首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Pesticides may induce oxidative stress leading to generate free radicals and alternate antioxidant or oxygen free radical scavenging enzyme system. This study was conducted to investigate the acute toxicity of chlorpyrifos toward male mice and the oxidative stress of the sub-lethal dose (1/10 LD50) on the lipid peroxidation level (LPO), reduced glutathione content (GSH) and antioxidant enzymes; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glucose-6-phosphate dehydrogenase (G6PD), and glutathione-S-transferase (GST) activities. Also, the protective effects of vitamin C (200 mg/kg body weight, bw) 30 min before or after administration of chlorpyrifos were investigated. The results demonstrated that the LD50 value of chlorpyrifos was 134.95 mg/kg bw. The oral administration of 13.495 mg/kg chlorpyrifos significantly caused elevation in LPO level and the activities of antioxidant enzymes including CAT, SOD and GST. However, GPx activity remained unchanged, while the level of GSH and G6PD activity were decreased. Vitamin C treatment to chlorpyrifos intoxicated mice decreased LPO level and GST activity, normalized CAT, SOD and G6PD activities, while GSH content was increased. We conclude that vitamin C significantly reduces chlorpyrifos-induced oxidative stress in mice liver and the protective effect of the pre-treatment with vitamin C is better than the post-treatment.  相似文献   

2.
Pesticides induce oxidative stress leading to generate free radicals and alternate the antioxidant or oxygen free radical scavenging enzyme system. This study was conducted to investigate the oral toxicity of chlorpyrifos toward male rat and the oxidative stress of the sub-lethal dose (9 mg/kg; 1/25 LD50) on the lipid peroxidation level (LPO), reduced glutathione content (GSH) and antioxidant enzymes; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities of testicular tissue. Also, the protective effects of propolis extract (50 mg/kg b.w.) alone or in combination with chlorpyrifos were investigated. The oral administration of chlorpyrifos significantly caused elevation in LPO level by 1.79-fold as compared to control. The activities of antioxidant enzymes including CAT, SOD, GPx and GST were decreased significantly (23.66%, 27.75%, 29.13% and 11.52%) as well as the level of GSH decreased by 21.97% in testicular tissue as compared to control animals. Co-administration of propolis extract with chlorpyrifos or alone in male rats decreased LPO level, normalized CAT, SOD GPx and GST activities, while GSH content was increased in testicular tissue. We conclude that propolis extract significantly reduces chlorpyrifos-induced oxidative stress in rat testis and the protective effect of the pre-treatment with propolis extract as attenuating agent could be due to its antioxidant properties.  相似文献   

3.
Organophosphorus insecticides (OPIs) may induce oxidative stress leading to generation of free radicals and alteration in antioxidant system of animals. Many studies reported that enzymatic and non-enzymatic antioxidant may play protective role against OPIs induced toxicity in human and rats. The aim of present study was to investigate the possible protective role of vitamin E on ethion-induced hepatotoxicity in rats using qualitative, quantitative and biochemical approaches. Adult male albino rats of Wistar strain were randomly divided into four groups; each group consists of six animals. Animals were treated for a period of 28 days. Group I (control group received corn oil); Group II [ethion treated (2.7 mg/kg bw/day)]; Group III (vitamin E treated (50 mg/kg of bw/day)]; Group IV (ethion + vitamin E treated). Animals were sacrificed after 7, 14, 21 and 28 days by decapitation and liver tissue was used for the measurement of proteins, lipid peroxidation (LPO), reduced glutathione (GSH) content and activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) glutathione reductase (GR) and glutathione-S-transferase (GST). Erythrocytes were analyzed for acetyl cholinesterase activity. The result of this study shows that in vivo administration of ethion caused a significant induction of oxidative damage in liver tissue as evidenced by increased level of LPO and decreased GSH content. Ethion toxicity also led to a significant increase in the activities of SOD, CAT, GPx and GST in liver tissue. In addition, decrease in GR activity was observed in ethion administered rats compared to control. Histopathological findings revealed that exposure to ethion caused damage in liver tissue. However, simultaneous supplementation with vitamin E restored these parameters partially. In conclusion, the results of the current study revealed that ethion-induced toxicity caused lipid peroxidation, alterations in the antioxidant enzymes and histopathological changes in liver. Supplementation of vitamin E exhibited protective effect by inhibiting ethion-induced toxicity in liver and erythrocytes.  相似文献   

4.
Recovery study was performed at regular intervals to establish the time course of 50% and 100% recovery in neurotransmitter enzyme (acetylcholinesterase, AChE, EC 3.1.1.7) and locomotor behaviour response of mosquito fish, Gambusia affinis exposed to lethal concentration (20.49 mg L−1) of an organophosphorous pesticide, monocrotophos (MCP) for 96 h. In vitro AChE activity studies indicated that MCP could cause 50% inhibition (I50) at 10.2 × 10−5 M. A positive correlation was observed between brain AChE activity and swimming speed during the recovery study. Also, the recovery response of the antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and glutathione reductase (GR, EC 1.6.4.2) as well as lipid peroxidation (LPO) as biomarkers of oxidative stress were assessed in viscera of G. affinis. The results showed that the MCP besides its inhibitory effect on target enzyme AChE activity and induction in antioxidant enzyme activities as a characteristic of oxidative stress, which can be used as biomarkers in the pesticide contaminated aquatic streams.  相似文献   

5.
The ameliorative effect of daily administrated dose of green tea extract (60 mg polyphenols/animal/day) was investigated on albino rats Rattus norvegicus (150-180 gm) intoxicated with 1/30 and 1/60 LD50 fenitrothion organophosphate insecticide for 28 days. Blood samples were taken at 14 and 28 days for further biochemical parameters. Histopathological studies were carried out in the liver and kidney at the end of the experiment. Significant inhibition in plasma cholinesterase (ChE), a biomarker of Ops, was recorded. Damage in the liver and kidney tissues was observed and confirmed with elevation of plasma alanine aminotransferase (ALT), aspartate aminotaransferase (AST), albumin, urea and creatinine, as well as an elevation in the oxidative stress (OS) marker malondialdehyde (MDA). Decrease in total glutathione (GSH) content in erythrocytes and fluctuation in glutathione S-transferase (GST) activity in plasma was also observed. Green tea supplementation (60 mg/animal/day) partially counteracts the toxic effect of fenitrothion on oxidative stress parameters and repairs tissue damage in the liver and kidney, especially when supplemented to 1/60 LD50 intoxicated animals depending on the duration. It seems that enzyme and metabolite markers of these organs need more time to be restored to the control level.  相似文献   

6.
Phosphine (PH3) is a widely used and ideal fumigant employed to control insect pests in stored grains and other commodities. Chemically, PH3 is a strong reducing agent and mainly affects the mitochondrial transport system in insects. PH3 toxicity to insects is also associated with oxidative imbalances. Besides inducing mortality, PH3 is shown to delay hatching and adversely affect fecundity/fertility of several stored product insect pests. Recent studies have demonstrated the utility of Caenorhabditis elegans as a model organism to obtain basic insights on the toxic implications of PH3. In the present study, we have examined the impact of PH3 on the development of C. elegans and the involvement of glutathione (GSH) in its developmental toxicity. We exposed eggs of C. elegans to two concentrations of PH3 (0.04 and 0.06 mg/L) either in the presence or absence of a GSH depleting agent, diethyl maleate (DEM, 5 mM) for 72 h. PH3 exposure caused significant delay in the post embryonic development among worms as characterized by the inability of hatched worms to attain gravid adult stage by the end of 72 h. Interestingly, among worms co-exposed to DEM + PH3, the decrease in GSH levels was associated with more pronounced developmental delay compared to that of worms exposed to PH3per se. Concomitantly, PH3-induced depletion of glutathione was associated with significant alterations in activities of key antioxidant enzymes. Our data demonstrate the vital role of GSH and antioxidant defenses among worms developing under PH3 exposure. Interestingly, this finding also unfolds newer possibilities for developing strategies to disrupt antioxidant defenses in insect pests to enhance the efficacy of PH3 treatment for the control of stored product insects.  相似文献   

7.
Propoxur (PPr) is a widely used broad spectrum carbamate insecticide mainly used to control household pests. Because of the widespread use of pesticides for domestic and industrial applications, evaluation of their neurotoxic effects is of major concern to public health. The aim of the present study was to evaluate the possible protective effects of Nigella sativa oil (NSO), an antioxidant agent, against PPr-induced toxicity and oxidative stress in different brain regions of rats including cerebellum, cortex and hippocampus. In the present study, 32 male Sprague-Dawley rats were used and divided into four equal groups. Group 1 was allocated as the control group. Groups 2-4 were orally administered 1 ml/kg/bw/day NSO, 8.51 mg/kg/bw/day PPr or NSO plus PPr, respectively, for 30 days. Lipid peroxidation (LPO), protein carbonyl content (PCC) and acetylcholine esterase activity (AChE) were determined. Enzymatic antioxidant activities [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST)] and non-enzymatic antioxidants [reduced glutathione (GSH)] were determined. PPr treatment significantly increased the levels of LPO, PCC and oxidized glutathione (GSSG) in brain regions. On the contrary, levels of GSH and the activities of SOD, CAT, GSH-Px, GST and AChE were significantly decreased. NSO treatment to PPr intoxicated rats restored such biochemical parameters to within control levels except GST activity, emphasizing its antioxidant role. We conclude that NSO significantly reduces PPr-induced toxicity and oxidative stress in rat brain regions via a free radicals scavenging mechanism.  相似文献   

8.
Ethyl 2-methyl acetoacetate (EMA) is a novel allelochemical exhibiting inhibitory effects on the growth of marine unicellular alga Phaeodactylum tricornutum (P. tricornutum). Oxidative damage and antioxidant responses in P. tricornutum were investigated to elucidate the mechanism involved in EMA inhibition on algal growth. The increase in reactive oxygen species (ROS) levels and malondialdehyde (MDA) contents following exposure to EMA suggested that alga was suffered from oxidative stress and severely damaged. The decrease in cell activity and cellular inclusions suggested that cell growth was greatly inhibited. The activities of the antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxide (GSH-PX) and glutathione S-transferase (GST) increased with the exposure concentration and decreased with the prolongation of exposure time. Cellular ascorbic acid (AsA) and reduced glutathione (GSH) systems were also involved in resisting oxidative stress of EMA by altering the composition of AsA and GSH pools. EMA exposure increased the contents of AsA, GSH, dehydroascorbate (DAsA) and glutathione (GSSG). However, the regeneration rate of AsA/DAsA did not change obviously between treatments and the control, while that of GSH/GSSG decreased significantly under 14 mmol/L EMA exposure on the 3rd day. These results showed that EMA-induced oxidative damage might be responsible for EMA inhibition on P. tricornutum growth and cellular antioxidant enzymes and non-enzymatic antioxidants were improved to counteract the oxidative stress.  相似文献   

9.
Glutathione transferase (GST) was purified from the hindgut of grasshopper (Zonocerus variegatus) a polyphagous insect. The purified enzyme had a native molecular weight of 40 kDa and a subunit molecular weight of 19 kDa. The purified enzyme could conjugate glutathione (GSH) with 1-chloro-2,4-dinitrobenzene (CDNB), paranitrobenzylchloride, paranitrophenylacetate, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBDCl), and 1,2-dichloro-4-nitrobenzene (DCNB) with specific activities of 3.3 ± 0.3, 0.49 ± 0.10, 0.10 ± 0.002, 1.2 ± 0.2, and 1.7 ± 0.4 μmol/min/mg protein, respectively. CDNB appears to be the best substrate with a specificity constant, kcat/Km, of 1.8 ± 0.1 × 10−4 M−1 S−1. The kinetic mechanism of Z. variegatus GST (zvGST) in the conjugation of GSH with some electrophilic substrates appears complex. Conjugation of GSH with DCNB was inhibited by high DCNB concentration, while with NBDCl, as the electrophilic substrates, different values of Km were obtained at high and low concentrations of the substrates. Cibacron blue, hematin, S-hexylglutathione, and oxidized glutathione inhibited the enzyme with I50 values of 0.057 ± 0.004, 0.80 ± 0.2, 33 ± 2 μM, and 5.2 ± 0.3 mM, respectively. The nature of inhibition by each of these inhibitors is either competitive or non-competitive at varying GSH or CDNB as substrates. NADH and NAD+ inhibited the enzyme with an I50 value of 0.4 ± 0.01 and 11 ± 1 mM, respectively. NADH at a concentration of 0.54 mM completely abolished the activity. As part of its adaptation, the flexible kinetic pathway of detoxication by zvGST may assist the organism in coping with various xenobiotics encountered in its preferred food plants.  相似文献   

10.
This study examined the effects of chlorpyrifos in the rat erythrocyte antioxidant system and evaluated the ameliorating effects of catechin and quercetin on the oxidative damage induced by chlorpyrifos. Sexually mature male Wistar rats were given chlorpyrifos (5.4 mg/kg, 1/25 of the oral LD50), catechin (20 mg/kg), quercetin (20 mg/kg), catechin plus chlorpyrifos, and quercetin plus chlorpyrifos daily via gavage for four weeks. No statistical differences were found in the catechin-only and quercetin-only groups compared with the control group. By the end of the fourth week, chlorpyrifos alone increased the levels of malondialdehyde (MDA) and decreased superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities compared with the control group in rat erythrocytes. In the catechin-plus-chlorpyrifos and quercetin-plus-chlorpyrifos groups, there were statistically significantly decreased MDA levels and increased SOD, CAT, and GPx activities compared with the chlorpyrifos-only group. Thus, it appears that catechin and quercetin ameliorate chlorpyrifos-induced oxidative stress in rat erythrocytes in vivo.  相似文献   

11.
Triazophos, O,O-diethyl-1-H-1,2,4-triazol-3-yl phosphorothioate, (TZ) is an organophosphorus pesticide which is extensively used in agriculture for controlling insect pests. Except a FAO/WHO report no study has investigated its short-term toxicity with respect to its potential to cause biochemical and histopathological alterations. The present study was designed to identify the effect of TZ at different doses (1.64, 3.2 and 8.2 mg/kg) on the oxidative stress parameters in blood as well as organs involved in xenobiotic metabolism (liver and brain) following chronic exposure for 90 days. Moreover, the study also delineates the effect of TZ on the histo-architecture of these organs. The results indicated a dose dependent induction (p < 0.001) of oxidative stress, as evident by increased malondialdehyde (MDA) level and compromised antioxidant defense including glutathione S transferase (GST) activity, glutathione (GSH) content and ferric reducing ability of plasma (FRAP) in blood, and increased MDA level with concomitantly decreased GSH content in tissues, following chronic exposure to TZ. The ratio of MDA: FRAP in blood was found to be increased following chronic exposure to TZ and may serve as a suitable indicator of severity of oxidative damage. Onset of such biochemical alterations is one of the early adaptive responses to TZ exposure which leads to histopathological alterations in terms of diffuse fatty changes expanding from mid-zonal area to whole lobule in liver. However, increased oxidative stress did not bring any morphological alteration in brain. The present study concludes that induction of oxidative stress, leading to subsequent histopathological alterations in liver, is an important mechanism underlying the TZ induced chronic toxicity.  相似文献   

12.
In this study, the effects of sublethal exposures to the anticholinesterase insecticides azinphos methyl (AzMe) and carbaryl on the detoxifying responses of juvenile rainbow trout Oncorhynchus mykiss were investigated. Juvenile specimen were exposed to sublethal concentrations of AzMe (2.5 and 5 μg/L) and carbaryl (1 and 3 mg/L) for 24, 48 and 96 h. Carboxylesterase (CbE), catalase (CAT) and glutathione S-transferase (GST) activities as well as reduced glutathione (GSH) and cytochrome P450-1A (CYP1A) levels were monitored in liver and/or kidney. In all exposed groups liver CbE was significantly inhibited. Liver and kidney GSH level was reduced after sublethal exposure to both compounds. Carbaryl induced CAT activity during the first 48 h of exposure, followed by a significant decrease, whereas AzMe continuously decreased CAT activity. GST activity and CYP1A were transiently induced at 24 h by carbaryl exposure (3 mg/L) but sublethal exposure to AzMe did not affect GST activity or CYP1A. Our results show that the O. mykiss detoxifying system are a target for carbaryl and AzMe action, probably affecting redox balance. Although the responses showed similar trends in both organs, they were more important in liver than in kidney. The early inhibitory effect in CAT activity and GSH content produced by AzMe may be associated with a high degree of oxidative stress. Early induction of CYP1A, GST and CAT by carbaryl followed by enzyme inhibition suggests a milder or delayed oxidative stress, revealing differences between both pesticides metabolization. CbE inhibition is a good biomarker for AzMe and carbaryl exposure.  相似文献   

13.
The aim of the present study was to investigate the ameliorative properties of lycopene against the toxic effects of deltamethrin (DM) by examining oxidative damage markers such as lipid peroxidation and the antioxidant defense system components in carp (Cyprinus carpio). The fish were divided into seven groups of 15 fish each and received the following treatments: Group 1, no treatment; Group 2, orally administered corn oil; Group 3, oral lycopene (10 mg/kg body weight); Group 4, exposure to 0.018 μg/L DM; Group 5, exposure to 0.018 μg/L DM plus oral administration of 10 mg/kg lycopene; Group 6, exposure to 0.036 μg/L DM; and Group 7, exposure to 0.036 μg/L DM plus oral administration of 10 mg/kg lycopene. Treatment was continued for 14 days, and at the end of this period, blood and tissue (liver, kidney, and gill) samples were collected. Levels of malondialdehyde (MDA) and reduced glutathione (GSH) as well as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were determined in blood and tissues for measurement of oxidant-antioxidant status. A significant elevation in the level of MDA, as an index of lipid peroxidation, and reductions in antioxidant enzyme activities (SOD, CAT, and GSH-Px) and low molecular weight antioxidant (GSH) levels were observed in DM-exposed fish. Treatment with lycopene attenuated the DM-induced oxidative stress by significantly decreasing the levels of MDA. In addition, lycopene significantly increased the SOD, CAT, and GSH-Px activities and the level of GSH. The present results suggest that administration of lycopene might alleviate DM-induced oxidative stress.  相似文献   

14.
Organophosphorus insecticides and ethanol individually cause free radical production induced by oxidative stress and alter the antioxidants and scavengers of free radicals. The present study indicates the effect caused by dimethoate in combination with ethanol on antioxidant status in mice. Daily, dimethoate at a dose of 18 mg/kg body weight and ethanol at 1 g/kg body weight were orally administered concurrently in a subacute study for 14 days. After the experimental period, the liver and kidney homogenates were analysed for various antioxidant enzymes. The results compared with dimethoate alone treated control indicated an increase in hepatic cytochrome P450 and lipid peroxidation. Decrease in superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and glutathione in liver was observed. In kidney, decrease in CAT, SOD, GR, GST, and GSH was observed. Acetyl cholinesterase activity of RBC was increased. No significant change was observed in catalase in liver and glutathione peroxidase in kidney. The results of the study allow us to hypothesize that dimethoate along with ethanol disturbs the antioxidant status.  相似文献   

15.
The significant antiradical activity of cashew skin extract was previously described. In this investigation, the extent of protection offered by cashew nut skin extract (CSE) against the damage induced in rat pancreas by sub chronic doses dimethoate (DM), an organophosphorous pesticide was studied. Rats were supplemented with CSE at 20 mg/kg b.w./d after a daily dose of DM at 40 mg/kg/d b.w. for 2 months. Weekly random blood glucose, oral glucose tolerance test (OGTT); pancreatic damage markers like amylase and lipase; oxidative damage markers such as reactive oxygen species generated, extent of lipid peroxidation, host antioxidant defenses like reduced glutathione (GSH); GSH-dependent enzyme activities viz., glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR); free radical scavenger enzymes viz., catalase and superoxide dismutase (SOD); xenobiotic metabolizing enzymes like DT-diaphorase and NADPH-diaphorase were measured in the four different groups namely (1) control, (2) DM treated, (3) CSE supplemented, (4) CSE supplements following DM treatment. Random blood glucose levels increased significantly on exposure to DM compared to that in control rats (119 ± 5 mg/dl vs. 92 ± 4 mg/dl), while the blood glucose levels in CSE supplemented rats were comparable to that of controls. DM treated rats exhibited impaired glucose tolerance at the end of two months as indicated by OGTT, while DM treated rats with CSE supplements showed normal glucose tolerance. Pancreatic specific marker enzymes like amylase and lipase in serum were restored to normalcy in rats supplemented with CSE following treatment with DM which otherwise was increased in the DM treated rats. Distinctly lower levels of GSH, increased levels of ROS, higher extent of lipid peroxidation, along with alterations in antioxidant enzymes and increase in xenobiotic metabolizing enzymes were evident in pancreas of DM treated rats. However, CSE supplement ameliorated the biochemical alterations in the pancreatic milieu in DM treated rats. Treatment with CSE significantly protected rat pancreas from injury, thus ameliorating and restoring tissue antioxidant status and also conferring normal glucose tolerance. The active components present in cashew skin extract can perhaps be effective in reducing the extent of pancreatic injury and in overcoming tissue damage caused by exposure to dimethoate.  相似文献   

16.
This study describes the subacute and subchronic effects of two plant growth regulators (PGRs) [abcisic acid (ABA) and gibberellic acid (GA3)] on serum marker enzymes [aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine phosphokinase (CPK) and lactate dehydrogenase (LDH), γ-glutamil transpeptidase (GGT)], antioxidant defense systems [reduced glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)] and lipid peroxidation level (Malondialdehyde = MDA) in various tissues of rats. Rats (Sprague-Dawley albino) were exposed to 75 ppm (parts per million) of ABA and GA3. Seventy-five parts per million of PGRs as drinking water was administered orally ad libitum for 25 and 50 days continuously. The PGRs treatments caused different effect on the serum marker enzymes, antioxidant defense systems and the content of MDA in comparison to those of control rats. Results show that ABA caused a significant decrease in serum LDH and CPK activity with both periods. Also, GA3 significantly decreased serum AST, CPK, and LDH activity with subacute and decreased serum ALT, CPK, LDH, and GGT treated with subchronic periods. The lipid peroxidation end product MDA significantly increased in the erythrocyte, liver, brain, and muscle of rats treated with both the period of GA3 without significantly change in the erythrocyte and muscle of rats treated with the subacute period of ABA. The GSH levels were significantly depleted in the erythrocyte and brain of rats treated with both the period of GA3 without any change in the erythrocyte, liver, brain, and muscle of rats treated with both the period of ABA. Also GSH levels in the muscle significantly depleted with the subchronic period of GA3. Antioxidant enzyme activities such as SOD significantly decreased in the erythrocyte, liver and brain tissues but increased in the muscle tissue of rats treated with both the periods of GA3. Meanwhile, SOD significantly decreased in liver and brain, and increased in muscle of rats treated with both the period of ABA. While CAT significantly decreased in the all tissues of rats treated with both the period of GA3, decreased in the liver and muscle of rats treated with both the periods of ABA too. On the other hand, the ancillary enzyme GPx and GR activity in the erythrocytes, liver, brain and muscle were either significantly depleted or not changed with two periods of PGRs. The drug metabolizing enzyme GST activity significantly decreased in the brain of rats treated with subacute period of PGRs but increased in the erythrocytes of rats treated with subacute period of GA3. As a conclusion, ABA and GA3 had significantly increased the activity of hepatic damage enzymes. Also the rats resisted to oxidative stress via antioxidant mechanism. However, the antioxidant mechanism could not prevent the increases in lipid peroxidation in rat’s tissues. These data, along with changes, suggest that PGRs produced substantial systemic organ toxicity in the erythrocyte, liver, brain, and muscle during the period of a 25-day subacute and 50-day subchronic exposure.  相似文献   

17.
18.
Angiotensin-converting enzyme inhibitors (ACEi) were shown to ameliorate endothelial dysfunction in various human diseases and some of these inhibitors have been reported to enhance antioxidant defenses. The objective of the present study was to shown the abilities of enalapril and lisinopril as two nonthiol ACEi on mitochondrial toxicity due to paraquat. In this study, mitochondrial isolation from rat liver was divided into six groups. Group 1 was considered as control, group 2 received paraquat (5 mM), group 3 received enalapril (0.25 mM), group 4 received lisinopril (0.01 mM), group 5 received paraquat (5 mM) + enalapril (0.25 mM), and group 6 received paraquat(5 mM) + lisinopril (0.01 mM). Viability, lipid peroxidation, catalase activity, GSH (reduced glutathione) and GSSG (oxidized glutathione) concentrations were also determined. Simultaneous treatment of mitochondria with enalapril (0.25 mM) + paraquat (5 mM) and lisinopril (0.0.01 mM) + paraquat (5 mM) did not significantly ameliorate the mitochondrial toxicity induced by paraquat (5 mM) alone (p > 0.05). However, the nonthiol ACEi, enalapril showed to partially improve target of lipid peroxidation due to paraquat. In conclusion, nonthiol ACEi treatment did not improve the increased oxidative stress and the decreased antioxidant mechanisms.  相似文献   

19.
This study aims to investigate the effects of the trichloroacetic acid (TCA) on serum marker enzymes [aspartate aminotransferase (AST), alanin aminotransferase (ALT), creatine phosphokinase (CPK), acid phosphatase (ACP), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH)], antioxidant defense systems [Reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)] and lipid peroxidation content (Malondialdehyde, MDA) in various tissues of rats. TCA (2000 ppm) as drinking water was administered orally to rats (Sprague-Dawley albino) ad libitum for 50 days continuously. TCA treatments caused different effects on the serum marker enzymes, antioxidant defense systems and the MDA content in experimented rats compared to controls. Results showed that TCA caused a significant increase in serum AST, ALT, CPK and ACP activity. The lipid peroxidation end product MDA slightly increased in the erythrocytes, liver and kidney of rats treated with TCA, whereas did not change in the brain. In addition, antioxidant enzyme activity such as CAT and SOD significantly increased in the brain, liver and kidney tissues of TCA induced group whereas the ancillary enzyme GR and the drug metabolizing enzyme GST activity did not significantly change in the all tissues. The observations presented led us to conclude that the administration of subchronic TCA promotes lipid peroxidation content, elevates tissue damage serum marker enzymes and fluctuates in the antioxidative systems in rats. Also the rats resisted to oxidative stress via antioxidant mechanism but the antioxidant mechanism could not prevent the increases in lipid peroxidation in rat’s tissues. These data, along with the determined changes suggest that TCA produced substantial systemic organ toxicity in the erythrocyte, liver, brain and kidney during the period of a 50-day subchronic exposure.  相似文献   

20.
Paraquat is a highly toxic herbicide that is used in most countries without restriction. The cytotoxic action of paraquat is mediated by reactive radicals that are products of its metabolic reduction in cells. It has already been hypothesized that some angiotensin-converting enzyme inhibitors (e.g., captopril and enalapril) could show antioxidant and radical scavenging activity through their structural thiol groups, increasing antioxidant enzymes production or nitric oxide synthesis. In this study the hepatoprotective effect of captopril and enalapril against paraquat induced oxidative stress cytotoxicity was evaluated in isolated rat hepatocyte. Subtoxic concentrations of captopril (0.2 mM) and enalapril (0.2 mM) significantly (p < 0.05) protected the hepatocytes against paraquat (2 mM) induced oxidative stress cytotoxicity markers including: cell lysis, reactive oxygen species (ROS) generation, lipid peroxidation, glutathione depletion, mitochondrial membrane potential decrease, lysosomal membrane oxidative damage and cellular proteolysis. Moreover, we showed that non-thiol enalapril acts as well as thiol containing captopril at inhibiting oxidative stress cytotoxicity markers. Finally, our results support the hypothesis that it is the increase in nitric oxide synthesis and not the presence of the thiol group that accounts for the antioxidant activity of ACE inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号