首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Carbonic anhydrase enzymes have been shown to play an important role in ion transport and pH regulation in several organisms including fish. Despite this information and the wealth of knowledge regarding the significance of CA enzymes in fish, few studies have reported the hazardous effects of chemicals on fish CA. Using rainbow trout (Oncorhynchus mykiss) as a model, this study aimed to determine the risk of pesticides and fungicides on fish carbonic anhydrase enzymes. For this purpose, screening of rainbow trout carbonic anhydrase activities was carried out in the presence of some pesticides and fungicides. Carbonic anhydrase enzymes were initially purified from rainbow trout liver, muscle, kidney and brain, and exposed to pesticides and fungicides, including mancozeb, cypermethrin, deltamethrin and dinocap. Pesticides and fungicides dose-dependently decreased in vitro CA activity at micromolar concentrations. Since deltamethrin was the most powerful inhibitor for all tissues in in vitro experiments, it was chosen for in vivo analysis as well. rtCAs were significantly inhibited by the three concentrations of deltamethrin (0.25, 1.0 and 2.5 μg/L) at 24th and 48th hours. Our findings indicate that deltamethrin, dinocap, mancozeb and cypermethrin are potent inhibitors for fish CA enzymes, and might cause undesirable results by disrupting acid-base regulation as well as salt transport in freshwater or seawater adapted fish.  相似文献   

2.
We investigated the in vitro and in vivo effects of some pesticides on rainbow trout erythrocyte glucose-6-phosphate dehydrogenase enzyme. The enzyme was purified 1691-fold with a specific activity of 16.235 U/mg protein and a yield of 63%. Cypermethrin, and propoxur inhibited glucose-6-phosphate dehydrogenase enzyme in vitro and deltamethrin inhibited both in vivo and in vitro. The obtained IC50 values for deltamethrin, cypermethrin, and propoxur were 0.63, 1.02, and 12 mM, respectively. The activity of the control was determined as 5.17 ± 0.62 U/g Hb in in vivo studies. The enzyme activities of the groups treated with 0.25 g/L deltamethrin were measured at 6, 12, 24, 48, and 72 h, and found to be 4.32 ± 0.47, 3.57 ± 0.39, 3.47 ± 0.45, 2.86 ± 0.37, and 2.31 ± 0.32 U/g Hb. In vivo experiments showed that deltamethrin significantly inhibited the G6PD enzyme activity after the 48th h (p < 0.05).  相似文献   

3.
Agricultural chemicals can induce genetic alterations on aquatic organisms that have been associated with effects on growth, reproduction and population dynamics. The evaluation of DNA damage in fish using the comet assay (CA) frequently involves the utilization of erythrocytes. However, epithelial gill cells (EGC) can be more sensitive, as they are constantly dividing and in direct contact with potentially stressing compounds from the aquatic environment. The aim of the present study was to evaluate (1) the sensitivity and suitability of epithelial gill cells of Prochilodus lineatus in response to different genotoxic agents through the application of the CA, (2) the induction of DNA damage in this cell population after in vivo exposure to cypermethrin. Baseline value of the CA damage index (DI) for EGC of juvenile P. lineatus was 144.68 ± 5.69. Damage increased in a dose-dependent manner after in vitro exposure of EGC to methyl methanesulfonate (MMS) and H2O2, two known genotoxic agents. In vivo exposure of fish to cypermethrin induced a significant increase in DNA DI of EGC at 0.150 μg/l (DI: 239.62 ± 6.21) and 0.300 μg/l (270.63 ± 2.09) compared to control (150.25 ± 4.38) but no effect was observed at 0.075 μg/l (168.50 ± 10.77). This study shows that EGC of this species are sensitive for the application of the CA, demonstrating DNA damage in response to alkylation (MMS), oxidative damage (H2O2), and to the insecticide cypermethryn. These data, together with our previous study on DNA damage induction on erythrocytes of this species, provides useful information for future work involving biomonitoring in regions where P. lineatus is naturally exposed to pesticides and other genotoxic agents.  相似文献   

4.
Existence of diazinon, an organophosphorous pesticide, in river waters of Iran near rice paddy fields has been reported by some authors. The present research aimed to determine the acute toxicity and evaluate the effect of sub-lethal concentrations of diazinon on some biochemical parameters of rainbow trout, Oncorhynchus mykiss after 7, 14 and 28 days. No significant differences were observed in the plasma levels of creatinine among the treatment groups at different sampling intervals. Acetylcholinesterase activity and the levels of total protein, albumin as well as globulin in plasma were significantly reduced at both concentrations tested (p < 0.05). Lactate dehydrogenase activity was only decreased on 7th day in 0.1 mg/L diazinon treatment (p < 0.05). Creatine kinase activity was significantly lower in 0.1 mg/L diazinon group at 14th and 28th sampling periods, whereas its activity significantly increased in fishes exposed to 0.2 mf/L diazinon only on 7th day (p < 0.05). Aspartate aminotransferase, alanine aminotransferase activities and glucose levels in diazinon treated groups were significantly higher than the controlled group at experimental periods (p < 0.05). In conclusion, long-term exposure to diazinon at sub-lethal concentrations induced biochemical alterations in rainbow trout, and offers a simply tool to evaluate toxicity-derived alterations.  相似文献   

5.
Proteinase inhibitors (AsPIs) with high activity against serine proteinases were purified from seeds of the tree legume, Acacia senegal by ammonium sulfate precipitation followed by DEAE-Sephadex A-25 column and evaluated against Helicoverpa armigera larvae by in vitro and in vivo methods. The molecular weight of AsPIs was found to be approximately 19.58 ± 1.00 and 21.23 ± 1.00 kDa for PI and 18.16 ± 1.00 kDa for PII on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The AsPIs (5 μg/ml) inhibited approximately 70% of midgut trypsin and 61% of elastase-like chymotrypsin. In vitro studies showed that AsPIs have remarkable inhibitory activity towards total gut proteolytic enzymes followed by trypsin and chymotrypsin. The IC50 of AsPIs for midgut trypsin was 0.1 μg/ml and for chymotrypsin was 2.0 μg/ml. The inhibition of gut proteinase enzymes was of the non-competitive type. In larval feeding studies, AsPIs were found to retard growth and development of H. armigera and also affects the fecundity of the pest. The results advocate the use of AsPIs in transgenic technology to develop plant resistance to H. armigera.  相似文献   

6.
Rainbow trout (Oncorhynchus mykiss; 116.88 ± 21.69 g) were exposed to sublethal concentrations (25 μg/L) of carbosulfan for 60 days to test if the long term exposure of fish to carbosulfan affects red blood cells acetylcholinesterase (AChE), δ-aminolevulinic acid dehydratase (ALA-D) and paraoxonase (PON) enzyme activity and induces genotoxic and/or mutagenic effects. The exposure resulted in inhibition of AChE and ALA-D activity of rainbow trout when compared to control fish. The activity of PON was not affected by carbosulfan. Interestingly, carbosulfan was found to induce DNA damage in red blood cells (comet assay) and proved to be mutagenic as revealed by the Ames test. Results indicate that blood AChE and ALA-D of rainbow trout may be a sensitive biomarker for assessment of carbosulfan contaminated water bodies. Furthermore, because the Ames test and comet assay were proven successful to detect the genotoxicity of carbosulfan, we proposed that nonlethal techniques such as blood collection from caudal vein of fish should be used to determine potential toxic effects of other pesticides to surrounding environment.  相似文献   

7.
Resistance in Spodoptera litura (Fabricius) has been attributed to enhanced detoxification of insecticides by increased levels of esterases, oxidases and/or glutathione S-transferases. Enzyme inhibiting insecticide synergists can be employed to counter increased levels of such enzymes in S. litura. Dihydrodillapiole induced synergism of pyrethroid toxicity was examined in the laboratory-reared third instar larval population of S. litura collected in Delhi (susceptible), and Guntur (resistant) region of Andhra Pradesh, India. The Guntur population was found to be 7.04 and 10.19 times resistant to cypermethrin and lambdacyhalothrin, respectively. The activity of cypermethrin, lambdacyhalothrin and profenophos against susceptible and resistance populations of S. litura, was gradually increased when used along with a plant-derived insecticide synergist dihydrodillapiole. The α-naphthyl acetate hydrolysable esterase activity in Delhi population was less as compared to the Guntur population. Resistance associated esterases in Delhi population were inhibited by pre-treatment with dihydrodillapiole. The esterase level in insect was instantly reduced initially, sustained for about 3 h and equilibrated at 4 h post treatment. The esterase activity of Guntur population was increased to 1.28 μmoles/mg/min at 2 h post treatment and subsequently reduced to lower than 0.70 μmoles at 4-12 h post treatment. The variation in esterase activity is suggestive of its homeostatic regulation in test populations. Dihydrodillapiole thus caused significant reduction of resistance in S. litura to cypermethrin, lambda cyhalothrin and profenophos.  相似文献   

8.
Deltamethrin, a synthetic pyrethroid pesticide contaminating aquatic ecosystems as a pollutant, was investigated in the present study for toxic effects on embryos and larvae of common carp, Cyprinus carpio as a model. The control and five test experiments were repeated five times. The water temperature in the experimental units was kept at 24 ± 1 °C. The number of dead embryos significantly increased in response to deltamethrin concentrations 0.005, 0.05, 0.5, 5, 25, and 50 μg L−1 (p<0.05 for each cases). Dose-response decreases in hatching success were recorded as 75.2, 64.6, 47.4, 26.0, 14.4, and 9.0%, respectively. The lowest concentration of deltamethrin (0.005 μg L−1) produced a significantly decrease in number of dead larvae compared to control group (p<0.05). With increasing deltamethrin concentrations, the larvae exposed duration 1-48 h significantly increased the number of dead larvae (p<0.05 for each cases). The 48 h LC50 values (with 95% confidence limits) of deltamethrin for common carp embryos and larvae were estimated as 0.213 (0.103-0.404) and 0.074 (0.011-0.260) μg L−1, respectively. The results provide evidence that deltamethrin pollution may have an adverse effect on the reproduction and development of carp, which should be considered when this chemical is used in agricultural areas near aquatic ecosystems.  相似文献   

9.
Insecticide resistance in the bedbug Cimex hemipterus was investigated using 4211 bedbugs collected from three districts of Sri Lanka. Insecticide bioassays were carried out with discriminating dosages of deltamethrin, permethrin, DDT, malathion, and propoxur. Activity levels of insecticide metabolizing enzymes and the insecticide target site acetylcholinesterase were monitored using biochemical assays. Percentage survivals after DDT, malathion, and propoxur exposure were 41-88%, 18-64%, and 11-41%, respectively. For deltamethrin and permethrin, KT50/KT90 (time to knock-down 50%/90% of the population) values were 0.5-24/1.0-58 and 1.3-10/2.5-47 h, respectively. Both elevated esterase and malathion carboxylesterase mechanisms were present in bedbug populations. Monooxygenase levels were heterogeneous. Organophosphate and carbamate target site acetylcholinesterase, was insensitive in 29-44% of the populations. High DDT resistance was probably due to glutathione S-transferases. Malathion carboxylesterases are mainly responsible for high malathion resistance. High tolerance to both DDT and pyrethroids suggests the presence of ‘kdr’ type resistance mechanism in one population.  相似文献   

10.
Many moth sex pheromone blends are derived from fatty acids and their production is regulated by a Pheromone Biosynthesis Activating Neuropeptide (PBAN). In prior work we showed that the herbicide Diclofop-acid, an acetyl-coenzyme A carboxylase (ACCase) inhibitor, inhibits PBAN-induced sex pheromone production in vitro. In this work we extend our study showing that several other herbicides, belonging to the 2-aryloxyphenoxypropionate (‘FOP’) and the cyclohexandione-oxime (‘DIM’) families significantly inhibit pheromone production by adult females whilst survival is unaffected by treatment. Enzyme activity in vitro and kinetic analysis revealed a Km of 0.35 μM with Ki values of 0.1 and 0.28 μM due to Tralkoxydim and Diclofop inhibition, respectively. Inhibitory activity on PBAN-induced pheromone production by all herbicides tested revealed a potency order: Tralkoxydim > Clodinafop > Cycloxidim > Haloxyfop > Diclofop > Fenoxaprop > Fluazifop > Quizalofop, Quizalofop being inactive. Differences in inhibition efficiencies may be attributed to different binding sites on the enzyme or to the polarity and solubility of these compounds.  相似文献   

11.
This study was conducted to determine the in vitro effects of four commonly used pesticides (Nuarimol™, Fenarimol™, Parathion-methyl™ and 2,4-D™) on erythrocyte carbonic anhydrase (CA) activity from Saanen goats (SG). The enzyme was 262.57-fold purified by affinity chromatography and the purity was confirmed by SDS-PAGE. Inhibitory effect of the pesticides on the purified enzyme was determined using the CO2-hydratase activity method. IC50 values of the pesticides that caused inhibition were determined by means of activity percentage diagrams. The concentrations of Nuarimol™, Fenarimol™, and 2,4-D™ that inhibited 50% of the enzymatic activity were 0.352, 0.924 and 2.04 mM, respectively. Conversely, the enzyme activity was increased by parathion-methyl.  相似文献   

12.
Concerns have been raised that the amphibian larval stages are particularly at risk and may be vulnerable to adverse effects of pesticides. The present study reports acute toxicity of cypermethrin at 24, 48, 72 and 96 h through static renewal bioassay test for Duttaphrynus melanostictus. The LC50 values were 5.15, 4.55, 3.95, and 3.34 μg/L for 24, 48, 72, and 96 h respectively. At sublethal concentration (0.33 μg/L) behavioral, morphological and biochemical changes were studied. The behavioral and morphological anomalies observed in the present study are typical signs of cyano pyrethroid poisoning. Significant changes were observed in total, soluble, and structural proteins. The depletion of all the protein fractions observed in this investigation led to progressive protein oxidation and catabolism of proteins. Decreased protein level has resulted in a marked elevation of free amino acid levels at all time intervals. The induction of catalase, glutathione-S-transferase activities and elevation in the levels of hydrogen peroxide, reduced glutathione, and malondialdehyde eventually lead to oxidative damage of biomolecules, showing that the generation of reactive oxygen species and oxidative stress are involved in the toxicity induced by cypermethrin. Indicating increased susceptibility of tadpoles. Thus, an exposure to cypermethrin at sublethal concentration had catastrophic effect on tadpoles of D. melanostictus.  相似文献   

13.
Diazinon is commonly used for pest control in the agricultural fields surrounding freshwater reservoirs. So this study was conducted to determine the acute toxicity of this organophosphorous pesticide, contaminating aquatic ecosystems as a pollutant, and its effects on behavior, and some hematological parameters of fingerling European catfish, Silurus glanis. Diazinon was applied at concentrations of 1, 2, 4, 8, 16, 32, and 64 mg L−1. The water temperature in the experimental units was kept at 16 ± 1 °C. The number of dead fishes significantly increased in response to diazinon concentrations 2-64 mg L−1 (p < 0.05). With increasing diazinon concentrations, the fishes exposed duration 1 to 96 h significantly increased the number of dead fishes (p < 0.05 for each cases). The 1, 24, 48, 72, and 96 h LC50 values (with 95% confidence limits) of diazinon for fingerling European catfish were estimated as 14.597 (12.985-16.340), 12.487 (11.079-14.471), 8.932 (7.907-10.348), 6.326 (no data because of p > 0.05), and 4.142 (no data because of p > 0.05) mg L−1, respectively. Compared to the control specimens, fish after an acute exposure to diazinon was significantly lower erythrocyte, leukocyte, hemoglobin, hematocrit, MCV, MCH, and MCHC values (p < 0.05). In addition, it was also showed a significantly negative correlation between these hematological parameters and exposure times of diazinon (p < 0.01).  相似文献   

14.
Laboratory tests were conducted to compare the effects of various concentrations of lindane and deltamethrin on mature earthworms (Eisenia fetida) cultured in artificial soil during typical acute (14d) and subchronic (42d) exposure periods. The effects of the two pesticides on earthworm mortality, growth inhibition, and cellulase activity were determined for different exposure durations. The toxicity order for earthworm mortality from the 14-day exposure was lindane > deltamethrin, with median lethal concentrations (LC50) of 162.1 and 432.9 mg kg−1, respectively. Earthworms exposed to deltamethrin showed dose-dependent toxic effects on growth and cellulase activity only from the acute exposures, whereas lindane’s effects on these activities were seen correlated with both the acute and subchronic doses. Also, changes in biomass and cellulase activity during the subchronic exposure period appear to be a more sensitive parameter than the LC50 value in assessing pesticidal injury.  相似文献   

15.
In the present study cytogenetic effects of atrazine herbicide, were examined on the root meristem cells of Allium cepa and Vicia faba. Test concentrations were chosen by calculating EC50 values of formulated atrazine against both the test systems which determined to be 30 mg l−1 for A. cepa and 35 mg l−1 for V. faba, respectively. For cytogenetic effects root meristem cells of A. cepa were exposed to 15, 30 or 60 mg l−1 whereas V. faba to 17.5, 35 or 70 mg l−1 for 4 or 24 h. Roots exposed for 4 or 24 h, after sampling, were left in water for 24 h recovery and sampled at 24 h post-exposure. A set of onion bulbs or seedlings of V. faba exposed to DMSO (0.3%) was run parallel for negative control. Treatment of atrazine significantly and dose-dependently inhibited the mitotic index (MI) and induced micronucleus formation (MN) chromosome aberrations (CA) and mitotic aberrations (MA) in both the test systems at 4 or 24 h. Root meristem cells examined at 24 h post-exposure also revealed significant (p < 0.001) frequencies of MN, CA or MA despite considerable decline. Chromosome breaks and fragments were found to be major CA whereas C-metaphase, chromosome bridges and laggards were prevalent MA. Results of our study, indicate that atrazine may produce genotoxic effects in plants. Further, both the plant bioassays found to be sensitive indicators for the genotoxicity assessment as the outcome of majority of in vivo/in vitro mammalian tests are comparable.  相似文献   

16.
In this study, the effects of malachite green on selected immunological parameters, oxidative stress and antioxidant status biomarkers in blood, liver, kidney, spleen and gill of rainbow trout, Oncorhynchus mykiss, was examined. During 5 days the malachite green was applied at concentrations of 1/15,000 and 1/150,000 for 30 s and 60 min, respectively. Immunological parameters (nitroblue tetrazolium (NBT) activity, total plasma protein (TP), total immunoglobulin (TI)) and biochemical parameters (lipid peroxidation (MDA), catalase (CAT) activity, reduced glutathione (GSH) levels) were evaluated after exposed to malachite green. It has been observed that NBT activity (p < 0.05, p < 0.001), total protein (p < 0.01, p < 0.001) and total immunoglobulin (p < 0.05, p < 0.001) levels were decreased compared with control group. In the rainbow tout exposed to malachite green duration 5 days significantly increased lipid peroxidation, which might be associated to decreased levels of reduced glutathione and catalase activity in the whole tissues of O. mykiss (p < 0.05, p < 0.01, p < 0.001 for each cases).  相似文献   

17.
The synergism of S,S,S-tributyl phosphorotrithioate (DEF) and its effect on carboxylesterase activity were investigated in deltamethrin-selected resistant (DRR) and susceptible (DSS) strains of cotton aphids, Aphis gossypii (Glover). Compared to the DSS strain, the DRR strain showed 23,900-fold resistance to deltamethrin, and 7560- and 99-fold cross-resistance to bifenthrin and ethofenprox, respectively. The synergist, DEF, increased the toxicity of both deltamethrin and bifenthrin, but not of ethofenprox when DEF was pretreated of 15 h. DEF exhibited significant inhibition on the carboxylesterase activity in the DRR strain, but no significant effect on that of the DSS strain in vitro. After the cotton aphids exposing to DEF, the carboxylesterase activity decreased gradually until 15 h and then gradually recovered until 24 h in the DRR strain, which fluctuated according to the effect of DEF on the deltamethrin toxicity detected using DEF pretreatment in the DRR strain. Therefore, our studies suggested that the effect of DEF on carboxylesterase was associated with deltamethrin resistance in the DRR strain.  相似文献   

18.
The cytochrome P450-dependent monooxygenases (P450s) are an important enzymatic system that metabolizes xenobiotics (e.g., pesticides), as well as endogenous compounds (e.g., hormones). P450-mediated metabolism can result in detoxification of insecticides such as pyrethroids, or can be involved in the bioactivation and detoxification of insecticides such as organophosphates. We isolated (from the JPAL strain) a permethrin resistant strain (ISOP450) of Culex pipiens quinquefasciatus, having 1300-fold permethrin resistance using standard backcrossing procedures. ISOP450 is highly related to the susceptible lab strain (SLAB) and the high resistance to permethrin is due solely to P450-mediated detoxification. This is the first time in mosquitoes that P450 monooxygenase involvement in pyrethroid resistance has been isolated and studied without the confounding effects of kdr. Resistance in ISOP450 is incompletely dominant (D = +0.3), autosomally linked, and monofactorally inherited. It is expressed in the larvae, but not in adults. Cross-resistance to pyrethroids lacking a 3-phenoxybenzyl moiety (tetramethrin, fenfluthrin, bioallethrin, and bifenthrin) ranged from 1.5- to 12-fold. ISOP450 had only limited (6.6- and 11-fold) cross-resistance to 3-phenoxybenzyl pyrethroids with an α-cyano group (cypermethrin and deltamethrin, respectively). Examination of cross-resistance patterns to organophosphate insecticides in ISOP450 showed an 8-fold resistance to fenitrothion, while low, but significant, levels of negative cross-resistance were found for malathion (RR = 0.84), temephos (RR = 0.73), and methyl-parathion (RR = 0.55). The importance and uniqueness of this P450 mechanism in insecticide resistance is discussed.  相似文献   

19.
A natural compound plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) was isolated from the leaves of Plumbago auriculata and found to inhibit the enzyme, 8-amino-7-oxononanoate synthase (AONS, also known as 7-keto-8-aminopelargonate synthase, KAPAS) an IC50 of 2.1 μM in vitro. Biotin supplement significantly rescued the plant injury caused by the plumbagin treatment, and this result confirmed the target site, AONS. Foliar application of 1000 ∼ 2000 μg/mL plumbagin in a greenhouse condition showed lethal activity against eight species of weeds, containing three grass species of Sorghum bicolor, Echinochloa crus-galli, Digitaria sanguinalis and five broad leaf species of Solanum nigrum, Aeschynomene indica, Abutilon avicennae, Xanthium strumarium, Calystegia japonica. Field trial of foliar application with plumbagin 2000 μg/mL have successfully controlled 10 ∼ 15 leaf-stages and 2 ∼ 3 m vine lengths of Sicyos angulatus at the natural habitats around riparian zone in the Nam-Han River in Korea. Visual symptom of desiccation might be induced by the physiological cellular leakage which was significantly dose dependent on the plumbagin treatment regardless of light.  相似文献   

20.
Freshwater fish, Channa punctatus, commonly known as the snakehead fish, was exposed to two sublethal concentrations (0.96 and 1.86 mg/L) (selected on the basis of 1/20 and 1/10 of 96 h LC50 value) of monocrotophos for two exposure periods (15 and 60 days). Effects of monocrotophos on Na+, K+-ATPase in liver, kidney, muscle, intestine, brain, heart and gills were determined. Results indicate that Na+, K+-ATPase activity in tissues decreased as concentration of monocrotophos and exposure period increased. Monocrotophos induced significant inhibitory effects on the Na+, K+-ATPase activity of C. punctatus, ranging from gills (70%) > Kidney (63%) > brain (57%) > intestine (52%) > liver (50%) > muscle (47%) > heart (44%) inhibition at a sublethal concentration of 0.96 mg/L. Significant inhibition was detected in Na+, K+-ATPase activity, ranging from gills (90%) > heart (78%) > kidney (78%) > muscle (74%) > intestine (71%) > brain (67%) > liver (63%) at sublethal concentration of 1.86 mg/L. After subacute exposure (15 days) only gills and brain showed significant inhibition after higher concentration (1.86 mg/L). However, it is evident that exposure duration is more important than dose in the inhibition of the activity of enzyme. At lower concentration initial stimulation of the activity of Na+, K+-ATPase activity was also noticed. It is suggested that the inhibition of the ATPase by monocrotophos blocked the active transport system of the gill epithelial as well as chloride cells, glomerular and epithelial cells of the tubules and thus altered the osmoregulatory mechanism of the fish. In fact, the impairment of the activity of enzymes which carry out key physiological roles could cause alterations of the physiology of the whole organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号