首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Denitrification reactors have proven their functionality in commercial recirculation aquaculture systems (RAS). Nevertheless, clogging occurs due to the low hydraulic loads necessary to accomplish anoxic conditions for a successful denitrification process in RAS, which hampers the adjustment of stable working conditions within fixed bed denitrification reactors. Reactors working on the basis of activated sludge demand careful hydraulic control and/or complex configurations for sludge retention.To develop a low-maintenance denitrification reactor, an enclosed moving bed filter, driven by recirculation of the inherent, oxygen poor gas was designed. A Self cleaning Inherent gas Denitrification reactor (SID-reactor) of 0.65 m3, which offered a moving bed volume of 0.39 m3 was connected with a RAS of semi-industrial scale for pike perch (Sander lucioperca) production. This species indicates suboptimal environmental conditions (as e.g. NO3-N concentrations above approximately 68 mg l−1) by prompt reduction of the feed intake. In different experimental series, the SID-reactor was operated with denatured ethanol, methanol, acetic acid or glycerin as carbon sources and changing operational modes.Clogging was prevented by a 40 second inherent gas recirculation twice an hour, which provided continuous, maintenance free operation with marginal energy demand. With inlet (RAS) and outlet NO3-N concentrations in the range of 49 mg l−1 and 12 mg l−1, mean denitrification rates of 199 g to 235 g NO3-N per m3 moving bed volume and day were determined for all tested carbon sources. Negative effects on the feed intake of the reared pike perch were detected with all carbon sources except methanol. Changing the mode of operation to continuous circulation of the filter bed at inlet NO3-N concentrations of 26 mg l−1, the denitrification performance reached 451 g NO3-N per m3 moving bed volume and day. The SID-reactor allowed for the reduction of freshwater exchange in the pike perch RAS from 600 l to 70 l (−88%) and the sodium bicarbonate buffer from 182 g to 31 g (−83%) per kg of administered food. The easy and reliable operation of the SID-reactor could help to establish controlled denitrification as a routine purification step in RAS.  相似文献   

2.
The aim of this study was to compare two rearing systems for freshwater prawn Macrobrachium rosenbergii: one with use of a recirculating aquaculture system with biofilters (RAS) and another with use of microbial flocs (F). Thirty postlarvae of freshwater prawn with an initial average weight of 0.13 ± 0.05 g were randomly stocked in six experimental units with 0.20 m² and volume of 50 L. The experiment lasted thirty days. Dissolved oxygen, temperature and pH were monitored daily; ammonia concentration was determined three times per week; nitrite concentration, alkalinity and hardness were measured weekly. For the formation of microbial floc, molasses was used to keep the ammonia concentrations within safe levels for prawn farming. The variables of water quality remained within the suitable range for the production of the species, except for ammonia concentrations at the F treatment, which exceeded the safe levels. At the end of the experiment, the following parameters were evaluated: survival, specific growth rate, weight gain and feed conversion rate. Differences were found only in feed conversion rate with better values on RAS treatment. The microorganisms present in the RAS and F treatment were also evaluated. The densities of rotifers, amoebas and total bacteria were higher at the F treatment although the same organisms were found at the RAS treatment. The results of this study showed the possibility of rearing M. rosenbergii in biofloc system technology.  相似文献   

3.
A continuous water disinfection process can be used to prevent the introduction and accumulation of obligate and opportunistic fish pathogens in recirculating aquaculture systems (RAS), especially during a disease outbreak when the causative agent would otherwise proliferate within the system. To proactively prevent the accumulation of fish pathogens, ozonation and ultraviolet (UV) irradiation processes have been used separately or in combination to treat water in RAS before it returns to the fish culture tanks. The objective of the present study was to determine the process requirements necessary to disinfect the full RAS flow, using ozonation followed by UV irradiation, just before the flow was returned to the fish culture tank(s). We found that a proportional-integral (PI) feed-back control loop was able to automatically adjust the concentration of ozone (O3) generated in the oxygen feed gas (and thus added in the low head oxygenator) in order to maintain the dissolved O3 residual or ORP at a pre-selected set-point. We determined that it was easier and effective to continuously monitor and automatically control O3 dose using an oxidative reduction potential (ORP) probe (in comparison to a dissolved ozone probe) that was located at the outlet of the O3 contact chamber and immediately before water entered the UV irradiation unit. PI control at an ORP set-point of 450 and 525 mv and a dissolved O3 set-point of 20 ppb provided almost complete full-flow inactivation of heterotrophic bacteria plate counts (i.e., producing <1 cfu/mL) and improved water quality (especially color and %UVT) in a full-scale recirculating system. Achieving this level of treatment required adding a mean dose of approximately 29 ± 3 g O3 per kg feed. However, because water is treated and reused repeatedly in a water reuse system, the mean daily O3 demand required to maintain an ORP of 375–525 mV (or at 20 ppb dissolved O3) was 0.34–0.39 mg/L, which is nearly 10 times lower than what is typically required to disinfect surface water in a single pass treatment. These findings can be used to improve biosecurity and product quality planning by providing a means for continuous water disinfection in controlled intensive RAS.  相似文献   

4.
Onsite research indicates that activated sludge membrane biological reactors (MBRs) are an effective waste treatment technology for aquaculture effluents. MBRs produce a filtered permeate that is nearly free of dissolved nutrients, organics, and solids; therefore, this technology could be well-suited for integration within the process control loop of recirculation aquaculture systems (RAS). A four-month study was carried out to evaluate the feasibility of incorporating single-vessel MBRs within freshwater RAS while culturing rainbow trout Oncorhynchus mykiss. Triplicate RAS with and without MBRs (controls) were evaluated; mRAS and cRAS, respectively. System backwash water of mRAS was processed and retained within MBRs which allowed increased water recycling, while cRAS utilized standard dilution rates to limit nitrate accumulation. On average, mRAS required six and a half times less makeup water. Mean daily water replacement of the RAS volume for mRAS and cRAS was 1.2 ± 0.4 and 7.8 ± 0.5%, respectively (P < 0.05). A range of water quality concentrations were significantly greater in mRAS including chloride, carbon dioxide, heterotrophic bacteria count, pH, nitrate-nitrogen, total ammonia-nitrogen, total phosphorous, and true color, as well as dissolved concentrations of calcium, copper, magnesium, and sulfur. Alkalinity and ultraviolet transmittance levels were significantly lower in mRAS. These culture environment differences did not affect rainbow trout growth, feed conversion, or survival (P > 0.05). In addition, concentrations of common off-flavor compounds (geosmin and 2-methylisoborneol) in water and fish flesh were not affected by MBR presence. Improvements for future MBR integration with RAS were realized including optimization of MBR permeate rates, increased RAS water exchange through the MBRs, and infrequent supplementation of a carbon source to enhance denitrification efficiency and alkalinity recovery. Overall, incorporating MBRs within RAS resulted in substantial water savings and was biologically feasible for rainbow trout production.  相似文献   

5.
Aerobic biological filtration systems employing nitrifying bacteria to remediate excess ammonia and nitrite concentrations are common components of recirculating aquaculture systems (RAS). However, significant water exchange may still be necessary to reduce nitrate concentrations to acceptable levels unless denitrification systems are included in the RAS design. This study evaluated the design of a full scale denitrification reactor in a commercial culture RAS application. Four carbon sources were evaluated including methanol, acetic acid, molasses and Cerelose™, a hydrolyzed starch, to determine their applicability under commercial culture conditions and to determine if any of these carbon sources encouraged the production of two common “off-flavor” compounds, 2-methyisoborneol (MIB) or geosmin. The denitrification design consisted of a 1.89 m3 covered conical bottom polyethylene tank containing 1.0 m3 media through which water up-flowed at a rate of 10 lpm. A commercial aquaculture system housing 6 metric tonnes of Siberian sturgeon was used to generate nitrate through nitrification in a moving bed biological filter. All four carbon sources were able to effectively reduce nitrate to near zero concentrations from influent concentrations ranging from 11 to 57 mg/l NO3–N, and the maximum daily denitrification rate was 670–680 g nitrogen removed/m3 media/day, regardless of the carbon source. Although nitrite production was not a problem once the reactors achieved a constant effluent nitrate, ammonia production was a significant problem for units fed molasses and to a less extent Cerelose™. Maximum measured ammonia concentrations in the reactor effluents for methanol, vinegar, Cerelose™ and molasses were 1.62 ± 0.10, 2.83 ± 0.17, 4.55 ± 0.45 and 5.25 ± 1.26 mg/l NH3–N, respectively. Turbidity production was significantly increased in reactors fed molasses and to a less extent Cerelose™. Concentrations of geosmin and MIB were not significantly increased in any of the denitrification reactors, regardless of carbon source. Because of its very low cost compared to the other sources tested, molasses may be an attractive carbon source for denitrification if issues of ammonia production, turbidity and foaming can be resolved.  相似文献   

6.
Scallop larval production systems in Norway have changed from the use of batch to continuous flow through systems (FTS) during the last decade. Energy use to heat water in both larval and spat nurseries is considerable. Two experiments (June 2010 and February 2011) using water recirculation technology (RAS) were performed in large scale systems (3500 L larval tanks) supplied with continuous addition of algal feed, and 20% renewal of seawater.In the RAS a gradual increase in CO2, decrease in pH and dissolved oxygen was observed over time. This was most obvious during experiment two, when the total organic carbon content increased in both FTS and RAS. The total bacterial number was lower and more stable in FTS than in the RAS. The variations in seawater quality parameters were smaller during the first experiment compared to the second, when values of oxygen saturation were reduced to <70%, pH was 7.8 and NO3 reached 5 mg L−1. Even though these changes would seem less beneficial for survival and growth of scallop larvae, results showed that the survival at the end of the larval stage was higher in the FTS, but the yield of competent larvae ready for settlement was not significant different (p > 0.05) due to large variations between tanks. The CV% was 28.9% in FTS, while it was 49.9% in RAS. In FTS the mean yield was 40.2%, while it was 26.5% of initial number of larvae in RAS. Large variations in survival and yield were found between the larval tanks as well as gradual reduction in pH and oxygen in RAS tanks. The results indicate that there is a large potential for 80% reduction in water use by utilizing recirculation technology.  相似文献   

7.
In intensive aquaculture, one of the main problems confronted by the farmers is the ammonia pollution and subsequent disease outbreaks, high costs of quality protein feed, and the labor for periodic water exchange. Ammonia is a major metabolic waste product from fish, which is excreted across the gill membranes and in the urine. Controlling the inorganic nitrogen by manipulating the carbon/nitrogen ratios seems to be a practical and inexpensive means of reducing the accumulation of ammonia. At high carbon to nitrogen (C/N) ratios, bacteria will assimilate nitrogen, i.e., ammonia, from water and produce new cell protein. The experiment was designed by adding 0, 10, 20, and 30 g of carbohydrate (rice flour) for each gram of total ammonia nitrogen (TAN) released as a result of feeding metabolism and feed waste decomposition. The ammonia built up in the rearing water showed a drastic decrease in all the carbohydrate added tanks. The heterotrophic bacterial growth was significantly higher in the same. The biochemical constituents and growth rate were higher in fishes in the tanks having C/N ratio 10 and 20. Percentage weight gain was 100% for T30, protein efficiency ratio (PER) was high for T20 and T30 (4.048). The C/N ratios of 20 and 30 worked more effectively. Shifting the aquatic ecology from autotrophic to heterotrophic bacterial-based community can improve water quality and recycle the toxic ammonia waste to heterotrophic bacterial flocs, which in turn can be consumed by the fish, thereby reducing the feed protein demand and subsequently the reduction of feed cost.  相似文献   

8.
Commercial production of Atlantic salmon smolts, post-smolts, and market-size fish using land-based recirculation aquaculture systems (RAS) is expanding. RAS generally provide a nutrient-rich environment in which nitrate accumulates as an end-product of nitrification. An 8-month study was conducted to compare the long-term effects of “high” (99 ± 1 mg/L NO3-N) versus “low” nitrate-nitrogen (10.0 ± 0.3 mg/L NO3-N) on the health and performance of post-smolt Atlantic salmon cultured in replicate freshwater RAS. Equal numbers of salmon with an initial mean weight of 102 ± 1 g were stocked into six 9.5 m3 RAS. Three RAS were maintained with high NO3-N via continuous dosing of sodium nitrate and three RAS were maintained with low NO3-N resulting solely from nitrification. An average daily water exchange rate equivalent to 60% of the system volume limited the accumulation of water quality parameters other than nitrate. Atlantic salmon performance metrics (e.g. weight, length, condition factor, thermal growth coefficient, and feed conversion ratio) were not affected by 100 mg/L NO3-N and cumulative survival was >99% for both treatments. No important differences were noted between treatments for whole blood gas, plasma chemistry, tissue histopathology, or fin quality parameters suggesting that fish health was unaffected by nitrate concentration. Abnormal swimming behaviors indicative of stress or reduced welfare were not observed. This research suggests that nitrate-nitrogen concentrations  100 mg/L do not affect post-smolt Atlantic salmon health or performance under the described conditions.  相似文献   

9.
A 56-day study was conducted in which shrimp (Litopenaeus vannamei) were stocked at 300 m−3 into 16, 500-L tanks. Four treatments were created: chemoautotrophic (CA), heterotrophic sucrose (HS), heterotrophic molasses (HM), and heterotrophic glycerol (HG). The heterotrophic treatments were managed such that the C:N ratio of inputs (feed and carbohydrate source) was 22:1. The chemoautotrophic treatment received no added carbohydrate, only shrimp feed. Each treatment was assigned randomly to four replicate tanks. Nitrate-N was significantly greater in the CA treatment, accumulating to a peak mean concentration of 162 mg NO3-N L−1 and nitrate was typically below detection (<0.01 mg NO3-N L−1) in the heterotrophic treatments. 5-Day biochemical oxygen demand (BOD5) was significantly greater in the heterotrophic treatments compared to the chemoautotrophic treatment. Total suspended solids concentration was significantly lower in the CA treatment compared to any other. Shrimp growth rate was significantly greater in the CA and HS treatments versus the HM treatment and there was no significant difference in growth rate between the HG treatment and any other treatment. These results indicate that differences in management and carbohydrate source can lead to substantial disparity in system function and shrimp production.  相似文献   

10.
The objective of this study was to determine the solids separation efficiency of the four swirl separators and the drum filter within one of the water recirculation systems (RAS) of a salmon-smolt hatchery. Water flowrates and concentrations of total suspended solids (TSS) within the RAS were measured weekly over 5 weeks in 2004 and 4 weeks in 2005. During the study, the hydraulic retention time in the tanks was 2.8 h and the feed rate ranged between 0.16 and 0.84 kg/m3 of make-up water. The system volume replacement rate and the water flow recycle rate were respectively 21%/day and 96% in 2004, and 50%/day and 91% in 2005. A mathematical model was developed to determine the transient concentration of fine particles in the recirculation loop. By fitting the predictions of the model to the measured TSS concentrations, it was determined that about 15% of the waste generated within the RAS (assumed equal to 20% of daily feed rate) was removed by the system overflow water. Using this information and TSS data from the backwash water of the drum filter, it was calculated that the swirl separators and drum filter removed respectively 63% and 22% of the waste solids rejected by the fish.  相似文献   

11.
A 60‐day indoor growth trial was conducted to study the effects of biofloc on the growth performance of a Penaeus monodon (Fabricius, 1798), water quality and biological indicators including biofloc volume, chlorophyll‐a, heterotrophic bacteria and Bacillus quantity. Two concentrations of sucrose (0 and 75%) were added daily to the P. monodon culture systems (2.94 ± 0.11 g), which were conducted indoors in fibre‐glass tanks (500 L). Results showed that the final body weight and weight gain of the adding 75% sucrose group were significantly higher (< 0.05) than that of the control, as well as significantly (P < 0.05) improved specific growth rates and survival rates, and reduced feed coefficient. Adding 75% sucrose promoted heterotrophic bacteria, Bacillus and phytoplankton reproduction, and significantly (< 0.05) reduced the concentration of ammonia‐N (NH4‐N), nitrite‐N (NO2‐N) and nitrate‐N (NO3‐N). The changes of water quality indicators in the two groups showed the similar trend at the end of the experiment, and the ammonia‐N, nitrite‐N, nitrate‐N and phosphate‐P concentrations in the 75% sucrose group were significantly (< 0.05) lower than those of the control group, Chlorophyll‐a concentrations peaked at 389.12 μg/L in the biofloc sucrose group at 18:00 h, and heterotrophic bacteria peaked 8 h after sucrose was added. The addition of sucrose also reduced the pH of the water. Our research showed that adding sucrose promoted biofloc formation and shortened the formation time; increased the number of heterotrophic bacteria and algae which might play a role in improving water quality by assimilating ammonia‐N and other harmful substances in the water; supplemented food for P monodon growth; and reduced the feed coefficient.  相似文献   

12.
One of the challenges that Recirculating Aquaculture Systems (RAS) are still facing is the risk that in RAS fish grow less than in flow-through systems due to the accumulation of substances originating from feed, fish or bacteria associated with the water re-use. The present study investigated whether RAS with high and low accumulation levels of these substances affect feed intake and growth of Nile tilapia Oreochromis niloticus, African catfish Clarias gariepinus, and European eel Anguilla Anguilla. One-hundred and twenty individuals of each species were used (start body weights: Nile tilapia 264.8 ± 8.3 g; African catfish 253.2 ± 2.1 g and European eel 66.6 ± 1.3 g). For a period of 39 days, growth and feed intake were compared between high and low accumulation RAS. HIGH accumulation RAS was designed for maximal accumulation of substances in the water by operating the system at nearly-closed conditions (30 L/kg feed/d), using mature biofilters and high feed loads; and (2) LOW accumulation RAS was designed to be a proxy for flow-through systems by operating at high water exchange rates (1500 L/kg feed/d), new biofilters and low feed load. HIGH accumulation RAS induced a reduction in feed intake (42%) and growth (83%) of Nile tilapia, as compared to systems that are a proxy for flow-through conditions. This effect was not observed in European eel and African catfish. The cause of this reduced feed intake and growth rate of Nile tilapia is still unclear and should be addressed in further studies.  相似文献   

13.
A six-month trial was conducted to compare the effects of high and low make-up water flushing rates on rainbow trout performance and water quality in replicated water reuse aquaculture systems (WRAS). Six identical 9.5 m3 WRAS, containing a single 5.3 m3 tank and operated at a total recirculating flow of 380 L/min were stocked with 1000 rainbow trout each (133 ± 1 g). Three WRAS were operated at high flushing rates (2.6% of total flow) and three were operated at low flushing rates (0.26% of total flow), providing system hydraulic retention times of 0.67 and 6.7 days, respectively. During a one-week period when fish were at maximum feeding (i.e., mean feed loadings of 0.53 and 5.3 kg/m3 make-up water flow high and low make-up conditions, respectively) and maximum densities (80 kg/m3), water samples were collected across all unit processes. All typical water quality parameters measured at the culture tank outlet during this week were significantly different between treatments, except for dissolved oxygen, carbon dioxide, and temperature, which were controlled. Within the low exchange WRAS, total suspended solids (TSS), carbonaceous biochemical oxygen demand, total ammonia nitrogen, un-ionized ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, dissolved organic carbon, particle counts, true color, and total heterotrophic plate counts were significantly greater, whereas UV transmittance (%) and alkalinity were significantly reduced. Of these parameters, TSS, fine particles, and heterotrophic bacteria counts were the only parameters of concern within the low exchange WRAS. The potential impacts of each water quality constituent are discussed. Element analysis indicated that concentrations of nine metals were significantly greater within the low exchange WRAS. The highest metal concentrations measured at low exchange were within safe recommended limits, with the exception of copper (0.037–0.056 mg/L), which could have reached chronically toxic levels. Although cumulative mortality was relatively low for all WRAS, a linear trend between copper concentration and mortality was evident. The highest mortality, which occurred within a low exchange WRAS, coincided with the highest copper (0.056 mg/L); and the lowest mortality, which occurred within a high exchange WRAS, coincided with non-detectable copper levels. A comparison of survival between treatments bordered significance, 99.5 ± 0.1 and 98.9 ± 0.4% for the high and low exchange WRAS, respectively. There was no significant difference in rainbow trout weight at the conclusion of the study, i.e., approximately one year post-hatch: 1401 ± 23 and 1366 ± 33 g for the high and low exchange WRAS, respectively. There were no differences in thermal growth coefficients or feed conversion ratios between the high and low exchange treatments. Rainbow trout condition factor was significantly greater within the low exchange WRAS.  相似文献   

14.
A 90‐day feeding experiment was conducted in order to test spent brewer's yeast as a replacement for fishmeal in diets for giant freshwater prawn (Macrobrachium rosenbergii) reared in either a recirculating aquaculture system (RAS) or a biofloc system. Triplicate groups, each of 20 prawn (6.7 ± 0.03 g), were randomly assigned to 24 identical tanks. Twelve tanks were connected to the RAS, and the other 12 tanks were connected to the biofloc system which were initially supplemented with Bacillus subtilis, molasses and blood meal to achieve a C:N ratio of 20:1. Four iso‐nitrogenous (350 g/kg) and iso‐energetic (19 MJ/kg) diets where 0%, 20%, 40% and 60% of fishmeal protein was replaced by spent brewer's yeast. Neither growth nor survival was affected (p > 0.05) by increasing levels of brewer's yeast. The exception, being fish given 60% replacement with brewer's yeast, reared in biofloc, which displayed a higher (p < 0.05) growth than fish given 40% replacement, reared in clear water. The feed conversion ratio of prawn reared in the biofloc environment was lower than in the clear water. We concluded that spent brewer's yeast represents a possible 60% substitute for fishmeal in giant freshwater prawn diets, especially for prawn reared in a biofloc environment.  相似文献   

15.
The objective of the study was to evaluate the utilization of biofloc meal as a feed ingredient in enhancing the growth and health status of African catfish (Clarias gariepinus) juvenile. The study consisted of two experiments, that is digestibility and growth experiments. The digestibility of two biofloc meals produced with two different carbon sources, that is tapioca and molasses, were assessed in the digestibility experiment. Whereas the effect of four dietary treatments with different levels of biofloc meal, that is 0%, 5%, 10% and 20%, on the fish growth performance, feed utilization, immuno‐haematological response, antioxidant status and robustness against environmental stress were evaluated in the growth experiment. The results showed that the digestibility of dry matter, protein, lipid and phosphorus of biofloc grown using molasses as the carbon source were remarkably higher than that grown using tapioca (p < 0.05). The inclusion of biofloc meal in the diets at 10% and 20% resulted in higher feed intake, fish growth and final biomass and protein efficiency ratio, and lower feed conversion ratio (p < 0.05). Furthermore, the red blood cells counts, phagocytic, lysozyme activities and antioxidative capacity were significantly enhanced in the fish provided with diet containing 20% biofloc meal (p < 0.05).The fish survival following salinity stress test was higher in the treatments with biofloc meal at 10% and 20% inclusion levels. In conclusion, dietary inclusion of biofloc meal could improve the growth performance and health status of African catfish juvenile and an inclusion level of 20% could be recommended.  相似文献   

16.
Biofloc technology system (BFT), recirculation aquaculture system (RAS) and polyculture promote efficient use of water, area and nutrient recycling, which are essential practices for sustainable aquaculture development. The aim of this study was to evaluate the growth, feed efficiency, biofloc composition and water quality of Nile tilapia Oreochromis niloticus (Linnaeus, 1758) in monoculture and polyculture with giant freshwater prawn Macrobrachium rosenbergii (De Man, 1906) in BFT and RAS, over a period of 30 days. Fish (n = 128; 7.29 ± 0.67 g) were distributed randomly in 16 experimental tanks (8 fish/tank). Prawn (n = 96; 0.50 ± 0.09 g) were allocated in 8 experimental tanks (12 prawn/tank) in a polyculture. The experimental design was completely randomized with four treatments with four replicates each, in a factorial design 2 × 2 (BFT and RAS vs. monoculture and polyculture). The experimental diet (28% of digestible protein; 3100 kcal kg−1 of digestible energy) was used both to fish and prawn in BFT and RAS. There was significant effect (p < 0.01) of the system and the culture for weight gain, apparent feed conversion and protein efficiency ratio. The average weight gain and apparent feed conversion of tilapia in monoculture (30.04 g and 1.39) and in polyculture (36.44 g and 1.27) were superior (p < 0.01) in BFT than in monoculture (23.64 g and 1.74) and in polyculture (24.14 g and 1.61) in RAS. Weight gain and survival of giant freshwater prawn was superior (p < 0.01) in BFT (0.43 g and 87%) compared to RAS (0.26 g and 79%). The data showed that BFT provides better growth performance responses in monoculture for Nile tilapia and in polyculture with giant freshwater prawn compared to RAS.  相似文献   

17.
Brook trout (Salvelinus fontinalis) are a commercially important coldwater species reared in Wisconsin and the Midwestern United States. Brook trout are raised by private, tribal, state, and federal fish hatchery facilities in Wisconsin. Approximately 10% of private coldwater aquaculture operations are presently raising brook trout of various strains for stocking uses and a limited amount for food markets. Growing brook trout to a larger size, if they can be reared in a shorter time span, may present a potential new sector for the aquaculture market in the Midwestern US. The present study reports hatchery production attributes, i.e., growth, survival, fin condition, feed efficiency, water chemistry requirements and general husbandry of Lake Superior strain (Nipigon) brook trout reared in a recirculating aquaculture system (RAS), operated at an average temperature of 13 °C. The recycle system at NADF reared 1379 kg of brook trout over a 10-month period from fingerling (9 g) to market size (340–454 g). The trout grew faster (0.84 g/day and 0.64 mm/day) in the RAS than fish cultured in traditional flow-through tank culture utilizing ground water at 7.6 °C (0.14 g/day and 0.35 mm/day). Final average weight of RAS fish was 260 g, while the flow-through fish averaged 65 g. Final tank densities for the RAS averaged 40.4 kg/m3 while flow-through tanks averaged 31.2 kg/m3. Throughout the project, feed conversions in the RAS ranged from 0.9 to 1.3. Water quality variables such as TAN, nitrite, DO, temperature, TSS, CO2, ph, etc. were within safe limits for brook trout and will be discussed. It does appear from this initial research project that market size brook trout can be raised successfully in a recycle system within a similar time frame as a rainbow trout produced in a Wisconsin typical flow-through facility.  相似文献   

18.
Previous research and experience has linked elevated dissolved carbon dioxide (CO2) to reduced growth performance, poor feed conversion, and a variety of health issues in farm-raised fish, including Atlantic salmon Salmo salar. Supplemental control measures in water recirculation aquaculture systems (RAS) to reduce CO2 accumulation, however, such as increased water pumping to decrease tank hydraulic retention time, can represent significant costs for operators. We exposed post-smolt S0 Atlantic salmon (197 ± 2 g, 423 days post-hatch) to either high (20 ± 1 mg/L) or low (8 ± <1 mg/L) dissolved CO2 in six replicated freshwater RAS for 384 days to investigate differences in performance and health as the salmon were grown to harvest size. All RAS were operated at moderate water exchange rates (1.0% of the total recirculating flow), a 24-h photoperiod was provided, fish were fed to satiation, and densities were maintained between 40 and 80 kg/m3. Over the study period, dissolved oxygen was kept at saturation, mean water temperature was 14.1 ± 0.1 °C, and alkalinity averaged 237 mg/L as CaCO3. At study’s end, no significant differences in fish weight (high CO2 mean weight = 2879 ± 35 g; low CO2 mean weight = 2896 ± 12 g), feed conversion ratio (1.14 ± 0.12 vs. 1.22 ± 0.13, respectively), or thermal growth coefficient (1.45 ± 0.01 vs. 1.46 ± 0.01, respectively), were observed. No significant differences in survival (high CO2 mean survival = 99.1 ± 0.4%; low CO2 mean survival = 98.9 ± 0.3%) or culls due to saprolegniasis (3.5 ± 1% vs. 3.0 ± 1%, respectively) were determined, and no nephrocalcinosis was observed through histopathological evaluation. Blood gas and chemistry evaluation revealed higher pCO2, bicarbonate, and total CO2, and lower chloride and glucose, in the high CO2 cohort. Molecular analyses of gill enzyme regulation showed significantly higher expression of Na+/K+ ATPase α1a in high CO2 fish at 3-weeks post-challenge, indicating physiological adaptation to the higher CO2 environment without any noticeable long-term impacts on health or performance. Overall, the results of this study suggest that, at 237 mg/L as CaCO3 mean alkalinity, post-smolt Atlantic salmon can be raised in freshwater RAS to harvest size with up to 20 mg/L CO2 without significantly impacting fish health and performance.  相似文献   

19.
A 120-day evaluation was performed to determine the impacts of various carbon source supplements on the water grade and production of bottom- and filter-feeding carp inside a minimum-water-exchange system. The outcomes revealed that the overall ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, total inorganic nitrogen, and orthophosphate concentrations in every one of the carbon source treatments were significantly less (P?<?0.05) than the control. The net production of silver carp and bighead carp in the molasses treatment was significantly higher (P?<?0.05) than that in the control. The total feed conversion rates of the fish in the molasses and the mixed carbon source treatments were significantly lower (P?<?0.05) than in the control, while the total protein efficiency ratio values in the corn starch, molasses, and mixed carbon source treatments were significantly higher (P?<?0.05) than those in the control. The bioflocs significantly (P?<?0.05) impacted the muscle makeup of crude protein, crude fat, and ash of mirror carp. The current examination showed that the increased generation and feed used in mirror, silver, and bighead carp may be reached with an enhanced water grade when different carbon sources were added, while the use of molasses, an organic carbon source, was optimal compared to the other carbon sources due to its low price and good effect.  相似文献   

20.
When tropical shrimps are kept in recirculating aquaculture systems (RAS), one of the limiting factors is the maintenance of a sufficient water quality, and therefore, often disinfectants like peracetic acid (PAA) are added to the water either as prophylactic or treatment measure. In this study, PAA in concentrations of 0.1 mg/L, 1 mg/L and 10 mg/L was applied continuously for 56 days to small-scale seawater RAS stocked with Litopenaeus vannamei. Treatment with 0.1 mg/L did not result in a reduction in the total bacterial amount and therefore was not effective. A concentration of 10 mg/L led to significant changes in the chemical water parameters already after 2 days and was therefore not recommendable. A concentration of 1 mg/L led to increased levels of ammonia and nitrite within 2 days and to a significant increase in the bacterial amount in the water, most probably due to an enhanced growth of heterotrophic bacteria. The microflora showed significant fluctuations, and there were indications that the welfare of the shrimps was affected. Using 1 mg PAA/L for prophylactic use is therefore also not recommendable but might be an alternative option for short-term treatment in cases of disease outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号