首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Following induction of ovulation with deslorelin acetate (Ovuplant), gonadotrophin concentrations are reduced in the subsequent cycle, leading to increased interovulatory intervals in some mares. This study determined whether implant removal after 2 days prevented the decrease in gonadotrophin concentrations and follicular growth during the ensuing cycle. Twenty-four mares were randomised equally into 3 groups. Group 1 ovulated spontaneously, Groups 2 and 3 received the deslorelin implant to induce ovulation. Two days after treatment, the implant was removed from Group 3. On Day 10 postovulation, FSH was lower (P = 0.009) in Group 2, but not different between Groups 1 and 3. Follicular diameter on Day 14 was less (P<0.05) in Group 2 (19.0 +/- 2.1 mm) than in Groups 1 and 3 (36.6 +/- 2.5 and 30.5 +/- 2.0 mm, respectively). Interovulatory interval was longer (P<0.05) for Group 2 (25.8 +/- 2.9 days) compared to Groups 1 and 3 (18.5 +/- 0.7 and 19.4 +/- 0.3 days, respectively). Removal of the deslorelin implant eliminated the decreased FSH secretion and the increased interovulatory interval associated with implant administration. Therefore, it is recommended that the implant be removed after ovulation is detected to prevent the occurrence of a prolonged interovulatory interval.  相似文献   

2.
There is a need for a safe, effective and practical method of oestrus suppression in the mare. The aim of this study was to monitor ovarian activity in mares exposed to either 9.4 or 28.2 mg deslorelin acetate, a GnRH agonist, in the form of a sustained-release implant. Following oestrus synchronisation, mares were randomly assigned to one of three groups (n = 4 per group) and administered either one (Des1 group; 9.4 mg) or three (Des3 group; 28.2 mg) implants of deslorelin acetate (Suprelorin-12, Virbac Australia) or one blank implant (Control group; Virbac Australia). Mares underwent weekly blood sampling for 12 weeks following implant placement (Day 0–Day 84), with transrectal palpation and ultrasonography of the reproductive tract at all sampling timepoints except Days 56, 70 and 77. All mares showed baseline serum progesterone concentrations (SPC; ≤1.3 nmol/L or 0.4 ng/ml) on Day 0. Cycling Control mares showed typical oestrous cyclicity characterised by peaks and troughs in SPC over time. Four of eight treated mares demonstrated a sustained elevation in SPC after the initial ovulation after implant placement; SPC declined to baseline levels (Des1 group; 2 mares) or remained elevated (Des3 group; 2 mares) at the final sampling timepoint on Day 84. Oestrous cyclicity was erratic in three of the remaining four treated mares. In total, 87.5% (7 of 8) of treated mares showed atypical oestrous cyclicity after implant placement. These results suggest that deslorelin acetate disrupts oestrous cyclicity in the mare, which warrants further research.  相似文献   

3.
Palpation records of 155 Throughbred broodmares maintained on one of seven farms (3–80 mares per farm) that were administered deslorelin on one or more estrous cycles (204 treated cycles) during the 1999 breeding season were retrospectively examined. Some deslorelin-treated mares were also treated with hCG (2500 units intravenously), or had no ovulation-inducing drugs administered, during different estrous cycles of the same season. Most mares were treated with an ovulation- inducing drug after returning to their resident farm following breeding and were subsequently examined by transrectal ultrasonography daily until ovulation was confirmed, and again 13–14 and 15–16 days after ovulation for determination of pregnancy status.Per-cycle pregnancy rate for all 155 mares bred was 53%, and for all deslorelin breeding was 57%. Per-cycle pregnancy rates for mares ovulating 0–1 days, 1–2 days, and 2–3 days after treatment with deslorelin did not differ (P>0.05). Forty-six mares received more than one treatment during the breeding season, yielding 115 breedings (estrous cycles) for comparison of pregnancy rates among treatment. Per-cycle pregnancy rates for these mares did not differ among treatments (P>0.10).No differences due to treatment were detected in mean interval to ovulation (P>0.10). Mean interovulatory interval was longer for deslorelin-treated mares than for untreated or hCG treated mares (P>0.01). Eighty percent (80%) of deslorelin-treated mares had interovulatory intervals of 18–25 days, and 19% had interovulatory intervals>25 days. Ninety-seven percent (97%) of untreated or hCG-treated mares had interovulatory interovulatory intervals>25 days. More deslorelin-treated mares had extended (>25 days) interovulatory intervals than hCG- or nontreated-mares (P>0.05). In this group of Thoroughbred mares, it appeared that season (month) and management (farm) factors had only minor effects on the incidence of extended interovulatory intervals following use of deslorelin.  相似文献   

4.
Three experiments were performed to test the following hypotheses: 1) stallions and/or progesterone-estradiol-treated geldings could serve as models for the effects of a single implant of the GnRH analog, deslorelin acetate, on LH and FSH secretion by mares; and 2) multiple implants of deslorelin acetate could be used as a means of inducing ovarian atrophy in mares for future study of the mechanisms involved in the atrophy observed in some mares after a single implant. In Exp. 1, nine light horse stallions received either a single deslorelin implant (n = 5) or a sham injection (n = 4) on d 0. In Exp. 2, 12 geldings received daily injections of progesterone on d -20 through -4, followed by twice-daily injections of estradiol on d -2 to 0. On the morning of d 0, geldings received either a single deslorelin implant (n = 6) or a sham injection (n = 6). Daily injections of progesterone were resumed on d 2 through 15. In Exp. 1, plasma LH and FSH were elevated (P < 0.05) in the treatment group relative to controls at 4, 8, and 12 h after implant insertion. In the treated stallions, FSH was decreased (P < 0.05) on d 3 to 13, and LH was decreased on d 6 to 13. In Exp. 2, plasma LH and FSH were elevated (P < 0.05) at 4,8, and 12 h after deslorelin implant insertion. Plasma LH was suppressed (P < 0.05) below controls on d 2 to 7, 9, and 11 to 15; plasma FSH was suppressed (P < 0.05) on d 4 to 15. In Exp. 3, 21 mares were used to determine whether multiple doses of deslorelin would cause ovarian atrophy. Mares received one of three treatments: 1) sham injections; 2) three implants on the first day; or 3) one implant per day for 3 d (n = 7 per group). Treatment with multiple implants increased (P < 0.05) the interovulatory interval by 14.8 d and suppressed (P < 0.01) LH and FSH concentrations for approximately 25 d; no mare exhibited ovarian atrophy. In conclusion, after an initial short-term increase in LH and FSH secretion, deslorelin implants caused long-term suppression of both gonadotropins in stallions as well as in geldings treated with progesterone and estradiol to mimic the estrous cycle. It is likely that either of these models may be useful for further study of this suppression in horses. Although multiple implants in mares suppressed gonadotropin secretion longer than a single implant, the lack of ovarian atrophy indicates that the atrophy observed after a single implant in previous experiments was likely due to the susceptibility of individual mares.  相似文献   

5.
OBJECTIVE: To evaluate gonadotropin secretion and ovarian function after administration of deslorelin acetate to induce ovulation in mares. DESIGN: Randomized controlled trial. ANIMALS: 16 healthy mares with normal estrous cycles. PROCEDURE: 8 control mares were allowed to ovulate spontaneously, whereas 8 study mares received deslorelin to induce ovulation when an ovarian follicle > 35 mm in diameter was detected. Follicle development and serum concentrations of gonadotropins were monitored daily during 1 estrous cycle. Pituitary responsiveness to administration of gonadotropin-releasing hormone (GnRH) was evaluated 10 days after initial ovulation. RESULTS: Interovulatory intervals of mares treated with deslorelin (mean +/- SD, 25.6 +/- 2.6 days) were longer than those of control mares (22.9 +/- 1.8 days). Diameter of the largest follicle was significantly smaller during 2 days of the diestrous period after ovulation in deslorelin-treated mares than in control mares. Concentrations of follicle-stimulating hormone (FSH) were lower in deslorelin-treated mares on days 5 through 14 than in control mares. Concentrations of luteinizing hormone were not different between groups during most of the cycle. Gonadotropin release in response to administration of GnRH was lower in mares treated with deslorelin acetate than in control mares. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of deslorelin was associated with reduction in circulating concentrations of FSH and gonadotropin response to administration of GnRH during the estrous cycle. Low concentration of FSH in treated mares may lead to delayed follicular development and an increased interovulatory interval.  相似文献   

6.
In a blinded trial, the effectiveness and safety of 2.2 mg of the GnRH analog deslorelin acetate, administered in a short–term implant (STI) to normally cycling mares in estrus with a dominant ovarian follicle of 30 mm in diameter or larger, were evaluated, using a placebo implant as a negative control. A total of 39 mares received treatments at admittance with pre–randomized implants containing either 2.2 mg or 0 mg deslorelin. Mares were teased daily and examined rectally with ultrasound at 24 h intervals to determine time to Ovulation and duration of estrus. The number of breedings and the pregnancy rate at 18 (±3) and 38 (±3) days were recorded, as were systemic side effects and local reactions at the implantation sites. Pregnancies resulting from breedings during the treatment estrus and/or from breedings during the next estrus were followed and the early and late pregnancy loss rate, the number of pregnancies going to term and of live–born foals was recorded.Mean follicle diameter at treatment was not significantly different between the deslorelin and placebo treatment group with 41.6 mm and 40.8 mm, respectively. Treatment with deslorelin STI reduced the time interval to Ovulation significantly from 69.5±25.48 h to 42.7±12.35 h (p<0.001). The percentage of mares having ovulated within 48 h rose from 26.3% to 95.0%, respectively, for placebo and deslorelin STI (p<0.001). As a consequence, the duration of estrus in days and the percent of animals requiring more than 1 breeding were significantly reduced in deslorelin treated animals from 5.4 days to 4.6 days, and from 55.6% to 5.0%, respectively (p=0.009 and =0.001). The percent of mares pregnant from breedings at the treatment estrus (65.0% versus 44.4%) or the next estrus (83.3% versus 92.3%) was satisfactory and similar for deslorelin and placebo treated mares (p>0.005), and in 70.0% and 66.7% of these once or twice bred mares did pregnancies go to term and live foals were born. kw|Keywords|k]GnRH  相似文献   

7.
Investigations using sustained-release deslorelin implants at various insertion sites have shown that this method consistently induces oestrus in anoestus bitches. However, fertility comparisons between implant insertion sites have not been performed. Anestrous beagle bitches received one 2.1 mg deslorelin implant beneath the vestibular mucosa (VM group; n = 6) or in the subcutaneous tissue between the shoulder blades (SubQ group; n = 8). Vestibular implants were removed when serum progesterone concentrations first exceeded 1.5 ng/ml. Vaginal cytologies and blood samples were collected daily and bitches were inseminated during oestrus. Serum progesterone and deslorelin concentrations were measured and pregnancy status was determined using ultrasonography. There were no differences between groups in the intervals between implant administration and the onset of proestrus, the time of the luteinizing hormone surge and the onset of cytologic diestrus. There were also no differences in the number of corpora lutea or foetuses. However, conception rate was significantly lower in the SubQ group. The pregnancy rate did not differ significantly between the VM and SubQ groups [4 out of 6 (66.7%) and 3 out of 8 (37.5%), respectively]. One bitch (16.7%) in the VM group and three bitches (37.5%) in the SubQ group suffered distinct, premature declines in serum progesterone concentrations starting 1–4 weeks after cytologic diestrus. Serum progesterone concentrations did not recover (premature luteal failure), resulting in abortion. Bitches with premature luteal failure in the SubQ group still had serum deslorelin concentrations >100 pg/ml 20 days after implant insertion, suggesting a possible association between prolonged deslorelin release and luteal failure.  相似文献   

8.
OBJECTIVE: The objectives of this study were: to compare the recovery of follicular development in early postpartum cows that had been treated for 7, 14 or 21 d with implants containing the GnRH agonist deslorelin; to evaluate the effectiveness of human chorionic gonadotrophin (hCG) for the induction of ovulation when a follicle was at least 10 mm in diameter following implant removal; and to compare final pregnancy rates for treated cows and untreated contemporaries. PROCEDURE: Within 3 d of calving Holstein cows were allocated to receive a single subcutaneous deslorelin implant to be left in place for either 7, 14 or 21 d, or to remain untreated as controls. Every deslorelin treated cow was monitored twice weekly for 35 d to determine the interval from implant removal to resumption of ovulation using serial transrectal ultrasonography and plasma progesterone assay. An injection of 1000 IU hCG was given to induce ovulation when a follicle of at least 10 mm diameter was first observed. Oestrous cycles of every cow were synchronised to facilitate artificial insemination (Al) at the start of the seasonally concentrated Al program and resynchronised for three rounds. Pregnancy testing was performed by ultrasonography 13 weeks after the first round of Al. RESULTS: Deslorelin implants inhibited ovulation for at least 10 d after they were removed. Ovarian follicles were smaller for the group that had implants for 21 d at the time of implant removal. Eighteen cows selected for treatment with hCG ovulated and formed multiple corpora lutea within 7 d. There was no effect of treatment duration on final pregnancy rates. After three rounds of AI the pooled final pregnancy rate for every cow that had received a deslorelin implant was similar to the rest of the herd (67% versus 63%; Deslorelin versus Herd, P > 0.1).The interval from start date of the AI program to conception was also unaffected by treatment (9.6 +/- 3.0 versus 14.8 +/- 1.7 d; Deslorelin versus Herd; P > 0.1). CONCLUSION: No significant effect was detected on the interval from implant removal to first ovulation by altering the duration of deslorelin treatment. Treatment with hCG when a follicle at least 10 mm in diameter was present induced ovulation in most cases. Although no significant improvement in fertility was found, a larger field trial using this model for induced anoestrous is necessary before any effect on fertility could confidently be stated.  相似文献   

9.
The present experiment characterized the pituitary responsiveness to exogenous GnRH in the first 10 d after ovulation following commercially available deslorelin acetate implantation at the normal dosage for hastening ovulation in mares. Twelve mature, cyclic mares were assessed daily for estrus and three times weekly for ovarian activity starting May 1. Mares achieving a follicle at least 25 mm in diameter or showing signs of estrus were checked daily thereafter for ovarian characteristics. When a follicle >30 mm was detected, mares were administered either a single deslorelin acetate implant or a sham injection and then assessed daily for ovulation. On d 1, 4, 7, and 10 following ovulation, each mare was challenged i.v. with 50 microg GnRH, and blood samples were collected to characterize the LH and FSH responses. The size of the largest follicle on the day of treatment did not differ (P = 0.89) between groups. The number of days from treatment to ovulation was shorter (P < 0.001) by 2.0 d for the treated mares indicating a hastening of ovulation. The size of the largest follicle present on the days of GnRH challenge was larger in the treated mares on d 1 (P = 0.007) but smaller on d 10 (P = 0.02). In addition, the interovulatory interval was longer (P = 0.036) in the treated mares relative to controls by 4.4 d. Concentrations of FSH in plasma of the treated mares were lower (P < 0.05) than control concentrations from d 3 to 12; LH concentrations in the treated mares were lower (P < 0.05) relative to controls on d 0 to 5, d 7, and again on d 20 to 23. Progesterone values were the same (P = 0.99) for both groups from 2 d before ovulation though d 23. There was an interaction of treatment, day, and time of sampling (P < 0.001) for LH and FSH concentrations after injection of GnRH. Both the LH and FSH responses were suppressed (P < 0.009) in the treated mares relative to controls on d 1, 4, and 7; by d 10, the responses of the two groups were equivalent. In conclusion, deslorelin administration in this manner increased the interovulatory interval, consistently suppressed plasma LH and FSH concentrations, and resulted in a complete lack of responsiveness of LH and FSH to GnRH stimulation at the dose used during the first 7 d after the induced ovulation. Together, these results are consistent with a temporary down-regulation of the pituitary gland in response to deslorelin administered in this manner.  相似文献   

10.
The presence of anovulatory haemorrhagic follicles during the oestrous cycle of mares causes financial impacts, slowing conception and increasing the number of services per pregnancy. Non‐steroidal anti‐inflammatory drugs (NSAIDs) such as meloxicam and phenylbutazone are used in the treatment of several disorders in mares, and these drugs can impair the formation of prostaglandins (PGs) and consequently interfere with reproductive activity. This study aimed to evaluate the effects of treatment with NSAIDs on the development of pre‐ovulatory follicles in mares. In total, 11 mares were studied over three consecutive oestrous cycles, and gynaecological and ultrasound examinations were performed every 12 h. When 32‐mm‐diameter follicles were detected, 1 mg of deslorelin was administered to induce ovulation. The first cycle was used as a control, and the mares received only a dose of deslorelin. In the subsequent cycles, in addition to receiving the same dose of deslorelin, each mare was treated with NSAIDs. In the second cycle, 4.4 mg/kg of phenylbutazone was administered, and in the third cycle, 0.6 mg/kg of meloxicam was administered once a day until ovulation or the beginning of follicular haemorrhage. All of the mares ovulated between 36 and 48 h after the induction in the control cycle. In the meloxicam cycle, 10 mares (92%) did not ovulate, while in the phenylbutazone cycle, nine mares (83%) did not ovulate. In both treatments, intrafollicular hyperechoic spots indicative of haemorrhagic follicles were observed on ultrasound. Thus, our results suggested that treatment with meloxicam and phenylbutazone at therapeutic doses induced intrafollicular haemorrhage and luteinization of anovulatory follicles.  相似文献   

11.
Breeding records of 48 Thoroughbred and Standardbred mares treated with native GnRH (500μg im, bid) during February—April, 1999 or 2000, on 7 farms in central Kentucky were retrospectively examined. Treated mares were classified as being in anestrus or early transition (n=42; if no signs of estrus occurred within 31/2 weeks and the largest follicle remained ≤25 mm in diameter or the first larger follicle(s) of the season regressed without ovulating), or were classified as being in late transition (n=6; if follicular growth achieved 30-40 mm diameter but ovulation had not yet occurred during the breeding season). Thirty-eight mares (38/48; 79%) ovulated in 13.7 ± 7.4 days. Interval to ovulation was negatively associated with size of follicles at onset of native GnRH therapy (P < 0.01). Per cycle pregnancy rate was 53% (19/36 mares bred). Ovulation inducing drugs were administered to 32 of the native GnRH treated mares (2500 units hCG intravenously, n = 20; deslorelin implant [Ovuplant™] subcutaneously, n=12), while 6 mares were not administered any additional drugs to induce ovulation. Per cycle pregnancy rate did not differ among mares treated only with native GnRH (2/5 mares bred; 40% PR), mares treated with native GnRH plus hCG (12/19 mares bred; 63% PR), or mares treated with native GnRH plus Ovuplant™ (5/12 mares bred; 42% PR) (P > 0.10). Additional treatment with either hCG or Ovuplant™ did not alter mean follicle size at ovulation or interovulatory interval (P > 0.10). The proportion of interovulatory intervals > 25 days was not different between mares receiving no additional treatment to induce ovulation (0/4; 0%) compared to mares receiving hCG to induce ovulation (3/8; 38%) (P > 0.10), but the proportion of interovulatory intervals > 25 days was greater for mares receiving Ovuplant™ to induce ovulation (5/7; 71%) compared to mares receiving no additional treatment to induce ovulation (P < 0.05). The proportion of mares with extended interovulatory intervals (i.e., > 25 days) did not differ between mares with follicles < 15 mm diameter (4/8, 50%) and those with follicles > 15 mm diameter (3/11, 27%) at onset of native GnRH treatment (P > 0.10). While concurrent untreated controls were not used in this study, the 79% response rate to twice daily administration of native GnRH is in agreement with other reports using pulsatile or constant infusion as methods of administration, confirming therapy can hasten follicular development and first ovulation of the breeding season. As with previous reports, follicle size at onset of treatment is an important determinant of interval from onset of native GnRH therapy to ovulation. Use of hCG or Ovuplant™ did not enhance ovulatory response in native GnRH treated mares. Use of Ovuplant™ during native GnRH therapy may increase the incidence of post-treatment anestrus in mares not becoming pregnant.  相似文献   

12.
Equine clinicians rely on ovulation induction agents to provide a timed ovulation in mares for optimal breeding management. Numerous studies have been performed on the efficacy of human chorionic gonadotropin (hCG) to induce ovulation in the mare, but limited clinical data are available for the new deslorelin acetate product SucroMate. This study was designed to evaluate the efficacy of SucroMate (deslorelin) in comparison with hCG to induce ovulation. American Quarter horse mares (n = 256) presented to Colorado State University for breeding management were used in this study. Mares received either deslorelin or hCG when a follicle ≥35 mm was detected by transrectal ultrasound in the presence of uterine edema. Ultrasonographic examinations were subsequently performed once daily until ovulation was detected. Deslorelin was administered to 138 mares during168 estrous cycles, and hCG was given to 118 mares during 136 estrous cycles. Mares administered deslorelin had a similar (P < .05) higher ovulation rate (89.9%) within 48 hours following drug administration than mares administered hCG (82.8%). There are no effects of season or age on ovulation rates in either treatment group. Twenty-one mares administered deslorelin and 11 mares administered hCG were monitored by transrectal ultrasound every 6 hours to detect ovulation as part of a frozen semen management program. Average intervals from deslorelin or hCG administration to ovulation were 41.4 ± 9.4 and 44.4 ± 16.5 hours, respectively. Results of this study indicate that SucroMate is effective at inducing a timed ovulation in the mare.  相似文献   

13.
The effect of 10-day zearalenone administration starting 10 days after ovulation was studied in 6 cycling trotter mares in the summer period. After an entire oestrous cycle (Cycle 1), mares were given 7 mg purified zearalenone per os daily (1 mg/ml in ethyl alcohol) beginning on Day 10 of Cycle 2. Toxin exposure was continued until the subsequent ovulation. Luteal function and follicular activity were monitored daily by rectal palpation, ultrasonography and blood sampling for progesterone. During toxin exposure, all animals were in good physical condition. The toxin had no effect on the length of the interovulatory intervals, luteal and follicular phases. It did not influence significantly the plasma progesterone profiles (logistic curve parameters A1 to A6), the follicular activity (growth rate, maximum size of the ovulatory follicles, maximum number and the time of first increase in the number of large follicles) and the uterine oedema. It is concluded that in cyclic mares the methods used in this study could not detect any adverse effect of zearalenone (administered at a low dose similar to natural exposure) on reproduction.  相似文献   

14.
Synchronization of estrus (SE) in mares has been achieved, but not of ovulation (SO). Progestins followed by PGF2a are useful for SE only. In the two studies reviewed here, SE and SO were attempted by using CIDR-B, an intravaginal (itv) progesterone (1.9 g) releasing device, alone (study 1) or accompanied by estradiol (10 mg) given also itv (study 2). In both studies, Ovuplant™ (OT), an implant containing 2.1 mg of the GnRH analog deslorelin was used for the control of ovulation. Eighty cycling Hanoverian mares, 40 each in studies 1 and 2, received CIDR-B itv for 12 days, with PGF2a given once at CIDR-B removal. In study 1, 15 mares each received OT when the lead follicle had reached 40 mm (A) or on Day 3 of estrus (B); 10 controls received no OT (C). In study 2, E2 was used in addition on Day 0 (CIDR-B insertion) (10 mares; group II), or on Days 0 and 7 (10; group III) or not (20; groups I and IV). Mares in groups I to III received OT as in study 1 (A); group IV (10) remained untreated. Ovaries were examined and blood samples were taken in studies 1 and 2 from all mares in 1, 2 or 4-day intervals, respectively, and concentrations of FSH, LH, progesterone and estradiol were determined by RIA. In study 1, CIDR-B treatment achieved SE, but not SO as shown by a wide spread of days on which follicles were reaching 40 mm; OT treatment assured ovulations in 48 hours in 93.3% of treated mares vs. 44.4% in controls (P<0.05. In study 2, SE was achieved and SO, but only when estradiol was given once (itv) on Day 0 (group II) but not twice on Days 0 and 7 (group III). In both studies, CIDR-B prevented estrus but stimulated follicle growth: 8 mares in study 1 ovulated with CIDR-Bs in place and 2 in trial 2, respectively. Only when estradiol was used together with CIDR-B, follicle growth was retarded (group II) or suppressed (group III: P<0.05 vs. groups I and IV). The pregnancy rate in study 2 from a single breeding at the first estrus was 52.8% with no significant differences between groups. FSH rose until Day 4 or 8 and had dropped sharply at Day 12; after CIDR-B removal FSH rose most quickly in group II, study 2. LH declined slightly until Day 12 and rose thereafter, reaching peak levels by Day 18 or 20, respectively. In both studies, estradiol had dropped slightly by Day 4 but increase steadily thereafter until ovulation had occurred. Preovulatory rise and postovulatory drop was seen earlier in group II, study 2. Values for progesterone had risen uniformly by Day 4, had declined slowly by Day 12 and precipitously in response to PGF2a by Day 14. Treatment of cyclic mares with CIDR-B for 12 days, followed by PGF2a at the day of CIDR-B removal and by Ovuplant™ a deslorelin implant when a follicle had reached 40 mm, resulted in synchronization of estrus. Adding to this scheme a single dose of estradiol (10 mg, intravaginal) on Day 0 resulted also in synchronization of ovulation.  相似文献   

15.
Thirty pet ferrets with adrenocortical disease (ACD) of varying severity and duration were evaluated for response to a single administration of a slow release 4.7 mg deslorelin acetate implant. Clinical response to deslorelin was monitored via a physical examination performed every 3 to 4 months. Adrenal ultrasound measurements were taken every 3-4 months until clinical relapse. At clinical relapse, duration of symptom suppression and adrenal size and growth were determined. Administration of a single 4.7 mg implant of deslorelin acetate resulted in significant decreases in the clinical signs and hormonal concentrations associated with ACD. Within 14 days post-implant, vulvar swelling, pruritus, sexual behaviors and aggression decreased or disappeared. Hair re-growth was evident by 4-6 weeks post implant. Within two months post deslorelin implant, plasma concentrations of steroid hormones decreased: mean estradiol concentration decreased 28%; 17-hydroxyprogesterone levels decreased 89% and androstenedione levels decreased 88%. The response to a single 4.7 mg implant of deslorelin acetate was transitory. The mean ± SD time to recurrence of clinical signs was 17.6 ± 5.0 months (range, 8.0-30.0 months). Repeated ultrasound measurements revealed no statistical difference in size of the adrenals (right or left) before, during the months of deslorelin implant and at clinical relapse. Slow release 4.7 mg deslorelin implants can effectively be used to temporarily eliminate the clinical signs and reduce steroid hormone concentrations in ferrets with ACD. This dose of deslorelin does appear to influence adrenal tumor growth causing a decrease in adrenal size in some ferrets, and mild enlargement of adrenal glands in most ferrets with 2 of 30 implanted animals developing large tumors before clinical relapse. The long-term effect of treatment with deslorelin on adrenal tumor pathology requires additional investigation. At this time, surgical removal of the adrenal tumor remains the only curative treatment; however, 4.7 mg deslorelin implants are useful in the long-term management of ACD hormone-induced sequelae and may be as effective assurgical management.  相似文献   

16.
Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation.In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation.Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares.In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3).In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.

Introduction

Induction of multiple ovulations or superovulation has been an elusive goal in the mare. Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates.[1 and 2] Superovulation also has been suggested as a critical requirement for other types of assisted reproductive technology in the horse, including oocyte transfer and gamete intrafallopian transfer. [2 and 3] Unfortunately, techniques used successfully to superovulate ruminants, such as administration of porcine follicle stimulating hormone and equine chorionic gonadotropin have little effect in the mare. [4 and 5]The most consistent therapy used to induce multiple ovulations in mares has been administration of purified equine pituitary gonadotropins. Equine pituitary extract (EPE) is a purified gonadotropin preparation containing approximately 6% to 10% LH and 2% to 4% FSH.[6] EPE has been used for many years to induce multiple ovulations in mares [7, 8 and 9] and increase the embryo recovery rate from embryo transfer donor mares. [10] Recently, a highly purified equine FSH product has become available commercially.The objectives of this study were to evaluate the efficacy of purified eFSH in inducing superovulation in cycling mares and to determine the relationship between ovulation rate and pregnancy rate or embryo collection rate in superovulated mares.

Materials and methods

Experiment 1

Forty-nine normally cycling mares, ranging in age from 3 to 12 years, were used in a study at Colorado State University. Group 1 (control) mares (n = 29) were examined daily when in estrus by transrectal ultrasonography. Mares were administered an implant containing 2.1 mg deslorelin (Ovuplant, Ft. Dodge Animal Health, Ft. Dodge, IA) subcutaneously in the vulva when a follicle 35 mm in diameter was detected. Mares were bred with frozen semen (800 million spermatozoa; minimum of 30% progressive motility) from 1 of 4 stallions 33 and 48 hours after deslorelin administration. The deslorelin implants were removed after detection of ovulation.[11] Pregnancy status was determined at 14 and 16 days after ovulation.Group 2 mares (n = 10) were administered 25 mg of eFSH (Bioniche Animal Health USA, Inc., Athens, GA) intramuscularly twice daily beginning 5 or 6 days after ovulation was detected. Mares received 250 g cloprostenol (Estrumate, Schering-Plough Animal Health, Omaha, NE) intramuscularly on the second day of eFSH treatment. Administration of eFSH continued until a majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Mares were subsequently bred with the same frozen semen used for control mares, and pregnancy examinations were performed as described above.Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting 5 or 6 days after ovulation and were administered 250 μg cloprostenol on the second day of treatment. Mares were randomly selected to receive either a deslorelin implant (n = 5) or 2500 IU of human chorionic gonadotropin (hCG) intravenously (n = 5) to induce ovulation when a majority of follicles reached a diameter of 35 mm. Mares were bred with frozen semen and examined for pregnancy as described above.

Experiment 2

Sixteen cycling light-horse mares were used during the physiologic breeding season in Brazil. Reproductive activity was monitored by transrectal palpation and ultrasonography every 3 days during diestrus and daily during estrus. On the first cycle, mares were administered 2500 IU hCG intravenously once a follicle 35 mm was detected. Mares were subsequently inseminated with pooled fresh semen from 2 stallions (1 billion motile sperm) daily until ovulation was detected. An embryo collection procedure was performed 7 days after ovulation. Mares were subsequently administered cloprostenol, and eFSH treatment was initiated. Mares received 12 mg eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time hCG was administered. Mares were inseminated and embryo collection attempts were performed as described previously.

Statistical analysis

In experiment 1, 1-way analysis of variance with F protected LSD was used to analyze quantitative data. Pregnancies per ovulation were analyzed by x2 analysis. In experiment 2, number of large follicles, ovulation rate, and embryo recovery rate were compared by Student,'s t-test. Data are presented as the mean S.E.M. Differences were considered to be statistically significant at p < .05, unless otherwise indicated.

Results

In experiment 1, mares treated with 25 mg eFSH twice daily developed a greater number of follicles 35 mm in diameter (p = .001) and ovulated a greater number of follicles (p = .003) than control mares (Table 1). However, the number of pregnancies obtained per mare was not significantly different between the control group and the group receiving 25 mg eFSH (p = .9518). Mares treated with 12 mg eFSH and administered either hCG or deslorelin to induce ovulation also developed more follicles 35 mm (p = .0016 and .0003, respectively) than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles (p = .003) than control mares, whereas the number of ovulations for mares receiving eFSH followed by deslorelin was similar to that of control mares (p = .3463). Pregnancy rate for mares induced to ovulate with hCG was higher (p = .0119) than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of controls (p = .692). Pregnancy rate per ovulation was not significantly different between control mares (54.5%) and mares treated with eFSH followed by hCG (52.9%). The lowest pregnancy rate per ovulation was for mares stimulated with 25 mg eFSH and induced to ovulate with deslorelin. The mean number of days mares were treated with 25 mg or 12 mg of eFSH was 7.8 ± 0.4 and 7.5 ± 0.5 days, respectively. Overall, 80.0% of mares administered eFSH had multiple ovulations compared with 10.3% of control mares.  相似文献   

17.
This study investigated the efficacy of two dosage regimens of a potent GnRH analogue (GnRHa), deslorelin acetate, in inducing ovulation in seasonally anestrous mares. Forty-five seasonally anestrous mares were randomly assigned according to follicular size to one of three treatment groups: control, increasing GnRHa dose, and constant GnRHa dose. Treatment began on February 28 and continued until ovulation or for a maximum of seven treatments. Mares were palpated every other day until a 35 mm follicle was detected, then every day until ovulation or regression of the follicle occurred. Blood samples were taken from five randomly chosen mares in each treatment group and analyzed for LH levels.Twenty percent of mares in both deslorelin treatment groups ovulated, while no control mares ovulated during the treatment period. There was no difference in the number of mares that ovulated between treatment groups. Four of the six mares that ovulated were in transitional anestrus at the initiation of treatment, while only two were in deep anestrus.Concentrations of LH were greater (p=0.0008) in both GnRH-treated groups than in the control mares. Concentrations of LH did not differ between the two GnRH-treated groups until day 12 of treatment, when mares treated with a constant dosage had higher (p=0.0358) levels of LH than those treated with an increasing dosage. It is possible that administration of larger amounts of the GnRH agonist lowered the sensitivity of the pituitary to stimulation by GnRH.Deslorelin acetate did stimulate follicular growth and ovulation in a limited number of anestrous mares. Further investigation into the potential of this short-term implant to shorten the onsent of the breeding season is recommended.  相似文献   

18.
To minimize the number of matings/inseminations, controlled ovulation has been practised since a long time ago. A potent short-term implant, releasing the GnRH analogue deslorelin (Ovuplant((R))) has been used in Australia and North America for several years for hastening the ovulation time in mares, but the product is not registered on the European market. This study was aimed to investigate: (1) ovulation time in mares implanted with Ovuplant when the largest follicle was 42 mm or more in size, (2) repeatability of ovulation time in successive oestruses when treated with Ovuplant, (3) pregnancy rate after single insemination with frozen-thawed semen near ovulation. This study included 11 mares, and altogether 17 timed ovulations. Follicular growth and ovulation were determined by palpation per rectum and by ultrasonography in the morning (at 7:00 hours) every second day until observation of a follicle of at least 42 mm in diameter. Then the mares were re-examined in the afternoon (at 19:00 hours), and an Ovuplant was inserted in the mucosa of the vulva. For detection of ovulation, the mares were palpated and ultrasounded repeatedly from 36-42 h after the insert. The mares were inseminated with frozen-thawed semen once at ovulation. All mares ovulated at 36-48 h after treatment and 94% at 38-42 h after treatment. The six mares that were treated at two oestruses ovulated at 39.9 and 39.7 h, respectively. Five of 11 mares (45.4%), inseminated with frozen-thawed semen at the first oestrous cycle were pregnant day 14-16 after ovulation. Using this protocol, there is no need of palpation/ultrasonography during night hours, and examination at 36 and 41 h after implantation might be enough for estimation of ovulation time.  相似文献   

19.
The absence of fertility problems in male dogs after a single treatment with deslorelin acetate (Suprelorin®) is well acknowledged. However, reports on the application of deslorelin in the bitch and information concerning fertility after implant treatment are still limited. In this retrospective study, data concerning induced and spontaneous oestruses of 39 bitches from 17 breeds, treated with deslorelin acetate implants (4.7 mg Suprelorin®, Virbac, France), were retrieved to assess post‐treatment fertility (ovulation rate, pregnancy rate and litter size). Animals were grouped according to treatment characteristics: group 1 (Gr1) – females submitted to oestrus induction, showing natural oestruses afterwards (n = 19); group 2 (Gr2) – females re‐implanted with 4.7 mg deslorelin acetate to re‐induce oestrus, showing subsequent spontaneous post‐implant oestruses (n = 7); and group 3 (Gr3) – females submitted to a 4.7 mg deslorelin acetate implant for oestrus suppression, evaluated at subsequent spontaneous post‐implant oestruses (n = 13). Comparison of fertility traits between induced and post‐treatment spontaneous oestruses in Gr1 and Gr2 (short treatments), or between spontaneous oestruses after long‐treatment schedules (Gr 3) revealed a slightly better performance in spontaneous cycles compared with induced cycles: ovulation rate post‐treatment was 97.1%, 94.1% and 94.4% and the pregnancy rate post‐treatment was 91.2%, 88.9% and 84.6% for groups 1, 2 and 3, respectively. Nevertheless, fertility in induced and post‐treatment oestruses was considered normal. Moreover, the individual litter size did not differ within groups between induced and spontaneous cycles. From these findings, we concluded that treatment with 4.7 mg deslorelin implants did not compromise the bitches' fertility in subsequent oestruses.  相似文献   

20.
The aim of this study was to assess the efficacy and safety of deslorelin acetate implants on domestic queen puberty postponement. Thirty, 114.4 ± 12.7 days old, 1.5 ± 0.1 kg prepubertal crossbred female cats were included in this study. The animals were kept under a positive photoperiod and randomly assigned to deslorelin acetate 4.7 mg SC implants (n = 15) or to a non‐treated control group (n = 15). The queens were followed up daily and weighed weekly until puberty. Vaginal cytology was also carried out three times a week. Puberty was diagnosed by the presence of the typical oestrous behaviour and vaginal cytology findings. At puberty, ovariectomy was performed and the gonads grossly described. Age (281.2 ± 21.6 vs 177.8 ± 10.8; p < 0.01) but not weight (2.6 ± 0.1 vs 2.5 ± 0.1; p > 0.1) at puberty differed between the deslorelin and control groups, respectively. One deslorelin‐treated female showed an oestrous response and another showed clinical signs of pyometra after the implants. Deslorelin‐treated ovaries appeared small, while control gonads were normal. It was concluded that long‐term‐release deslorelin, administered at approximately 50% adult body weight, postponed feline puberty without altering growing rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号