首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
R. A. Richards 《Euphytica》1978,27(2):609-615
Summary Expectations of yield improvement in environments where drought was the major environmental factor limiting yields were studied in two species of rapeseed. Selection for yield in a drought stressed environment was predicted to be a more efficient selection stategy for yield improvement in dryland situations than selection in a more optimal environment, or selection based on a drought response index. The results indicate that selection for yield in a stressed environment are expected to lead to genetic advances in yield under optimal conditions as well as in a drought index. Selection under well watered conditions, on the other hand, was also expected to lead to correlated increases in yield in droughted environments but to decreases in the drought index. These results were found in both species of rapeseed grown in different water stress situations.The genetic advance in a drought response index was predicted to be greater in B. napus and marginally less in B. campestris if selection was practised for yield in a stressed environment rather than direct selection for the drought index. This was due to the higher heritability estimates in the stressed environments and the positive genetic correlations with yield.  相似文献   

2.
S. Ceccarelli 《Euphytica》1987,36(1):265-273
Summary Using the traditional approach (selection for grain yield) it has been found that F3 families derived from F2's selected under unfavourable conditions were more vigorous in the early stages of growth, taller, earlier in heading and with larger yields than F3 families derived from F2's selected under favourable conditions. A high and negative correlation coefficient was found between the drought susceptibility index and grain yield at the driest site, whereas at the wettest site the correlation coefficients were lower and in some cases positive, indicating the existence of traits which are desirable under drought and undesirable under favourable conditions, or vice versa.Expected responses to selection for grain yield using different selection criteria indicated that selection under stress conditions is expected to be more efficient than selection under favourable conditions when dry areas is the target environment.Expected responses to selection for grain yield using different selection criteria indicated that selection under stress conditions is expected to be more efficient than selection under favourable conditions when dry areas is the target environment.Part of this work was supported by Opec Fund for International Development.  相似文献   

3.
Even in the temperate climates of Europe, increasing early season drought and rising air temperature are presenting new challenges to farmers and wheat breeders. Sixteen winter wheat (Triticum aestivum L.) genotypes consisting of three hybrids, six line cultivars and two breeding lines from Germany as well as five line cultivars from France, Austria, Slovakia, Hungary and the Ukraine (referred to as “exotic” lines) have been included in this study. The genetic materials were evaluated over three growing seasons under a range of soil moisture regimes at the three North German sites Braunschweig (irrigated and drought‐stressed), Warmse (rainfed) and Söllingen (rainfed). The average grain yields in the twelve growth environments (water regime × season combinations) ranged from 6.1 to 13.5 t ha?1. The exotic lines showed little evidence of specific phenological adaptation to drought although they are frequently faced with water scarcity in their countries of origin. The hybrids and German lines exhibited higher regression coefficients (bi) to environmental means than the exotic lines, indicating particular adaptation to favourable growing conditions. The phenotypical correlations of grain yield between the various environments were high, ranging for instance from 0.6 to 0.8 for the irrigated and drought‐stressed environments at Braunschweig. It is thus expected that in the foreseeable future continued selection aiming at high yield potential will suffice as a means to counter the expected increase in droughts.  相似文献   

4.
The definition of a suitable breeding strategy in drought-prone environments is an important task for sunflower breeders. To achieve this task, reliable information on heritability and gene effects on yield and related traits under these conditions is necessary. Thirty six sunflower hybrids were produced by factorial cross of six male-sterile and six restorer lines. Parents and their hybrids were evaluated in eight environments. Six environments consisted of two adjacent trials in the experimental area, the first under irrigation and the second under dryland conditions, during 1987, 1988 and 1992. The other environments were: one early planting trial in dryland conditions, conducted during 1987, and a winter trial planted in January during 1988. Estimates of female variance (σf) were significant for seeds per head, seed weight, head sterile center, days to blooming and oil content. Female × male interactions (σ2 fm) were significant for all characters except harvest index and index of susceptibility to drought. Estimates of narrow sense heritabilities, calculated with information from analyses combined across environments, were 0.65 for yield, 0.80 for seeds per head, 0.84 for seed weight, 0.81 for head diameter, 0.60 for sterile head center, 0.72 for oil content, 0.61 for harvest index, 0.72 for biomass, 0.94 for days to bloom, and 0.42 for drought susceptibility index. Heritability estimates for individual environments showed more variation for yield than for other traits. Estimates for heritability of canopy temperature were high (0.68–0.79). Rainfed yield was positively correlated with yield components and negatively correlated with canopy temperature and susceptibility index. It is concluded that an efficient breeding strategy for sunflower under moderate drought-stressed conditions is the simultaneous selection for seed yield in both rainfed and irrigated environments together with selection for canopy temperature and stem diameter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Durum wheat is grown in the Mediterranean region under stressful and variable environmental conditions. In a 4-year-long experiment, 14 genotypes [including 11 durum breeding lines, two durum (Zardak) and bread (Sardari) wheat landraces, and one durum (Saji) newly released variety] were evaluated under rainfed and irrigated conditions in Iran. Several selection indices [i.e. stress tolerance index (STI), drought tolerance efficiency (DTE), and irrigation efficiency (IE)] were used to characterize genotypic differences in response to drought. The GGE biplot methodology was applied to analyze a three-way genotype-environment-trait data. Combined ANOVA showed that the year effect was a predominant source of variation. The genotypes differed significantly (P < 0.01) in grain yield in the both rainfed and irrigated conditions. Graphic analysis of the relationship among the selection indices indicated that they are not correlated in ranking of genotypes. The two wheat landraces and the durum-improved variety with high DTE had minimum yield reduction under drought-stressed environments. According to STI, which combines yield potential and drought tolerance, the “Saji” cultivar followed by some breeding lines (G11, G8, and G4) performed better than the two landraces and were found to be stable and high-yielding genotypes in drought-prone rainfed environments. The breeding lines G8, G6, G4, and G9 were the efficient genotypes responding to irrigation utilization. In conclusion, the identification of the durum genotypes (G12, G11, and G4) with high yield and stability performance under unpredictable environments and high tolerance to drought stress conditions can help breeding programs and eventually contribute to increasing and sustainability of durum production in the unpredictable conditions of Iran.  相似文献   

6.
E. Piano    P. Annicchiarico    M. Romani    L. Pecetti 《Plant Breeding》2007,126(6):644-646
The genetic control of tall fescue forage yield has been poorly investigated. Full‐sib families from diallel crosses of Mediterranean germplasm were evaluated for forage yield over 34 months in a Mediterranean environment with severe drought stress (diallel 1, with 20 parents) and over 16 months under irrigation in a heated greenhouse simulating the Mediterranean temperature pattern (diallel 2, with 15 parents). Genetic parameters were estimated for fresh biomass in diallel 1 and dry‐matter yield in diallel 2. Additive genetic variance was always larger than non‐additive (dominance) variance. Narrow‐sense heritability was fairly high (h2 = 0.61) in diallel 1 and moderate (h2 = 0.45) in diallel 2. Predicted yield gains from one selection cycle were larger in the former diallel (23.9%) than in the latter (10.5%), suggesting that gains can be enhanced by selection under severe drought stress and over a time span sufficient to allow the variation in persistence to fully emerge. General combining ability effects of eight parents that were common to both diallel crosses were highly correlated (r = 0.94) across the contrasting evaluation environments. The extent and consistency of additive genetic effects across environments suggest that rapid improvement of forage yield is possible.  相似文献   

7.
Summary The expected improvement in grain yield if selection was made for plant characters measured between flowering and maturity was evaluated in populations of rapeseed (Brassica campestris and B. napus) grown in a droughted environment. Drought was commenced at flowering in each species and measurements were made on plants at the commencement of the drought stress, during the stress treatment and at crop maturity.Substantial genetic and phenotypic variation was observed in yield as well as the different morphophysiological determinants of yield. In B. campestris no single parameter was found to be a suitable alternative selection criterion to yield since the correlated responses in yield if selection was for another character was lower than if selection was for yield alone. By the use of a selection index however, joint selection for yield, as well as harvest index, 1000 seed weight and seeds per pod, was expected to be 20% more effective than direct selection for yield under drought. In the B. napus population direct selection for flowering time or for harvest index was predicted to result in a genetic advance in yield equal to or greater than that obtained by direct selection for yield, whereas joint selection for flowering time and yield should result in a 16% greater yield increase. Selection for increased yield in these populations grown in droughted conditions is discussed.  相似文献   

8.
Seed of BC1 progeny of an interspecific cross between a slow germinating Lycopersicon esculentum breeding line(NC84173; maternal and recurrent parent) and a fast germinating L.pimpinellifolium accession (LA722) were evaluated for germination under cold stress, salt stress and drought stress, and in each treatment the most rapidly germinating seeds (first 2%) were selected. Selected individuals were grown to maturity and self-pollinated to produce BC1S1 progeny families. The selected BC1S1 progeny from each experiment were evaluated for germination rate in each of a non stress (control),cold-, salt- and drought-stress treatment, and their performances were compared with those of a non selected BC1S1population in the same treatments. Results indicated that selection for rapid seed germination in each of the three stress treatments was effective and significantly improved progeny germination rate under all three stress conditions. The results support the suggestion that same genes might control the rate of seed germination under cold, salt and drought stress. Furthermore, selection in each of the three stress treatments resulted in improved progeny seed germination rate under nonstress conditions, suggesting that genetic mechanisms that facilitate rapid seed germination under stress conditions might also contribute to rapid germination under nonstress conditions. In practice, therefore, selection for rapid seed germination under a single stress environment may result in progeny with improved seed germination under a wide range of environmental conditions. Furthermore, to improve germination rate under nonstress conditions, it might be more efficient to make selections under stress conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Ten trials evaluated the performance of several late tropical maize populations (La Posta Sequía, Pool 26 Sequía and Tuxpeño Sequía) selected for tolerance to drought during flowering and grain filling and also for yield potential. Families (S1 or full-sib) had been selected recurrently for six to eight years on an index of traits. Pattern (clustering and ordination) analysis was used to analyse the relative performance of entries that included cycles of selection for drought tolerance in the populations and non-drought tolerant checks. Mean environment (E) yields ranged from 1.0 to 10.4 t ha-1. Analysis of variance showed that 97.9% of the total sums of squares was accounted for by E, and that, of the remaining sums of squares the G × E (genotype by environment interaction) was almost 3 times that of the contribution of G alone. Cluster analysis separated the checks, the earlier maturing drought tolerant entries and the later maturing drought tolerant entries. This was verified by principal component (PC) analysis of the G × E matrix. Grouping of the environments (i.e. based on entry performance), resulted in the separation of different types of droughts, and of medium and high yielding well-watered environments. The patterns of discrimination observed indicated that the yield gains under drought would have been unlikely to occur if selection had been done only in well-watered environments. Within each population, selection improved broad adaptation (higher mean yield) to both drought and well-watered environments and cycles of selection ‘jumped’ from non-drought-tolerant to drought-tolerant groups as their specific adaptation to drought environments increased.  相似文献   

10.
Enhanced root growth in plants is fundamental to improve soil water exploration and drought tolerance. Understanding of the variance components and heritability of root biomass allocation is key to design suitable breeding strategies and to enhance the response to selection. This study aimed to determine variance components and heritability of biomass allocation and related traits in 99 genotypes of wheat (Triticum aestivum L.) and one triticale (X. Triticosecale Wittmack) under drought-stressed and non-stressed conditions in the field and greenhouse using a 10?×?10 alpha lattice design. Days to heading (DTH), days to maturity (DTM), number of tillers (NPT), plant height (PH), spike length (SL), shoot and root biomass (SB, RB), root to shoot ratio (RS), thousand kernel weight (TKW) and yield (GY) were recorded. Analyses of variance, variance components, heritability and genetic correlations were computed. Significant (p?<?0.05) genetic and environmental variation were observed for all the traits except for spike length. Drought stress decreased heritability of RS from 47 to 28% and GY from 55 to 17%. The correlations between RS with PH, NPT, SL, SB and GY were weaker under drought-stress (r?≤???0.50; p?<?0.05) compared to non-stressed conditions, suggesting that lower root biomass allocation under drought stress compromises wheat productivity. The negative association between GY and RS (r?=???0.41 and ??0.33; p?<?0.05), low heritability (<?42%) and high environmental variance (>?70%) for RS observed in this population constitute several bottlenecks for improving yield and root mass simultaneously. However, indirect selection for DTH, PH, RB, and TKW, could help optimize RS and simultaneously improve drought tolerance and yield under drought-stressed conditions.  相似文献   

11.
Water deficit imposed by either drought or salinity brings about severe growth retardation and yield loss of crops. Since Brassica crops are important contributors to total oilseed production, it is urgently needed to develop tolerant cultivars to ensure yields under such adverse conditions. There are various physiochemical mechanisms for dealing with drought and salinity in plants at different developmental stages. Accordingly, different indicators of tolerance to drought or salinity at the germination, seedling, flowering and mature stages have been developed and used for germplasm screening and selection in breeding practices. Classical genetic and modern genomic approaches coupled with precise phenotyping have boosted the unravelling of genes and metabolic pathways conferring drought or salt tolerance in crops. QTL mapping of drought and salt tolerance has provided several dozen target QTLs in Brassica and the closely related Arabidopsis. Many drought- or salt-tolerant genes have also been isolated, some of which have been confirmed to have great potential for genetic improvement of plant tolerance. It has been suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops.  相似文献   

12.
Drought frequently constrains production of wheat (Triticum aestivum L.), but development of tolerant cultivars is hampered by low heritability for drought tolerance and a lack of effective selection strategies. Our objective was to identify an optimum selection regime for wheat in drought-prone environments. Six-hundred entries derived from 10 crosses were developed by selection under continuous high moisture, alternating high with low moisture, alternating low with high moisture, and continuous low moisture conditions for five generations. The selections were evaluated in two low-yield, a medium-yield, and a high-yield environment in the Yaqui Valley, Sonora, Mexico. The mean performance of entries derived from a particular selection regime was dependant on the stress level of the evaluation environment. Lines developed and selected under continuous high moisture and continuous low-moisture regimes produced the highest mean yields in the low moisture evaluation environment. There was no relationship between continuous selection under either high yielding conditions or low yielding conditions and the mean performance of the resultant lines in their respective high and low yielding evaluation environments. The mean yield of lines selected using the alternating high/low moisture regime as well as the five highest yielding lines were superior in the HY environment, and had similar performance with other regimes under the low yielding evaluation environment. Our results indicate that alternating selection between high and low yielding environments is the most effective way to develop wheat germplasm adapted to environments where intermittent drought occurs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
S. Ceccarelli 《Euphytica》1989,40(3):197-205
Summary Breeding programs aim at improving crop production either within given macroenvironments (for example rainfed vs. irrigated) or in a wide range of growing conditions. The merit of either strategy depends on the range of testing environments and on the definition of stress environment. When environments with average yields of 3–4 t/ha are defined as stress environments, selection for stress conditions can be successfully conducted under optimum conditions. However, when the stress environment has a much lower yield potential (0.5–2.0 t/ha), direct selection in the target environment is the most efficient strategy.A review of data on widely adapted genotypes supports this conclusion.The relative magnitude of heritability in stressed and non-stressed environments is not sufficient to choose the optimum environment for selection, because phenotypic differences can be of opposite sign in different environments.The role of constitutive characters as analytical tools in breeding for yield stability in stress environments is briefly discussed.  相似文献   

14.
Summary Post-anthesis chemical desiccation of wheat (Triticum aestivum L.) plants in the field eliminates transtent photosynthesis by killing all green tissues, thus revealing the plant's capacity for grain filling from stored stem reserves, as the case is for post-anthesis stress such as drought or leaf diseases. This study was conducted to investigate whether mass selection for large kernels under chemical desiccation would lead to the improve ment of grain filling in the absence of transient photosynthesis.Six crosses of common spring wheat were subjected to three cycles of mass selection from F2 through F1 when selection was performed for large kernels by sieving grains from plants that were erther chemically desiccated after anthesis, or not (controls). The resulting 36 bulks (six crosses by three selection cycles by two selection environments) were compared with their respective F2 base populations, when tested with and without chemical desiccation.Selection for large kernels under potential conditions (without chemical desiccation) did not improve kernel weight under potnetial conditions, evidently because these materials were lacking in genetic variation for kernel weight under potential conditions. In four of the crosses, 3rd cycle selection for large kernels under potential conditions decreased kernel weight under chemical desiccation. On the other hand, selection for large kernels under chemical desiccation was effective in improving kernel weight and test weight under chemical desiccation, depending on the cross and the selection cycle, with no genetic shift in mean days to heading or mean plant height. Selection for large kernels under chemical desiccation was also effective in some cases in increasing kernel weight under potential conditions. The results are interpreted to show that selection under potential conditions and under chemical desiccation operate on two different sources for grain filling, namely transient photosynthesis and stem reserve utilization, respectively. In order to expose genetic variability for stem reserve utilization to selection pressure, transient photosynthesis must be eliminated, as done by chemical desiccation in this study.  相似文献   

15.
Wild species of the genus Oryza are a good source of beneficial alleles for enhancing rice yield under normal and adverse conditions. BC2F3 population was derived from a cross between Oryza sativa IR58025B and Oryza meridionalis Ng. (2n = 24, AA) a heat tolerant wild species to evaluate 12 yield traits under irrigated and aerobic conditions. Analysis of variance and genetic estimates indicated there is substantial genetic variation among progenies under both conditions. Grain yield had high heritability (61.9%) and genetic advance (36.4%) under irrigated conditions but moderate heritability (49.6%) and genetic advance (13.3%) under aerobic conditions indicating that selection for yield will be effective under both conditions. Panicle number, grain number, spikelet fertility, and test weight showed significant positive correlation with grain yield under both conditions. Families out-performing IR58025B for yield under both conditions were obtained providing evidence that phenotypically inferior O. meridionalis contributed to yield increase. This species can be a novel source of natural genetic variation for the improvement of rice under irrigated as well as under aerobic condition.  相似文献   

16.
A pearl millet mapping population from a cross between ICMB841 and 863B was studied for DNA polymorphism to construct a genetic linkage map, and to map genomic regions associated with grain and stover yield, and aspects of drought tolerance. To identify genomic regions associated with these traits, mapping population testcrosses of 79 F3 progenies were evaluated under post-flowering drought stress conditions over 2 years and in the background of two elite testers. A significant genotype × drought stress treatment interaction was evident in the expression of grain and stover yield in drought environments and in the background of testers over the 2 years. As a result of this, genomic regions associated with grain and stover yield and the aspects of drought tolerance were also affected: some regions were more affected by the changes in the environments (i.e. severity and duration of drought stress) while others were commonly identified across the drought stress environments and tester background used. In most instances, both harvest index and panicle harvest index co-mapped with grain yield suggesting that increased drought tolerance and yield of pearl millet that mapped to these regions was achieved by increased partitioning of dry matter from stover to the grains. Drought stress treatments, years and testers interactions on genomic regions associated with grain and stover yield of pearl millet are discussed, particularly, in reference to genetic improvement of drought tolerance of this crop using marker-assisted selection.  相似文献   

17.
Bread wheats (Triticum aestivum L.) were evaluated for plant characteristics contributing to grain yield and plant adaptation under various drought patterns. The usefulness of these traits as explicit selection criteria in developing drought tolerant wheat varieties was investigated in three experiments. Cultivars from four germplasm groups, representing the four relevant major and distinct global wheat growing environments, were grown under the respective simulated early, late, continuous and no drought conditions by manipulating irrigation in north western Mexico. Additionally, 560 advanced lines from the CIMMYT breeding program were grown under late drought conditions, and 16 randomly selected advanced genotypes were studied in more detail under late and no drought conditions. In these three studies, the association between yield in drought-stressed environments and yield in non drought-stressed environments was interpreted to reflect genotypic high yield potential, mainly by way of high biomass development. However, yield potential only partly explained the superior performance under drought. For each pattern of drought stress, particular and often different plant traits were identified that further contributed specific adaptation to the distinct drought stress conditions. Knowledge of these traits will be useful for developing CIMMYT germplasm for specific drought-stressed areas. Ultimately, these studies demonstrate that both yield potential and specific adaptation traits are useful criteria in breeding for drought environments, and should be combined to achieve optimum performance and adaptation to drought stress. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The effect of 0, 1, 2, 3 and 4 intercross cycles using genetic male sterility on the mean yield and genetic variability of the CNA 5 irrigated rice synthetic population was assessed studying 300 S0:2 (1998/99) and S0:3 (1999/00) families grown in two locations (Lambari, MG and Goianira, GO). Each intercross was investigated using a 8 × 8 triple lattice design experiment containing 60 families and four control cultivars. Five experiments were carried out per location and generation, totaling 20 experiments. Individual, combined over locations, combined over generations and combined over locations and generations analyses of variance were performed. Linear regression equations were fitted to data of each location and generation as well as, genetic and phenotypic parameters were estimated. An average increase of 3.91% in grain yield was obtained with the increase in the number of intercrosses. However, when genetic gains obtained from selection of the five and ten highest yielding families were considered, negative b estimates were always obtained, suggesting a tendency of gain increase reduction with the increase in the number of intercrosses. This was confirmed by the analysis of the means of the best families, since increases in the number of intercrosses did not result in selection of families with greater mean grain yield. The estimates of the genetic variances and heritabilities did not suggest an increase in genetic variability with the increase in intercross cycles. Therefore, carrying out intercrosses on the base population did not improve the results of the irrigated rice recurrent selection program. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Progress from plant breeding has been slow in some marginal environments. Conventional or formal plant breeding (FPB) programs conducted by international agricultural research centres or national programs in developing countries have been criticized for ignoring indigenous germplasm, failing to breed for conditions facing poor farmers, and emphasizing selection for broad versus local adaptation. A suite of techniques, referred to as participatory plant breeding (PPB) and including farmer-participatory or farmer-led selection, on-farm evaluation, and use of local landraces, has been advocated in response to this critique. PPB programs are diverse in scope and approach, but often rely heavily on farmer visual evaluation or phenotypic mass selection to select for simply-inherited traits, with limited replicated yield testing in multiple-environment trials (MET), one of the main tools of FPB. Prediction equations derived from selection theory can be used to examine the conditions under which idealized versions of FPB and PPB may be expected to achieve genetic progress for traits such as yield. The effectiveness of any selection environment is determined by both the genetic correlation between genotype performance in it and the target environment (r G) and the heritability of genotypic differences in the selection environment (H s). r is a measure of the accuracy with which performance of genotypes in the selection environment predicts performance in the target environment; H s is a measure of the precision with which performance differences among genotypes can be measured in the selection environment. We compare FPB and PPB with respect to these determinants of selection response, using examples from self-pollinated species. Particular areas examined include: (i) selection for broad versus specific adaptation; (ii) on-station versus on-farm selection; and (iii) selection under high-yield versus low-yield conditions. In general, PPB systems attempt to maximize gains through the use of on-farm evaluation and the skills of farmer-selectors to maximize r G. FPB exploits METs to maximize H s. PPB is most likely to develop cultivars that out-perform the products of FPB when it is applied in low-yield cropping systems, because it is in such situations that r G between high-yield breeding nurseries and low-yield target environments is likely to be low or negative. To make continued gains, and to compete with internationally-supported FPB programs, PPB systems will need to counter the obscuring effects of uncontrollable within-field, site-to-site, and year-to-year heterogeneity. Simple and robust designs for on-farm METs are needed for this purpose. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
No information is available on the effects of different biomass yield environments on selection efficiency in switchgrass (Panicum virgatum L.) breeding improvement. This study was conducted to assess the effects of high- and low-biomass yield environments (HYE and LYE, respectively) on recurrent selection for general combining ability (RSGCA) in a lowland population of switchgrass (NL-94). The top 14 of 65 NL-94 C0 parent plants were selected based on biomass yield of half-sib (HS) progeny tested for one post-establishment year under HYE and LYE conditions. Nine of the 14 C0 parent plants were the same based on HS performance under HYE and LYE. Selected plants were intercrossed to produce NL-94 HYE and NL-94 LYE C1 populations. One hundred and twenty-five HS C1 progeny families (60 NL-94 HYE and 65 NL-94 LYE) were evaluated for biomass yield for 3 years (2002–2004) under HYE and LYE conditions. The HYE produced about 2.5 times higher biomass yields than the LYE in both C0 and C1 HS progeny tests. Estimated additive genetic variance and predicted gains from selection (ΔG) were high in the C1 populations indicating that RSGCA should achieve higher biomass yields. Mean biomass yields of C1 HS families originating from the LYE protocol were significantly higher than those of families originating from the HYE protocol in both HYE and LYE performance tests, suggesting greater selection response under LYE in the C0 population. The estimates of narrow-sense heritability ( ) and ΔG from the C1 populations indicate that positive response to selection for biomass yield is possible in subsequent cycles of selection under either HYE or LYE, with a possible small advantage for HYE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号