首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Producing higher yields under organic conditions is generally hampered by weeds and lesser nutrient supply. In wheat certain adaptive traits like early season vigour, taller plants, and shorter life cycle have been reported to help plants compete with weeds and produce satisfactory yields. In this experiment we tested the hypothesis ‘that early flowering and maturity conferred by insensitive vernalization alleles Vrn-A1a and/or Vrn-B1 has a yield advantage under organic conditions’ in Canadian spring wheat germplasm. We genotyped 32 cultivars for their vernalization gene composition (Vrn-A1a, Vrn-B1 and Vrn-D1) and studied these cultivars in organic and conventional management systems. We found 88 % of the cultivars possessed vernalization (Vrn) insensitive allele Vrn-A1a either alone or in combination with Vrn-B1. There were no differential affects between the cultivars having insensitive Vrn allele at either single locus (Vrn-A1a) or two (Vrn-A1a, Vrn-B1) under organic and conventional field conditions; except for days to maturity, where cultivars having only Vrn-A1a allele matured earlier. This earlier maturity did not translate to any yield advantage under organic field conditions. Overall, the cultivars grown under organic conditions were earlier flowering, lower yielding with lower test weight compared to the conventional management system. Significant cultivar × environment interactions were found for grain yield, grain protein content and grain fill rate. For grain protein content, cross-over interactions of the cultivars between the management systems were observed. Three cultivars (Marquis, Unity and Minnedosa) exhibited minimal comparative loss in grain yield and grain protein content under organic field conditions, and hence could potentially serve as parents for organic wheat breeding programs.  相似文献   

2.
春化和光周期基因等位变异在23个国家小麦品种中的分布   总被引:2,自引:1,他引:1  
为促进国外资源在我国小麦育种中的有效利用,以小麦春化基因Vrn-A1、Vrn-B1、Vrn-D1和Vrn-B3及光周期位点Ppd-D1标记对23个国家的755份品种检测,同时在河南安阳秋播,观察抽穗期和成熟期。分子标记检测结果表明,Vrn-A1、Vrn-B1、Vrn-D1和vrn-A1+vrn-B1+ vrn-D1的分布频率分别为13.0%、21.1%、15.6%和64.2%,显性等位变异Vrn-B3在检测材料中缺失。春化基因显性等位变异Vrn-A1、Vrn-B1和Vrn-D1主要分布在中国春麦区和长江中上游冬麦区、意大利、印度、日本、加拿大、墨西哥、智利、阿根廷和澳大利亚,上述地区的小麦一般为春性类型;春化位点均为隐性等位变异或vrn-A1+vrn-D1+Vrn-B1的品种主要分布在中国北方、美国中部和南部、德国、法国、挪威、乌克兰、俄罗斯、伊朗、土耳其、匈牙利、保加利亚、罗马尼亚和塞尔维亚,这些地区的小麦为冬性类型。光周期迟钝型Ppd-D1a的分布频率为55.2%。光周期敏感等位变异Ppd-D1b主要分布在纬度较高的地区,即美国各麦区以及德国、挪威、匈牙利、中国东北、加拿大、智利和阿根廷,来自其余麦区的品种均携带光周期迟钝等位变异Ppd-D1a;携带Ppd-D1a的品种在河南安阳大部分能够成熟,而携带Ppd-D1b的品种在河南安阳基本不能成熟。在安阳春化显性等位变异Vrn-A1a未加速小麦抽穗,而携带Vrn-B1和Vrn-D1等位变异的部分春化需求品种能够正常抽穗,主要因安阳生长季节的温度能够满足春化需求。  相似文献   

3.
为促进国外种质资源在我国的有效利用,将14个国家的100份代表性小麦品种在国内的8个代表性地点种植,调查抽穗期、成熟期和株高,并以4个春化基因(Vrn-A1、Vrn-B1、Vrn-D1和Vrn-B3)、1个光周期基因(Ppd-D1a)及2个矮秆基因(Rht-B1b和Rht-D1b)的分子标记检测所有品种的基因型。春化基因Vrn-A1a、Vrn-B1、Vrn-D1和vrn-A1+vrn-B1+ vrn-D1的分布频率分别为8.0%、21.0%、21.0%和64.0%;显性等位变异Vrn-A1a、Vrn-B1和Vrn-D1主要存在于来自中国春麦区及意大利、印度、加拿大、墨西哥和澳大利亚的品种中,这些品种一般为春性类型;春化位点均为隐性等位变异或vrn-A1+vrn-D1+Vrn-B1的品种主要分布在中国冬麦区、美国冬麦区、俄罗斯冬麦区,以及英国、法国、德国、罗马尼亚、土耳其和匈牙利,这些地区的小麦均为冬性类型。秋播时,供试品种均能正常抽穗,且携带春化显性变异的材料较隐性类型抽穗早,显性等位变异表现加性效应,4个春化位点均为隐性变异的一些欧美材料因抽穗太晚在杨凌和成都不能正常成熟;而春播时,显性等位变异基因型抽穗的频率高,隐性等位变异基因型基本不能抽穗。光周期不敏感基因Ppd-D1a的分布频率为68.0%,主要分布在中国、法国、罗马尼亚、俄罗斯、墨西哥、澳大利亚和印度,而光周期敏感等位变异Ppd-D1b主要分布在英国、德国、匈牙利和加拿大等中高纬度地区;携带Ppd-D1a的品种较携带Ppd-D1b的品种抽穗早,大多数Ppd-D1a品种在长日照和短日照条件下均能成熟,大部分Ppd-D1b品种在短日照条件下不能成熟。Rht-B1b和Rht-D1b基因的分布频率分别为43.0%和35.0%,其中Rht-B1b主要分布于美国、罗马尼亚、土耳其、意大利、墨西哥和澳大利亚,Rht-D1b主要分布于中国、德国、英国、意大利和印度。一般来说,一个国家的品种携带Rht-B1b或Rht-D1b之一,而这2个基因在高纬度地区分布频率较低。Rht-B1b、Rht-D1b和Ppd-D1a的降秆作用均达显著水平,Rht-B1b和Rht-D1b的加性效应突出。  相似文献   

4.
春化基因Vrn-B1是决定黄淮冬麦区小麦品种冬春性的主要基因之一, 研究其不同显性等位变异的低温春化作用效应及分布, 对该区小麦品种选育和推广具有重要意义。以等位变异Vrn-B1a品种皖麦33与等位变异Vrn-B1b品种豫麦34为亲本构建杂交组合, 对其F2代进行5~35 d的低温春化处理, 并在温室(22±3℃,16 h昼/8 h夜)鉴定抽穗期, 结合分子标记分析低温春化处理时间对各等位变异型抽穗期的影响。同时对228个黄淮冬麦区小麦品种进行相关位点分子检测, 分析该基因等位变异的分布特点。各春化处理均使两种等位变异小麦植株的抽穗期提前, 但Vrn-B1a抽穗时间比Vrn-B1b晚约2 d。从春化处理当天至处理后25 d, 2种等位变异类型的抽穗时间均随春化时间的延长而缩短; 继续延长春化时间, 抽穗期不再缩短, 表明满足两种等位变异完成春化的低温时间为20~25 d。在228个品种中, Vrn-B1位点有214个(93.9%)隐性和14个(6.1%)显性等位变异。其中, 显性等位变异Vrn-B1a有6个, 占总品种数的2.6%; Vrn-B1b有8个, 占总品种数的3.5%。在黄淮冬麦区小麦品种中, 春化基因Vrn-B1位点至少存在Vrn-B1a和Vrn-B1b两种显性等位变异类型, 两种等位变异类型纯合小麦植株的抽穗时间不同。  相似文献   

5.
Ear emergence time and response to vernalization were investigated in 12 alien substitution lines in which a pair of chromosomes 5A of recipient spring wheat cultivars was replaced by a pair of chromosomes 5R of Siberian spring rye ‘Onokhoiskaya’. The recipients were 12 spring cultivars of common wheat, each carrying different Vrn genes. Spring rye ‘Onokhoiskaya’ had the Sp1 (now called Vrn-R1) gene for spring growth habit located on chromosome 5R, but its expression was weaker. The Vrn-R1 gene had no effect on growth habit, ear emergence time and response to vernalization in wheat-rye substitution lines. Ears emerged significantly later in the 5R(5A) alien substitution lines than in the recipient wheat cultivars with the Vrn-A1/Vrn-B1/vrn-D1 or Vrn-A1/vrn-B1/Vrn-D1 genotypes. No difference in ear emergence time was found between most of the 5R(5A) alien substitution lines and the cultivars carrying the recessive vrn-A1 gene. The presence of the Vrn2a and Vrn2b alleles at the Vrn2 (now called Vrn-B1) locus located on wheat chromosome 5B was confirmed.The replacement of chromosome 5A by chromosome 5R in wheat cultivars ‘Rang’ and ‘Mironovskaya Krupnozernaya’, which carries the single dominant gene Vrn-A1, converted them to winter growth habit. In field studies near Novosibirsk the winter hardiness of 5R(5A) wheat–rye substitution lines of ‘Rang’ and ‘Mironovskaya Krupnozernaya’ was increased by 20–47% and 27–34%, respectively, over the recurrent parents.  相似文献   

6.
Wheat is one of the most widely cultivated crops and, being the staple diet of more than 40 countries, it plays an imperative role in food security. Wheat has remarkable genetic potential to synchronize its flowering time with favourable environmental conditions. This ability to time its flowering is a key factor for its global adaptability and enables wheat plant to produce satisfactory grain yield under very diverse temperature and soil moisture conditions. Vernalization (Vrn), photoperiod (Ppd) and earliness per se (Eps) are the three genetic systems controlling flowering time in wheat. The objective of this review is to provide comprehensive information on the physiological, molecular and biological aspects of the three genetic constituents of flowering and maturity time in wheat. Reviews written in the past have covered either one of the aspects; and generally focused on one of the three genetic constituents of the flowering time. The current review provides (a) a detailed overview of all three gene systems (vernalization, photoperiod and earliness per se) controlling flowering time, (b) details of the primer sequences, their annealing temperatures and expected amplicon sizes for all known markers of detecting vernalization and photoperiod alleles, and (c) an up to date list of QTLs affecting flowering and/or maturity time in wheat.  相似文献   

7.
Due to the short growing season in the high northern latitudes, the development of early maturing spring wheat (Triticum aestivum L.) cultivars is important to avoid frost damage which can lower production and quality. We investigated earliness of flowering and maturity, and some associated agronomic traits, using a set of randomly selected high northern latitude adapted spring wheat cultivars (differing in maturity) and their F1 and F2 crosses made in a one-way diallel mating design. The parents, and their F1 and F2 crosses were evaluated under field conditions over 2 years. Anthesis and maturity times were controlled by both vernalization response and earliness per se genes, mainly acting additively. Non-additive genetic effects were more important in controlling grain fill duration, grain yield and plant height. Additive × additive epistatic effects were detected for all traits studied except time to anthesis. Segregation analyses of the F2 populations for time to anthesis indicated the presence of different vernalization response genes. Molecular genetic analyses revealed the presence of Vrn-A1 and Vrn-B1 genes in the parental cultivars. Narrow-sense heritability was medium to high (60–86%) for anthesis and maturity times but low to medium (13–55%) for grain fill duration, plant height and grain yield. Selection for early flowering/maturity in early segregating generations would be expected to result in genetic improvement towards earliness in high latitude spring wheats. Incorporation of the vernalization responsive gene Vrn-B1 in combination with vernalization non-responsive gene Vrn-A1 into spring wheats would aid in the development of early maturing cultivars with high grain yield potential for the high latitude wheat growing regions of the northern hemisphere.  相似文献   

8.
Argentine wheat cultivars are assumed to be essentially vernalization insensitive or very slightly sensitive. However, there are only speculations on this lack of vernalization requirement and a greater unawareness on the variation in earliness per se. The aims of this research have been to determine the extent of variability in vernalization requirement and earliness per se, and how the variability in both traits was produced by breeding programs, through the release of wheat cultivars from the 1930's to the 1990's in Argentina. Sixty-eight cultivars, selected among those of highest performance in each era, were evaluated under field and glasshouse conditions for their vernalization response and earliness per se. Forty per cent of the cultivars showed some vernalization response. There was a decrease in this requirement along the first decades of the analysed breeding period, likely in response to the considerable introgression of CIMMYT germplasm. This initial trend to release earlier cultivars was also evidenced in a clear decrease in earliness per se. As this tendency in both characteristics was reverted during the last two decades, it may denote that certain vernalization response and not extreme earliness per se, may contribute to achieve higher yield cultivars in our area. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Under the changing climate, early flowering is advantageous to escape terminal heat and drought. Previously during evaluation of 14 chromosome introgression lines (ILs), we found three ILs that flowered a month earlier than their wheat background Chinese Spring (CS). This paper describes the cause of the early flowering in the ILs and provides insight into the evolution of spring wheat from the winter wheat. We used specific molecular markers for Vrn genes to determine its allelic composition. Phenotypic evaluations carried out under field conditions and in a growth chamber. Unlike the winter vrn-A1 allele of CS, the spring Vrn-A1 allele of the ILs had insertions of 222 and 131-bp miniature inverted-repeat transposable element (MITE) in the promoter region. Sequence analysis indicated that the 222-bp insertion is similar to an insertion in the spring genotype, Triple Dirk D. Our results ruled out any possibility of outcrossing or contamination. Without vernalization, Vrn-A1 is highly expressed in the ILs compared to CS. We attribute the early flowering of the ILs to the insertion of the MITE in the promoter of Vrn-A1. The alien chromosome might mediate this insertion.  相似文献   

10.
Waiting for fine times: genetics of flowering time in wheat   总被引:17,自引:0,他引:17  
To maximise yield potential in any environment, wheat cultivars musthave an appropriate flowering time and life cycle duration which`fine-tunes' the life cycle to the target environment. This in turn, requiresa detailed knowledge of the genetical control of the key components of thelife cycle. This paper discusses our current knowledge of the geneticalcontrol of the three key groups of genes controlling life-cycle duration inwheat, namely those controlling vernalization response, photoperiodresponse and developmental rate (`earliness per se', Eps genes).It also discusses how our ability to carry out comparative mapping of thesegenes across Triticeae species, and particularly with barley, is indicatingnew target genes for discovery in wheat. Major genes controllingvernalization response, the Vrn-1 series, have now been located bothgenetically and physically on the long arms of the homoeologous group fivechromosomes. These genes are homoeologous to each other and to thevernalization genes on chromosomes 5H of barley and 5R of rye.Comparative analysis with barley also indicates that other series ofvernalization response genes may exit on chromosomes of homoeologousgroups 4 (4B, 4D, 5A) and 1. The major genes controlling photoperiodresponse in wheat, the Ppd-1 genes, are located on the homoeologousgroup 2 chromosomes, and are homoeologous to a gene on barleychromosome 2H. Mapping in barley also indicates a photoperiod responselocus on barley 1H and 6H, indicating that a homoeologous series shouldexist on wheat group 1 and 6 chromosomes. In wheat, only a few`earliness per se loci have been located, such as on chromosomes ofhomoeologous group 2. However, in barley, all chromosomes appear tocarry such loci, indicating that several series of loci that affectdevelopmental rate independent of environment remain to be discovered.Overall, comparative studies indicate that there are probably twenty-fiveloci controlling the duration of the life-cycle, Vrn, Ppd and Eps genes, that remain to be mapped in wheat. There are major gaps inour knowledge of the detailed physiological effects of genes discovered todate on the timing of the life cycle from different sowing dates. This isbeing addressed by studying the phenology of isogenic and deletion lines inboth field and controlled environmental conditions. This has indicated thatthe vernalization genes have major effects on the rate of primodiaproduction, whilst the photoperiod genes affect the timing of terminalspikelet production and stem elongation, and these effects interact withsowing date.  相似文献   

11.
A two gene epistatic model in which a dominant “winter growth habit” allele at Vrn-H2 encodes a repressor with a corresponding binding site in a recessive vrn-H1 allele explains the vernalization response phenotypes in an array of barley germplasm. In order to validate the model genetically, we developed an F 2 population (and F 2-derived F 3 families) from the cross of Hardy (winter) × Jubilant (spring). Using gene-specific primers, we determined the Vrn-H1 and Vrn-H2 allele architecture of each F 2 plant and we measured the growth habit phenotype of each F 2 plant via phenotyping of its F 3 progeny under controlled environment conditions. We used a set of treatments involving plus/minus vernalization under long photoperiod and vernalization under short photoperiod. Alleles at the two loci showed expected patterns of segregation and independent assortment. Under long day conditions, the two Vrn genes were the primary determinants of heading date, regardless of the vernalization treatment. Under short photoperiod, the effects of these loci were not significant. There was incomplete dominance at Vrn-H1: heterozygotes were significantly later to head than Vrn-H1Vrn-H1 genotypes. Vrn-H2 genotypes were also significantly later to head, even when plants were vernalized. These results validate the two-gene epistatic model for vernalization response under long-day conditions. The results under short photoperiod, and the variance in flowering with vernalization, confirm that while the two Vrn genes are the primary determinants of vernalization response, they are part of a larger interactome that determines the timing of the vegetative to reproductive transition.  相似文献   

12.
孙道杰  冯毅  王辉  闵东红  李学军 《作物学报》2008,34(11):1953-1957
春化基因VRN-B3是小麦开花素基因TaFT,为探索该基因在品种间的保守性及其与小麦开花早晚的关系,根据TaFT基因序列(GenBank accession No.: DQ890162)设计特异PCR引物,扩增了13个品种中该基因的编码区。通过测序和序列比对,发现不同品种间该基因编码区的DNA序列存在多态性,序列翻译发现5个品种的表达产物FT蛋白发生变异。利用中国春的非整倍体材料将TaFT基因定位在7BS染色体上。参考品种的冬春性及开花时间,推测冬性品种正常的FT蛋白(同DQ890162翻译的氨基酸序列一致)可加速开花,FT蛋白变异则延迟开花;春性品种的FT蛋白变异与否对开花期影响不大,推测TaFT基因的效应可能被春性品种的显性春化基因所掩盖。  相似文献   

13.
中国主要小麦品种春化基因的STS标记鉴定   总被引:2,自引:0,他引:2  
本文选取来自中国各麦区的260份小麦品种,用STS标记对其Vrn-A1、Vrn-B1、Vrn-D1和Vrn-B3四个春化基因位点进行检测,并结合小麦田间生长情况记录,探讨春化基因的4个位点显隐性情况对品种冬春性的影响.结果表明,各位点显性基因频率以Vrn-D1位点最高,而Vrn-A1和Vrn-B1显性等位基因对品种冬春性的影响高于Vrn-D1和Vrn-B3基因,且所含显性春化基因越多的品种生长习性越偏向春性.另发现,Vrn-A1仅存在于春性品种中;而对于冬性品种来说,各位点均不含显性春化基因.本文标记鉴定结果与田间冬春性观察具有较高的一致性,在小麦育种及品种推广中具有较高的指导意义和应用价值.  相似文献   

14.
15.
Gliadin alleles were identified in 100 common wheat cultivars registered and/or grown in Spain during the last 40 years. A very high level of genetic polymorphism was found: in total, 103 allelic variants including one null‐allele were found at the six major Gli loci in the Spanish wheats studied. An average genetic diversity for these six loci was found to be higher (H=0.844) than in any group of wheat cultivars studied previously. Spanish wheats bred in Spain demonstrated even higher genetic diversity (H=0.868), probably because of the occurrence in this group of some landraces (local varieties) assumed to be strongly differentiated to fit local environments. The high level of genetic diversity of wheats grown in Spain was maintained by the introduction of distantly related wheat germplasm from different sources, especially from Italy and CIMMYT. A slight decrease of genetic diversity in recently registered cultivars might be caused by the excessive introduction of French wheats. Thirteen new alleles found in Spanish wheats were catalogued, including Gli‐D2w which encodes the first Gli‐D2‐controlledγ‐gliadin to be found.  相似文献   

16.
Race non-specific resistance to rust diseases in CIMMYT spring wheats   总被引:1,自引:0,他引:1  
Rust diseases continue to cause significant losses to wheat production worldwide. Although the life of effective race-specific resistance genes can be prolonged by using gene combinations, an alternative approach is to deploy varieties that posses adult plant resistance (APR) based on combinations of minor, slow rusting genes. When present alone, APR genes do not confer adequate resistance especially under high disease pressure; however, combinations of 4?C5 such genes usually result in ??near-immunity?? or a high level of resistance. Although high diversity for APR occurs for all three rusts in improved germplasm, relatively few genes are characterized in detail. Breeding for APR to leaf rust and stripe rust in CIMMYT spring wheats was initiated in the early 1970s by crossing slow rusting parents that lacked effective race-specific resistance genes to prevalent pathogen populations and selecting plants in segregating populations under high disease pressure in field nurseries. Consequently most of the wheat germplasm distributed worldwide now possesses near-immunity or adequate levels of resistance. Some semidwarf wheats such as Kingbird, Pavon 76, Kiritati and Parula show high levels of APR to stem rust race Ug99 and its derivatives based on the Sr2-complex, or a combination of Sr2 with other uncharacterized slow rusting genes. These parents are being utilized in our crossing program and a Mexico-Kenya shuttle breeding scheme is used for selecting resistance to Ug99. High frequencies of lines with near-immunity to moderate levels of resistance are now emerging from these activities. After further yield trials and quality assessments these lines will be distributed internationally through the CIMMYT nursery system.  相似文献   

17.
The major vernalisation genes of VRN1 are well understood at the molecular level. However, their quantitative contributions to flowering time and grain yield related traits are not clear. In this study, we used a double haploid population (225 lines) of Westonia × Kauz in which the Vrn-A1a (Westonia), Vrn-B1a (Westonia) and Vrn-D1a (Kauz) were segregating, and a high resolution genetic map of 1,159 loci, to determine the quantitative contributions of Vrn-A1a, Vrn-B1a and Vrn-D1a for the days to anthesis and grain yield related traits in diverse environments. The major quantitative trait loci (QTL) of spikelet number per spike and days to anthesis were contributed by the winter alleles of VRN1. The QTL of the time of grain filling were contributed by the spring alleles of VRN1. The wild genotype (vrn-A1vrn-B1vrn-D1) showed the latest flowering, the highest spikelet number per spike, lowest peduncle proportion and thousand grain weight in three environmental analyses, and the largest spikelet number per spike, which resulted in high kernel number per spike (KN) and grain weight (GW) in well-watered environments. One QTL of KN was located on 5B, contributed by winter allele of vrn-B1 in three environmental analyses, and one GW QTL was detected on 5A, contributed by the spring allele of Vrn-A1a in a drought environment. The results indicated that the genotype Vrn-A1avrn-B1Vrn-D1a would shorten the time to anthesis and give high GW and KN in drought environments. The early anthesis associated phenotype, peduncle proportion would provide an indicator in breeding programs.  相似文献   

18.
For reproductive success, flowering time must synchronize with favourable environmental conditions. Vernalization genes play a major role in accelerating or delaying the time to flowering. We studied how different vernalization (VRN1) gene combinations alter days to flowering and maturity and consequently the effect on grain yield and other agronomic traits. The study focussed on the effect of the VRN1 gene series (Vrn‐A1, Vrn‐B1 and Vrn‐D1) and their combinations. The Vrn gene group Vrn‐A1a, Vrn‐B1, vrn‐D1 was the earliest to flower and mature, while Vrn‐A1b, Vrn‐B1, vrn‐D1 was the latest to flower. Spring wheat lines with vrn‐A1, Vrn‐B1, Vrn‐D1 were the highest yielding and matured at a similar time as those having vernalization genes Vrn‐A1a, Vrn‐B1 and Vrn‐D1. The findings of this study suggest that the presence of Vrn‐D1 has a direct or indirect role in producing higher grain yield. We therefore suggest the introduction of Vrn‐D1 allele into higher‐yielding classes within Canadian spring wheat germplasm.  相似文献   

19.
In wheat, the transition from the vegetative to reproductive stage is primarily controlled by the series of vernalisation (Vrn-1) genes located on the homoeologous group 5 chromosomes. Up to 2009, only two alleles at the Vrn-B1 locus were known: one dominant, spring, allele (now designated Vrn-B1a) and the other recessive, winter, (vrn-B1) allele. Recently, two additional dominant alleles, Vrn-B1b and Vrn-B1c, were described. In this study, we screened a range of hexaploid spring wheat germplasms for the presence of different Vrn-B1 alleles using new diagnostic molecular markers. Our results show that the Vrn-B1a allele was the most prevalent, being present in 55.3 % of the 2,495 accessions examined, followed by the recessive vrn-B1 allele, which occurred in 31.5 % of the accessions. The novel alleles Vrn-B1b and Vrn-B1c were found in 5.3 and 7.9 % of all accessions, respectively.  相似文献   

20.
Marker‐assisted selection may be useful for combining specific vernalization response (Vrn) alleles into a single wheat genotype for yield enhancement; however, DNA markers are only available for two of the three genes identified to date. The objectives of this study were to investigate reciprocal effects on days to heading using F2 populations generated by cross‐hybridizing near‐isogenic lines (NILs) carrying spring (Vrn‐B1; TDB) and winter (vrn‐B1; TDC) alleles, and to identify markers linked to Vrn‐B1 through genetic linkage analysis. Heading data were recorded for 91 and 89 progeny from reciprocal mapping populations TDB/TDC and TDC/TDB, respectively, and significant (P < 0.0001) reciprocal and dominance effects were detected. Among 207 amplified fragment length polymorphisms primer pairs and seven wheat microsatellite markers screened, two and one, respectively, were linked distally to Vrn‐B1 on wheat chromosome 5BL. Microsatellite Xgwm408 was most closely linked to Vrn‐B1 at 3.9 and 1.1 cM in the TDB/TDC and TDC/TDB map, respectively. Reciprocal differences in recombination distances emphasize the importance of female parent choice when generating mapping populations. Molecular markers are now available for three Vrn loci in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号