of the application. On the pasture grass half of the initial deposit of N-tritylmorpholine was lost within 1 to 3 weeks and on soils it was lost within 1 to 4 weeks. Residues could not be detected in the tissues of sheep feeding on the treated pasture. Whilst small residues (0.023 mg/kg or less) were detected in the milk of some cows feeding on the pasture soon after application they were absent (below 0.002 mg/kg) in the milk at 10 days or more from treatment.  相似文献   

    16.
    The performance of low concentrations of methyl bromide against diapausing larvae of Ephestia elutella at 15 and 25°C was assessed in extended exposure periods. At concentrations of 1.9 mg litre?1 and below, test batches required higher concentration-time (ct) products for 100% kill at 25°C than at 15°C. The minimum concentration at which the concentration: time relationship still applied was between 1.3 and 1.9 mg litre?1 at 15°C, whereas at 25°C it was between 2.7 and 4.0 mg litre?1. For many individuals within each population sample, however, lower concentrations at moderate dosage levels remained lethal. At 25°C, a ct product of about 90 mg litre?1 h gave between 53 and 77% kill at 6.1, 4.0, 2.7 and 1.9 mg litre?1. The trends observed suggest that the most tolerant members of the population have an enhanced ability to detoxify methyl bromide at the higher temperature. The implications of the results for the build-up of resistance and for practical control measures are discussed.  相似文献   

    17.
    Populations ofFusarium solani f.sp.cucurbitae (Fsc) andFusarium oxysporum f.sp.niveum (Fon) in naturally infested soil of watermelon fields were counted by the soil dilution method with subsequent pathogenicity tests. Inoculum density varied within the same region from one field to another, ranging between 9 and 1600 CFU g?1 soil forFsc and from 0 to 200 CFU g?1 soil forFon. Fusarium crown- and root-rot-diseased seedlings were observed in most soils (93%); however, Fusarium wilt was observed in only 34% of soil samples. The disease incidence on cv. ‘Giza’ (Y) increased significantly with inoculum density in the soil (X) (P<0.001). ForFsc, the relationship between inoculum density and disease incidence was characterized by the equation Y=0.0005X+0.165 (R2=0.67). ForFon, the equation was Y=0.003X?0.0014 (R2=0.88). Based on these equations, the estimated inoculum densities required to cause 50% disease incidence (DI50) on cv. Giza plants was 670 and 171 CFU g?1 soil forFsc andFon, respectively.  相似文献   

    18.
    This study investigated the potential of the arbuscular mycorrhizal (AM) fungus Glomus mosseae to protect basil (Ocimum basilicum) against Fusarium oxysporum f.sp. basilici (Fob). It was hypothesised that G. mosseae could confer a bioprotective effect against Fob as a result of increases in leaf rosmarinic (RA) and caffeic acids (CA) or essential oil concentrations. Glomus mosseae conferred a bioprotective effect against Fob by reducing plant mortality to 20% compared to 33% in non‐mycorrhizal (NM) plants. This bioprotective effect was not related to improved phosphorus (P) nutrition, as AM and NM plants treated with Fob had similar shoot P concentrations (6 and 8 mg g?1 dry weight (DW), respectively). Both AM and NM plants treated with Fob had similar leaf and root RA and CA concentrations. Furthermore, phenolic (40–70 mg CA g?1 DW) or essential oil concentrations (0·1–0·6 mg g?1 DW) were not increased in plants treated with the AM fungus and Fob. Therefore, the bioprotective effect conferred by G. mosseae was not a result of increases in the phytochemicals tested in this study. However, under the AM symbiosis, basil plants treated with Fob had lower methyleugenol concentrations in their leaves (0·1 mg g?1 DW) than NM plants treated with the pathogen (0·6 mg g?1 DW).  相似文献   

    19.
    The benefits of conservation agriculture (CA) and associated technologies are not equal for all agro ecosystems. This study used a field experiment to examine winter-wheat yield and weeds under conservational and conventional systems in the central region of Spain. The three tillage treatments were conventional tillage (CT), minimum tillage (MT) and no-tillage (NT). The climatic conditions influenced wheat yield, yield components, soil water content and weeds. When the autumn-winter rainfall was abundant and constant (69.7% of annual rainfall), wheat grain yield (4465?kg?ha?1) and yield components (3897?kg?ha?1 of straw biomass and 584.5 ear m?2) were highest. Wheat grain yield was highest with NT: 3549.9?kg?ha?1 (compared to MT: 2955.1?kg?ha?1 and CT: 2950.3?kg?ha?1) and ear number per m2 was significantly lower with MT (332 no ear m?2, compared to 426 and 411.6?ear?m?2 in CT and NT-systems respectively). Soil water content, at earing stage, was the highest in NT (27.36% of soil moisture) while MT showed the lowest content (11.83% of soil moisture). The higher weed measurements (means of 2.557 plants m?2; 1.443 species m?2 and 2.536 g m?2) was with higher annual rainfall (488?mm). Throughout the experiment it was the dominant presence, in MT-wheat plots, of Lolium rigidum Gaudin (with means from 4.87 to 7.71 plants m?2), which reduced the ear number per m2. Our study revealed that in the short term, under semi-arid conditions, only the adoption of NT system (rather than MT) showed economic benefits.  相似文献   

    20.
    Rhizome segments from Alternanthera philoxeroides were shaken in solutions of 14C-glyphosate for 24 h to establish a range of internal tissue concentrations. Rhizomes were killed at concentrations of 16 μg g?1 dry weight and above and survived at concentrations of 8 μg g?1 dry weight and below. Plants grown in the field for 10 weeks in declining photoperiod were used to investigate the uptake and translocation of 14C-glyphosate after application of a constant dosage in either 1.0-or 0.2-μl droplets corresponding to concentrations of 1.06 and 5.3 g 1?1, of glyphosate acid, respectively. Use of smaller droplets of higher concentration increased absorption of 14C, but did not improve translocation. Uptake by treated leaves was 25 and 41% of the applied glyphosate for the large and small droplets respectively, but translocation to underground parts of the plant was about 7% of applied 14C-activity. Radiolabel accumulated in new rhizomes was equivalent to about 0.5 μg g?1 dry weight of glyphosate, at least 30 times below the concentration required for tissue death. Absorption et transport de glyphosate C14 chez Alternanthera philoxeroides (Mart.) Griseb. I.Concentrations dans les rhizomes nécéssaires pour l'inhibition Des fragments de rhizome d'Alternanthera philoxeroides ont été trempés dans des solutions de glyphosate C14 pour aboutir à un éventail de concentrations internes des tissus, Les rhizomes ont été tués à des concentrations de 16 μg g?1 PS et plus, et ont survécu à des concentrations de 8 μg g?1 PS et en-dessous. Des plantes cultivées en plein champ pendant 10 jours en photopériode décroissante ont été utilisées pour étudier l'absorption et le transport du glyphosate C14 après l'application d'une dose constante dans des gouttelettes de 1 ou 0,2 μl correspondant à des concentrations de 1,06 et 5,3 g l?1 de glyphosate C14 acide respectivement, L'utilisation de gouttelettes plus petites de concentrations plus é1evées a augmenté l'absorption du C14, mais n'en a pas amélioré le transport. L'absorption par les feuilles traitées était de 25 et 41% du glyphosate appliqué pour les grandes et les petites gouttelettes respectivement, mais le transport vers les parties souterraines de la plante était d'environ 7% du C14 appliqué. Le radio-marqueur dans les nouveaux rhizomes était équivalent à environ 0,5 μg g?1 PS de glyphosate, soit au moins 30 fois en-dessous de la concentration nécessaire à la mort des tissus. Aufnahme und Translokation von 14C-Glyphosat in Alternanthera philoxeroides (Mart.) Griseb. I. Für die Hemmung erforderliche Konzentration im Rhizom Rhizomteile von Alternanthera philoxeroides wurden 24 Stunden lang in 14C-Glyphosat-Lösungen geschüttelt, um eine Reihe von Konzentrationen in den inneren Geweben einzustellen. Die Rhizome wurden bei Konzen-trationen von 16 und mehr μg g?1 TM abgetötet und überlebten bei Konzentrationen von 8 μg g?1 TM und weniger. Die Aufnahme und Translokation von 14C-Glyphosat nach der Applikation einer konstanten Dosis in 1,0-oder 0,2-μl-Tröpfchen, entsprechend Konzentrationen von 1,06 und 5,3 g l?1 Glyphosat-Säure, wurden an Pflanzen untersucht, die im Freiland 10 Wochen lang bei abnehmender Photoperiode gewachsen waren. Der Gebrauch kleinerer Tropfen höherer Konzentration führte zu mehr Absorption von 14C, förderte aber nicht die Translokation. Das Glyphosat wurde von den behandelten Blättern zu 25 bzw. 41% aus den großen Oder den kleinen Tröpfchen aufgenommen, aber die Translokation in die unterirdischen Pflanzenteile war etwa 7% der ausgebrachten 14C-Aktivität. Die in neuen Rhizomen akkumlierte Radioaktivität entsprach 0,5 μg g?1 TM Glyphosat, mindestens 30mal weniger als für die Abtötung von Gewebe erforderlich.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号