首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Twenty-four wheat cultivars and breeding lines were screened for isolate-specific resistance to septoria tritici blotch (STB) caused by 12 isolates of Mycosphaerella graminicola. New isolate-specific resistances that could be used in wheat breeding were identified. Major sources of resistance to STB used in world breeding programmes for decades, such as Kavkaz-K4500, Veranopolis, Catbird and TE9111, have several isolate-specific resistances. This suggests that 'pyramiding' several resistance genes in one cultivar may be an effective and durable strategy for breeding for resistance to STB in wheat. Several cultivars, including Arina, Milan and Senat, had high levels of partial resistance to most isolates tested as well as isolate-specific resistances. Resistance to isolate IPO323 was common, present in all but one of the major sources of resistance tested. This suggests that resistance to IPO323 may be an indicator of varietal resistance to STB in the field.  相似文献   

2.
The effect of the quinone outside inhibitors (QoI) azoxystrobin and pyraclostrobin on yields of winter wheat where QoI resistant Mycosphaerella graminicola isolates were dominant was investigated in field trials in 2006 and 2007. Pyraclostrobin significantly increased yields by 1·57 t ha?1 in 2006 and 0·89 t ha?1 in 2007 when compared to the untreated controls, while azoxystrobin only provided a significant increase of 1·28 t ha?1 in 2006. These yield increases were associated with reduction in septoria tritici blotch (STB) development as determined by weekly disease assessments over a 7 week interval. The effect of pyraclostrobin on STB was studied in controlled environment experiments using wheat seedlings inoculated with individual M. graminicola isolates. Pyraclostrobin significantly reduced STB symptoms by up to 62%, whether applied 48 h pre‐ or post‐ inoculation with resistant M. graminicola isolates containing the cytochrome b mutation G143A. Extremely limited disease (<1%) was observed on similarly treated seedlings inoculated with an intermediately resistant isolate containing the cytochrome b mutation F129L, while no disease was observed on seedlings inoculated with a wild‐type isolate. Germination studies of pycnidiospores of M. graminicola on water agar amended with azoxystrobin or pyraclostrobin showed that neither fungicide inhibited germination of spores of resistant isolates containing the mutation G143A. However, pyraclostrobin significantly reduced germ tube length by up to 46% when compared with the untreated controls. Although the QoIs can no longer be relied upon to provide effective M. graminicola control, this study provides an insight into why QoIs still provide limited STB disease control and yield increases even in situations of high QoI resistance.  相似文献   

3.
The centre of origin of the globally distributed wheat pathogen Parastagonospora nodorum has remained uncertain because only a small number of isolates from the Fertile Crescent were included in earlier population genetic and phylogeographic studies. We isolated and genetically analysed 193 P. nodorum strains from three naturally infected wheat fields distributed across Iran using 11 neutral microsatellite loci. Compared to previous studies that included populations from North America, Europe, Africa, Australia, and China, the populations from Iran had the highest genetic diversity globally and also exhibited greater population structure over smaller spatial scales, patterns typically associated with the centre of origin of a species. Genes encoding the necrotrophic effectors SnToxA, SnTox1, and SnTox3 were found at a high frequency in the Iranian population. By sequencing 96 randomly chosen Iranian strains, we detected new alleles for all three effector genes. Analysis of allele diversity showed that all three effector genes had higher diversity in Iran than in any population included in previous studies, with Iran acting as a hub for the effector diversity that was found in other global populations. Taken together, these findings support the hypothesis that P. nodorum originated either within or nearby the Fertile Crescent with a genome that already encoded all three necrotrophic effectors during its emergence as a pathogen on wheat. Our findings also suggest that P. nodorum was the original source of the ToxA genes discovered in the wheat pathogens Phaeosphaeria avenaria f. sp. tritici 1, Pyrenophora tritici-repentis, and Bipolaris sorokiniana.  相似文献   

4.
From a total of 238 European cultivars and breeding lines screened for isolate-specific resistance to septoria tritici blotch (STB) with eight Mycosphaerella graminicola isolates from five different countries, 142 lines were resistant to Ethiopian isolate IPO88004, and 43 lines were specifically resistant to IPO323, with little or no leaf area bearing pycnidia of M. graminicola . These lines probably all have the resistance gene Stb6 . Specific resistances to isolates CA30JI, IPO001, IPO89011, IPO92006 and ISR398 were less common. Seventy-three per cent of the lines were specifically resistant to at least one isolate and 36 lines were resistant to more than one isolate. The line with the greatest number of specific resistances was the spring cultivar Raffles, with five. The most resistant line in which no specific resistance was identified was the Italian landrace Rieti, an ancestor of many modern European wheat cultivars. There was also a wide range of partial resistance among the lines tested, expressed in detached seedling leaves. Information about the resistance of wheat lines to M. graminicola isolates will assist breeders to choose parents of crosses from which progeny with superior resistance to STB may be selected.  相似文献   

5.
Spot blotch, caused by Cochliobolus sativus (Ito & Kuribayashi) Drechs. ex Dastur, is one of the important diseases of wheat worldwide. The main objective of this study was to investigate the phenotypic and genotypic variability among C. sativus isolates from the hills and plains in Nepal. A total of 48 monoconidial isolates of C. sativus from the hills (n = 24 isolates) and plains (n = 24 isolates) in Nepal were analyzed for morphology, aggressiveness and genetic structure. C. sativus isolates were grouped into three categories on the basis of their colony texture and mycelia colour. Thirteen isolates from the hills and plains belonging to three morphological groups were randomly selected and evaluated for aggressiveness on eight wheat cultivars (Chirya 1, Chirya 7, Milan/Shanghai 7, SW 89–5422, PBW 343, BL 1473, BL 3036, and RR 21) at the seedling stage. Nonparametric analysis revealed that the isolates from the plains (median disease rating of 5) were significantly (P = 0.0001) more aggressive than the isolates from the hills (median disease rating of 3). A significant (P = 0.0001) isolate by cultivar interaction was demonstrated and the isolates from the same geographic region and morphological group displayed different degrees of aggressiveness on wheat cultivars tested. Combined IS-PCR and rep-PCR analyses revealed moderate gene diversity (H = 0.24 and 0.25 for the hills and plains, respectively). Low linkage disequilibrium (LD) value and non-significant (P = 0.001) population differentiation (G″ST = 0.05) were detected, indicating that isolates of C. sativus from the hills and plains in Nepal were genetically similar. Analysis of molecular variation (AMOVA) revealed low (7%) levels of genetic variation between the hill and plain populations, whereas >93% of genetic variation was found within populations. Overall, C. sativus isolates from Nepal are pathologically and genetically diverse, and such information will be useful in developing wheat cultivars resistant to C. sativus.  相似文献   

6.
Large-scale cDNA-AFLP profiling identified numerous genes with increased expression during the resistance response of wheat to the Septoria tritici blotch fungus, Mycosphaerella graminicola. To test whether these genes were associated with resistance responses, primers were designed for the 14 that were most strongly up-regulated, and their levels of expression were measured at 12 time points from 0 to 27 days after inoculation (DAI) in two resistant and two susceptible cultivars of wheat by real-time quantitative polymerase chain reaction. None of these genes was expressed constitutively in the resistant wheat cultivars. Instead, infection of wheat by M. graminicola induced changes in expression of each gene in both resistant and susceptible cultivars over time. The four genes chitinase, phenylalanine ammonia lyase, pathogenesis-related protein PR-1, and peroxidase were induced from about 10- to 60-fold at early stages (3 h–1 DAI) during the incompatible interactions but were not expressed at later time points. Nine other genes (ATPase, brassinosteroid-6-oxidase, peptidylprolyl isomerase, peroxidase 2, 40S ribosomal protein, ADP-glucose pyrophosphorylase, putative protease inhibitor, methionine sulfoxide reductase, and an RNase S-like protein precursor) had bimodal patterns with both early (1–3 DAI) and late (12–24 DAI) peaks of expression in at least one of the resistant cultivars, but low if any induction in the two susceptible cultivars. The remaining gene (a serine carboxypeptidase) had a trimodal pattern of expression in the resistant cultivar Tadinia. These results indicate that the resistance response of wheat to M. graminicola is not completed during the first 24 h after contact with the pathogen, as thought previously, but instead can extend into the period from 18 to 24 DAI when fungal growth increases dramatically in compatible interactions. Many of these genes have a possible function in signal transduction or possibly as regulatory elements. Expression of the PR-1 gene at 12 h after inoculation was much higher in resistant compared to susceptible recombinant-inbred lines (RILs) segregating for the Stb4 and Stb8 genes for resistance. Therefore, analysis of gene expression could provide a faster method for separating resistant from susceptible lines in research programs. Significant differential expression patterns of the defense-related genes between the resistant and susceptible wheat cultivars and RILs after inoculation with M. graminicola suggest that these genes may play a major role in the resistance mechanisms of wheat.  相似文献   

7.
Fusarium graminearum and F. verticillioides are among the most important pathogens causing ear rot of maize in Central Europe. Our objectives were to (1) compare eight isolates of each species on two susceptible inbred lines for their variation in ear rot rating and mycotoxin production across 3 years, and (2) analyse two susceptible and three resistant inbred lines for potential isolate x line interactions across 2 years by silk-channel inoculation. Ear rot rating, zearalenone (ZEA) and deoxynivalenol (DON) concentrations were evaluated for all F. graminearum isolates. In addition, nivalenol (NIV) concentrations were analysed for two NIV producers. Fumonisin (FUM) concentrations were measured for all F. verticillioides isolates. Mean ear rot severity was highest for DON producers of F. graminearum (62.9% of the ear covered by mycelium), followed by NIV producers of the same species (24.2%) and lowest for F. verticillioides isolates (9.8%). For the latter species, ear rot severities differed highly among years (2006: 24%, 2007: 3%, 2008: 7%). Mycotoxin concentrations among isolates showed a broad range (DON: 100–284 mg kg−1, NIV: 15–38 mg kg−1, ZEA: 1.1–49.5 mg kg−1, FUM: 14.5–57.5 mg kg−1). Genotypic variances were significant for isolates and inbred lines in all traits and for both species. Isolate x line interactions were significant only for ear rot rating (P < 0.01) and DON concentration (P < 0.05) of the F. graminearum isolates, but no rank reversals occurred. Most isolates were capable of differentiating the susceptible from the resistant lines for ear rot severity. For resistance screening, a sufficiently aggressive isolate should be used to warrant maximal differentiation among inbred lines. With respect to F. verticillioides infections, high FUM concentrations were found in grains from ears with minimal disease symptoms.  相似文献   

8.
The use of cultivar mixtures to control foliar fungal diseases is well documented for windborne diseases, but remains controversial for splash‐dispersed diseases. To try to improve this strategy, a cultivar mixture was designed consisting of two wheat cultivars with contrasted resistance to Mycosphaerella graminicola , responsible for the rainborne disease septoria tritici blotch (STB), in a 1:3 susceptible:resistant ratio rather than the 1:1 ratio commonly used in previous studies. The impact of natural STB epidemics in this cultivar mixture was studied in field experiments over 4 years. Weekly assessments of the number of sporulating lesions, pycnidial leaf area and green leaf area were carried out on the susceptible cultivar. In years with sufficient STB pressure, disease impacts on the susceptible cultivar in the mixture were always significantly lower than in the pure stand (e.g. 42% reduction of pycnidial leaf area for the three upper leaves in 2008 and 41% in 2009). In years with low STB pressure (2010 and 2011), a reduction of disease impacts was also shown but was not always significant. After major rainfall events, the number of sporulating lesions observed on the susceptible cultivar after one latent period was reduced on average by 45% in the mixture compared to the pure stand. All the measurements showed that a susceptible cultivar was consistently protected, at least moderately, in a mixture under low to moderate STB pressure. Therefore, the results prove that the design of an efficient cultivar mixture can include the control of STB, among other foliar diseases.  相似文献   

9.
ABSTRACT The International Maize and Wheat Improvement Center (CIMMYT), Mexico, germplasm-derived wheat (Triticum aestivum) Kavkaz-K4500 L.6.A.4 (KK) is one of the major sources of resistance to Septoria tritici blotch (STB). KK is resistant to STB in field conditions in the UK even though a large majority of Mycosphaerella graminicola isolates are virulent to it. The genetics of the resistance of KK to four isolates of M. graminicola were investigated. KK has at least five isolate-specific resistance genes including Stb6 on chromosome 3A plus a second gene for resistance to isolate IPO323, two genes on chromosome 4A, both in the region where Stb7 is located with one designated as Stb12, and a gene designated Stb10 on chromosome 1D. Taken together, the widespread use of KK as a source of resistance to STB, its high resistance in field conditions, and its high susceptibility to M. graminicola isolates, which are virulent to all its resistance genes, suggest that high levels of field resistance to STB might be achieved by pyramiding several isolate-specific resistance genes.  相似文献   

10.
Twenty four isolates of Fusarium graminearum, half of which were 3-acetyldeoxynivalenol (3-ADON) and half 15-acetyldeoxynivalenol (15-ADON) chemotypes, were tested for their ability to produce deoxynivalenol and to cause Fusarium head blight (FHB) in spring wheat cultivars. The objectives of this study were to determine (1) whether 3-ADON isolates differ in aggressiveness, as measured by the FHB index, and DON production from 15-ADON isolates under field conditions, and (2) whether the performance of resistant host cultivars was stable across isolates. Field tests of all isolates were conducted with three replicates at each of two locations in Canada and Germany in 2008 with three host genotypes differing in FHB resistance level. The resistant host genotype showed resistance regardless of the chemotype or location. The differences between mean FHB indices of 3-ADON and 15-ADON isolates were not significant for any wheat genotype. In contrast, average DON production by the 3-ADON isolates (10.44 mg kg−1) was significantly (P < 0.05) higher than for the 15-ADON isolates (6.95 mg kg−1) at three of the four locations where moderately resistant lines were tested, and at both locations where susceptible lines were evaluated. These results indicate that 3-ADON isolates could pose a greater risk to food safety. However, as the mean aggressiveness and DON production of 3-ADON and 15-ADON chemotypes was similar on highly resistant lines, breeding and use of highly resistant lines is still the most effective measure of reducing the risks associated with DON in wheat.  相似文献   

11.
ABSTRACT Partial resistance to Septoria tritici blotch (STB) and its inheritance were investigated in a doubled-haploid population of a cross between cvs. Arina and Riband. The former has good partial resistance whereas the latter is susceptible. In adult plant trials in polytunnels, STB disease scores were negatively correlated with heading date. Resistance was not specific to any of the three fungal isolates used in these tests. A quantitative trait locus (QTL) for partial resistance to STB was identified in Riband on chromosome 6B and is named QStb.psr-6B-1. No QTL controlling a major part of the Arina resistance was identified, suggesting that its resistance may be dispersed and polygenic. There was no correlation between the lines' mean disease scores at the seedling and adult stages, implying that partial resistance to STB is developmentally regulated. Seedling resistance to the isolate IPO323 was isolate-specific and controlled by a single gene in Arina, probably allelic with the Stb6 gene in cv. Flame that confers resistance to the same isolate. The implications of these results for wheat breeding programs are discussed.  相似文献   

12.
The genetic structure of 276 Sclerotinia sclerotiorum isolates representing 37 field populations from four provinces in northern Iran were analysed with six polymorphic microsatellite loci. In total, 80 haplotypes were detected with 19 haplotypes (23.7%) shared amongst at least two regional populations. None of the haplotypes were shared among all four regional populations. Of the 80 haplotypes, 32 haplotypes (40%) occurred in low frequencies represented by only one isolate. Moderate levels of gene diversity (H = 0.51 to 0.61) and genotypic diversity (Ĝ = 12.0 to 22.0; clonal fraction = 0.39 to 0.67) for regional populations were observed. Genotypic diversities (Ĝ) did not differ significantly among populations. All regional populations were in linkage equilibrium indicating the occurrence of outcrossing. Low to moderate levels of population subdivision (0.03 to 0.07), were observed among regional populations. Only one large panmictic population was inferred by Structure, indicating no significant population structure. A Mantel test showed no significant isolation by distance (r = −0.43; P = 0.18), indicating anthropogenic movement of inoculum. The results demonstrated that S. sclerotiorum populations in northern Iran, are randomly mating and have a number of shared haplotypes among regional populations; this possibly represents recent founder populations and/or a high occurrence of anthropogenic migration of infected plant material among populations.  相似文献   

13.
Globally, bread wheat production is threatened by fungal diseases, including the devastating disease Septoria tritici blotch (STB). Given the global importance of STB, and the difficulty in identifying novel sources of resistance to this disease, we screened a variety of wheat genotypes, including wild, ancestral, and mutagenized lines, for their STB response. This delineated a panel of wild wheat relatives and Watkins collection lines with exceptional resistance to a range of Zymoseptoria tritici isolates, some of which are highly virulent on modern, elite wheat varieties. Additionally, we characterized the STB susceptibility of 500 lines of the wheat cultivar Cadenza TILLING population and developed backcross derivatives of two TILLING lines that show dominant partial resistance to STB. These backcross lines are partially resistant to multiple isolates of Z. tritici, and, with the wild and ancestral lines identified, provide a useful reservoir of STB-resistant germplasm for use in wheat breeding programmes.  相似文献   

14.
Septoria tritici blotch (STB) caused by the fungal pathogen Zymoseptoria tritici continues to be the most economically destructive disease of winter wheat throughout Ireland. Due to the widespread development of fungicide resistance in the Irish Z. tritici population, integrated strategies to control STB are increasingly necessary. A key component of such strategies will be the deployment of winter wheat cultivars with improved levels of STB resistance. Unfortunately, due to the nature of Z. tritici, such resistances are at risk of being overcome by the pathogen. In late summer 2020, foci of STB were observed across a range of winter wheat cultivars under evaluation for recommendation in Ireland. Common amongst these was the cultivar Cougar in each of their pedigree. To determine if the foci observed in 2020 resulted from strains virulent to Cougar, isolate collections were established and virulence screens conducted on Cougar and a range of the cultivars currently under evaluation. These confirmed the presence of Cougar-virulent strains in the Irish Z. tritici population, and that this virulence affects not just Cougar, but also cultivars derived from it. Although the foci observed in 2020 were in both fungicide-untreated and -treated plots, there was no evidence that these strains are more sensitive or resistant to fungicides compared to the wider Irish Z. tritici population, with moderate resistance to the SDHIs and azoles dominating. Combined, the present study confirms the need to ensure a diversity of control measures for STB, including ensuring a range of STB resistances are used.  相似文献   

15.
Septoria tritici blotch (STB), caused by Mycosphaerella graminicola, is the most prevalent disease of wheat worldwide. Primary inoculum and the early stages of STB epidemics are still not fully understood and deserve attention for improving management strategies. The inoculum build‐up and overseasoning involves various fungal structures (ascospores, pycnidiospores, mycelium) and plant material (wheat seeds, stubble and debris; wheat volunteers; other grasses). Their respective importance is assessed in this review. Among the mechanisms involved in the early stages of epidemics and in the year‐to‐year disease transmission, infection by ascospores wind‐dispersed from either distant or local infected wheat debris is the most significant. Nevertheless, infection by pycnidiospores splash‐dispersed either from neighbouring wheat debris or from senescent basal leaves has also been inferred from indirect evidence. Mycosphaerella graminicola has rarely been isolated from seeds so that infected seed, although suspected as a source of primary inoculum for a long time, is considered as an epidemiologically anecdotal source. Mycosphaerella graminicola can infect a few grasses other than wheat but the function of these grasses as alternative hosts in natural conditions remains unclear. Additionally, wheat volunteers are suspected to be sources of STB inoculum for new crops. This body of evidence is summarized in a spatio‐temporal representation of a STB epidemic aimed at highlighting the nature, sources and release of inoculum in the early stages of the epidemic.  相似文献   

16.
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a serious threat to oilseed production in Australia. Eight isolates of S. sclerotiorum were collected from Mount Barker and Walkway regions of Western Australia in 2004. Comparisons of colony characteristics on potato dextrose agar (PDA) as well as pathogenicity studies of these isolates were conducted on selected genotypes of Brassica napus and B. juncea. Three darkly-pigmented isolates (WW-1, WW-2 and WW-4) were identified and this is the first report of the occurrence of such isolates in Australia. There was, however, no correlation between pigmentation or colony diameter on PDA with the pathogenicity of different isolates of this pathogen as measured by diameter of cotyledon lesion on the host genotypes. Significant differences were observed between different isolates (P ≤ 0.001) in two separate experiments in relation to pathogenicity. Differences were also observed between the different Brassica genotypes (P ≤ 0.001) in their responses to different isolates of S. sclerotiorum and there was also a significant host × pathogen interaction (P ≤ 0.001) in both experiments. Responses between the two experiments were significantly correlated in relation to diameter of cotyledon lesions caused by selected isolates (r = 0.79; P < 0.001, n = 48). Responses of some genotypes (e.g., cv. Charlton) were relatively consistent irrespective of the isolates of the pathogen tested, whereas highly variable responses were observed in some other genotypes (e.g., Zhongyou-ang No. 4, Purler) against the same isolates. Results indicate that, ideally, more than one S. sclerotiorum isolate should be included in any screening programme to identify host resistance. Unique genotypes which show relatively consistent resistant reactions (e.g., cv. Charlton) across different isolates are the best for commercial exploitation of this resistance in oilseed Brassica breeding programmes.  相似文献   

17.
The banana Xanthomonas wilt disease (BXW) has threatened the livelihood of millions of farmers in East Africa. Use of resistant varieties is the most cost-effective method of managing this bacterial disease. A reliable and rapid screening method is needed to select resistant banana varieties. An in vitro screening method was developed for early evaluation of Xanthomonas wilt resistance using small tissue culture-grown plantlets. Eight cultivars of banana were screened with sixteen isolates of Xanthomonas campestris pv. musacearum using this method. There were significant differences (P < 0.0001) in susceptibility among the various banana cultivars tested, whereas no significant difference (P = 0.92) in pathogenicity was observed between the pathogen isolates. The cv. Pisang Awak (Kayinja) was found to be highly susceptible and Musa balbisiana resistant. Nakitembe was found to be moderately resistant while cvs Mpologoma, Mbwazirume, Sukali Ndiizi, FHIA-17 and FHIA-25 were susceptible. The susceptibility of these cultivars was further tested in vivo by artificial inoculation of potted plants with similar results. This study shows that an in vitro screening test can serve as a convenient, cheap and rapid screening technique to discriminate BXW-resistant from BXW-susceptible banana cultivars.  相似文献   

18.
In vitro detached leaf assays involving artificial inoculation of wounded and unwounded oat and wheat leaves were used to investigate the potential pathogenicity and aggressiveness of F. langsethiae, which was linked recently to the production of type A trichothecenes, HT-2 and T-2 in cereals in Europe. In the first two experiments, two assays compared disease development by F. langsethiae with known fusarium head blight pathogen species each used as a composited inoculum (mixture of isolates) at 10°C and 20°C and found all fungal species to be pathogenic to oat and wheat leaves in the wounded leaf assay. In the unwounded leaf assay, F. langsethiae was not pathogenic to wheat leaves. Furthermore, there were highly significant differences in the aggressiveness of pathogens as measured by lesion length (P < 0.001). In the second two experiments, pathogenicity of individual F. langsethiae isolates previously used in the composite inoculum was investigated on three oat and three wheat varieties. The wounded leaf assay showed that all isolates were pathogenic to all oat and wheat varieties but only pathogenic towards oat varieties in the unwounded assay. Highly significant differences (P < 0.001) in lesion length were found between cereal varieties as well as between isolates in the wounded assay. Significant differences in lesion lengths (P = 0.014) were also observed between isolates in the unwounded assay. Results from the detached leaf assays suggest that F. langsethiae is a pathogen of wheat and oats and may have developed some host preference towards oats.  相似文献   

19.
To provide insight into the genetic structure of Mycosphaerella graminicola populations in Iran, a total of 221 isolates were collected from naturally infected wheat fields of five major wheat‐growing provinces and analysed using AFLP markers and mating‐type loci. All populations showed intermediate to high genotypic diversity. In the Golestan and Ardabil populations two mating types were found at near‐equal frequencies, whilst all populations were in gametic disequilibrium. Moreover, clonal haplotypes were identified in different sampling sites within a field in both the Khuzestan and Fars provinces, demonstrating that pycnidia are probably the primary source of inoculum. All five populations had low levels of gene diversity and had private bands. Low levels of gene flow and high genetic differentiation were observed among populations and different clustering methods revealed five genetically distinct groups in accordance with the sampling areas. The Golestan and East Azarbaijan populations were more genetically differentiated than the others. Random genetic drift, selection and geographic barriers may account for the differentiation of the populations. The results of this study indicate a population structure of M. graminicola in Iran contrasting to that of most other countries studied.  相似文献   

20.
Eyespot is an economically important stem base disease of wheat caused by the soilborne fungal pathogens Oculimacula yallundae and Oculimacula acuformis. The most effective method of controlling the disease is host resistance. However, there are only three genetically characterized resistances in wheat varieties and further sources of resistance are required. Previous studies have identified resistances in wild relatives, but use of these resistances has been limited by linkage drag with deleterious traits exacerbated by low rates of recombination. Therefore, the identification of novel resistances in hexaploid wheat germplasm is desirable. The Watkins collection currently consists of 1056 hexaploid wheat landraces that represent global wheat diversity at the time of its collection in the 1920s and 1930s. As such, it may contain beneficial agronomic traits such as eyespot resistance. The Watkins collection was screened for resistance to O. yallundae based on a glasshouse test of all 1056 accessions and a polytunnel test of 44 accessions selected from a previous field trial. Resistant lines identified in these tests were retested against both O. yallundae and O. acuformis. This identified 17 accessions with resistance to one or both of the pathogen species. From these, two accessions (1190094.1 and 1190736.3) provided a high level of resistance to both pathogen species. An F4 population derived from accession 1190736.3 indicated that the resistance to O. acuformis in this accession is conferred by a single gene and therefore would be suitable for introgression into elite wheat varieties to provide an alternative source of eyespot resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号