首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chickpea (Cicer arietinum L.) is sensitive to cold stress (<8 °C) at its reproductive phase that results in flower abortion, poor pod set and thus reduced yield. Early maturing genotypes are especially more sensitive. In this crop, the metabolic causes underlying cold injury that are imperative to induce cold tolerance are not known. In the present study, the endogenous levels of putrescine (diamine), spermidine (triamine) and spermine (tetramine) were examined in early maturing chickpea genotype ICCV 96029, subjected to chilling temperatures of field (12–15/4–6 °C; average maximum and minimum temperature respectively), at flowering or early podding stage. These were compared with controls growing in warmer conditions (28/12 °C) of the glasshouse. The polyamine levels increased six to nine times because of stress. Relatively, putrescine (PUT) elevation was the highest but short-lived and its decrease appeared to match with the onset of flower and pod abscission in stressed plants. Compared with controls, chilling injury, observed as electrolyte leakage (EL), increased by 60 % while cellular respiration declined by 68 % in stressed plants. Exogenous application of 10 mm PUT to stressed plants reduced the EL by 29 % and elevated the cellular respiration by 40 %. PUT application at flowering stage resulted in increase of 30, 31, 23 and 25 % in floral retention, pod set, pod retention and fertile pods respectively. At the early podding stage, PUT treatment increased the seed yield per plant, seed number per 100 pods and individual seed weight by 50, 17 and 19 % respectively. The number of single-seeded pods per plant increased from 4.4 in stressed plants to 12.2 in PUT-treated plants while the number of double-seeded pods reduced from 6.2 to 4.3. The number of infertile pods declined from 8.2 in stressed plants to 3.1 in PUT-treated plants.  相似文献   

2.
Chickpea is sensitive to cold conditions (<15 °C), particularly at its reproductive phase and consequently it experiences significant decrease in the seed yield. The information about the effects of cold stress on chickpea during the seed filling phase is lacking. Moreover, the underlying metabolic reasons associated with the low temperature injury are largely unknown in the crop. Hence, the present study was undertaken with the objectives: (i) to find out the possible mechanisms leading to low temperature damage during the seed filling and (ii) to investigate the relative response of the microcarpa (Desi) and the macrocarpa (Kabuli) chickpea types along with elucidation of the possible mechanisms governing the differential cold sensitivity at this stage. At the time of initiation of the seed filling (pod size ∼1 cm), a set of plants growing under warm conditions of the glasshouse (temperature: 17/28 ± 2 °C as average night and day temperature) was subjected to cold conditions of the field (2.3/11.7 ± 2 °C as average night and day temperature), while another set was maintained under warm conditions (control). The chilling conditions resulted in the increase in electrolyte leakage, the loss of chlorophyll, the decrease in sucrose content and the reduction in water status in leaves, which occurred to a greater extent in the macrocarpa type than in the microcarpa type. The total plant weight decreased to the same level in both the chickpea types, whereas the rate and duration of the seed filling, seed size, seed weight, pods per plant and harvest index decreased greatly in the macrocarpa type. The stressed seeds of both the chickpea types experienced marked reduction in the accumulation of starch, proteins, fats, crude fibre, protein fractions (albumins, globulins, prolamins and glutelins) with a larger decrease in the macrocarpa type. The accumulation of sucrose and the activity levels of the enzymes like starch synthase, sucrose synthase and invertase decreased significantly in the seeds because of the chilling, indicating impairment in sucrose import. Minerals such as calcium, phosphorous and iron as well as several amino acids (phenylalanine, tyrosine, threonine, tryptophan, valine and histidine) were lowered significantly in the stressed seeds. These components were limited to a higher extent in the macrocarpa type indicating higher cold sensitivity of this type.  相似文献   

3.
Flowering plants are highly sensitive to heat stress during reproductive phase, which covers development from floral initiation to seed maturity. The objectives of this study were to diagnose high temperature effects on pollen production and morphology, production of reactive oxygen species (ROS) in pollen grains and ovules in pea cultivar “CDC Golden.” This study also investigated timing and duration of heat exposure at specific developmental stages of floral buds, open flowers and early set pods on flower and pod abortion, seed development and seed yield in “CDC Golden” and a second cultivar “CDC Sage.” The experiments were conducted in growth chambers with two temperature regimes (24/18°C and 35/18°C day/night temperature for 4–14 days) during reproductive development. Heat stress reduced the number of pollen grains per anther, induced smaller pollen grains and increased ROS production in pollen grains, but it did not affect ROS accumulation in ovules and ovule number per ovary. Heat exposure when young floral buds were visible at the first reproductive node was more detrimental to flower retention, seed set, pod development and seed yield compared to heat exposure started later when flowers at the second reproductive node were fully open.  相似文献   

4.
Elevated temperatures associated with climate change result in crops being exposed to frequent spells of heat stress. Heat stress results in reduced yield in field pea (Pisum sativum L.); it is therefore important to identify cultivars with improved pod and seed retention under heat to mitigate this loss. Objectives were to investigate the effect of heat stress on phenology, yield and pod-based yield components. Sixteen pea cultivars were evaluated at normal and late (hot) seeding dates in the field in Arizona 2012 and in growth chambers with two temperature regimes (24/18°C and 35/18°C day/night temperature for 7 days) during reproductive development. We measured variation in the pattern of pod retention at four-node positions on plants, seed retention by ovule position (stylar, medial and basal) within pods and screened cultivars for pod retention, seed retention and yield. Heat stress reduced seed yield by accelerating the crop lifecycle and reducing pod number and seed size. Heat stress had the most damaging effect on younger reproductive growth (flowers and pods developed later), resulting in ovary abortion from developing flowers. Heat also accelerated seed abortion in all ovule positions within pods. Two high-yielding cultivars under control temperature, “Naparnyk” and “CDC Meadow”, maintained high yield in heat, and “MFR043” had the lowest yield. Cultivars “40-10” and “Naparnyk” retained the most ovules and seeds per pod, and “MFR043” aborted seeds when exposed to heat. In half of the cultivars, ovules at the basal peduncle end of pods were likely to abort while ovules at the medial and stylar end positions developed into seeds. For seven of the field cultivars, ovules at the medial pod position also produced mature seeds. Cultivars “40-10”, “Naparnyk” and “CDC Meadow” had greater pod and ovule retention or maintained high yield under heat stress, and were identified as heat-tolerant cultivars. Our results allow for a better understanding of pod-based yield components in field pea under heat stress and developing heat-tolerant cultivars.  相似文献   

5.
The aim of this study was to reduce the length of the breeding cycle for faba bean by accelerating seed setting. We examined the mode and time of exogenous 6-benzylaminopurine (BAP) (cytokinin) application, and cold treatments and their combinations in two faba bean genotypes. Acropetal node number of pod and seed set and pollen viability were recorded during the experiments. Application of BAP improved pollen germination. The application of 10–5 M BAP 4 days after flowering increased seed set at the lower nodes. Cold treatment (8/4°C day/night for 2 days) after the onset of flowering induced the formation of more pods and faster pod set compared to the non-cold treatment. The time to first seed was significantly reduced, and pollen viability was increased in plants exposed to cold treatment. Increased pollen viability also showed a significant positive correlation with seed setting. The combinations of 10–5 BAP and cold treatment together had similar and independent effects. These results will accelerate plant breeding in faba bean by providing additional tools for reducing generation time.  相似文献   

6.
Chilling stress (<10 °C) is detrimental for chickpea, especially at the reproductive phase and leads to abortion of flowers, pods and impaired seed filling, causing severe reduction in yield. The information on the effects of low temperature during different pod-filling stages on quality and quantity of developing seeds is lacking in chickpea and hence this study. In this study, chickpea plants growing under warm conditions of the glasshouse were subjected to cold conditions of the field at the two stages, (a) early pod-filling and (b) late pod-filling, and subsequently analysed for stress injury in terms of electrolyte leakage (EL), 2,3,5-triphenyl tetrazolium chloride reduction, relative leaf water content and total chlorophyll content in the leaves of control and cold-stressed plants. Cold stress caused elevation of EL but reduced all the other parameters. Sucrose content decreased significantly in the leaves of cold-stressed plants. The differences between the effects of stress at two stages on the total plant dry weight were small and insignificant. The seed growth rate, seed fill duration, seed number, and average seed weight and size decreased greatly in the plants cold-stressed at the late pod-filling stage than those stressed at the early pod-filling stage. Greater reduction was observed in starch, proteins, soluble sugars, fat, crude fibre and storage protein fractions in the seeds of the plants cold-stressed at the late pod-filling stage. This coincided with a larger decrease in sucrose content, the activities of sucrose synthase, invertase and starch synthase observed at this stage. The germination and growth potential were, however, inhibited to a greater extent in seeds of plants stressed at the early pod-filling stage.  相似文献   

7.
Increasing temperatures are adversely affecting various food crops, including legumes, and this issue requires attention. The growth of two cool-season food legumes, chickpea and lentil, is inhibited by high temperatures but their relative sensitivity to heat stress and the underlying reasons have not been investigated. Moreover, the high-temperature thresholds for these two legumes have not been well-characterised. In the present study, three chickpea (ICCVO7110, ICC5912 and ICCV92944) and two lentil (LL699 and LL931) genotypes, having nearly similar phenology with respect to flowering, were grown at 30/20°C (day/night; control) until the onset of flowering and subsequently exposed to varying high temperatures (35/25, 38/28, 40/30 and 42/32°C; day/night) in a controlled environment (growth chamber; 12 hr/12 hr; light intensity 750 µmol m−2 s−1; RH-70%) at 108 days after sowing for both the species. Phenology (podding, maturity) was accelerated in both the species; the days to podding declined more in lentil at 35/25 (2.8 days) and 38/28°C (11.3 days) than in chickpea (1.7 and 7.1 days, respectively). Heat stress decreased flowering–podding and podding–maturity intervals considerably in both the species. At higher temperatures, no podding was observed in lentil, while chickpea showed reduction of 14.9 and 16.1 days at 40/30 and 42/32°C, respectively. Maturity was accelerated on 15.3 and 12.5 days at 38/28°C, 33.6 and 34 days at 40/30°C and 45.6 and 47 days at 42/32°C, in chickpea and lentil, respectively. Consequently, biomass decreased considerably at 38/28°C in both the species to limit the yield-related traits. Lentil was significantly more sensitive to heat stress, with the damage—assessed as reduction in biomass, reproductive function-related traits (pollen viability, germination, pollen tube growth and stigma receptivity), leaf traits such as membrane injury, leaf water status, photochemical efficiency, chlorophyll concentration, carbon fixation and assimilation, and oxidative stress, appearing even at 35/25°C, compared with 38/28°C, in chickpea. The expression of enzymatic antioxidants such as superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and non-enzymatic antioxidants declined remarkably with heat stress, more so in lentil than in chickpea. Carbon fixation (assessed as Rubisco activity) and assimilation (assessed as sucrose concentration, sucrose synthase activity) were also reduced more in lentil than in chickpea, at all the stressful temperatures, resulting in more inhibition of plant biomass (shoot + roots), damage to reproductive function and severe reduction in pods and seeds. At 38/28°C, lentil showed 43% reduction in biomass, while it declined by 17.2% in chickpea at the same time, over the control temperature (30/20°C). At this temperature, lentil showed 53% and 46% reduction in pods and seed yield, compared to 13.4% and 22% decrease in chickpea at the same temperature. At 40/30°C, lentil did not produce any pods, while chickpea was able to produce few pods at this temperature. This study identified that lentil is considerably more sensitive to heat stress than chickpea, as a result of more damage to leaves (photosynthetic ability; oxidative injury) and reproductive components (pollen function, etc.) at 35/25°C and above, at controlled conditions.  相似文献   

8.
With the expected increase of abiotic stress under global climate change, significant research has been devoted to how abiotic stress will affect crop production. To date, there has been little research on the stage sensitivity of short‐term heat stress to crop lodging and yield determination in canola. This research was conducted in a controlled growth facility and aimed to examine root morphology, pod fertility, seed yield and crop lodging of two contrasting canola genotypes subjected to a short‐term heat stress (27.0/24.3°C, light/dark), imposed respectively at three growth stages, rosette vegetative stage (RVHT), early flowering stage (EFHT) and late flowering stage (LFHT), in comparison with non‐stressed control (CK) (23/17°C). The results demonstrate that heat stress imposed at RVHT and LFHT was less detrimental to seed yield and lodging resistance. However, EFHT showed significant adverse effects on both, which was further confirmed by redundancy analysis (RDA) and structural equation modelling (SEM). Compared with the CK, EFHT resulted in a yield loss of 43%, which was mainly due to poor pod fertility, less number of filled pods (?28%), decreased pollen viability (?38%) and a lower success ratio of filled pods (?29%). The taproot was found to be relatively tolerant to heat stress, but lateral roots were sensitive to heat stress at EFHT and LFHT. Root capacitance could be used as a non‐destructive method for evaluating lateral root morphology. Compared with the CK, EFHT displayed a high risk of stem lodging, as indicated by a 27% lower safety factor. This was mainly attributed to the reduced stem bending strength that was caused by the deterioration of stem mechanical properties under EFHT, as illustrated by SEM. Root lodging resistance was not altered by any stages of short‐term heat stress, as the taproot remained stable.  相似文献   

9.
Quinoa (Chenopodium quinoa Willd.) has gained considerable attention worldwide during the past decade due to its nutritional and health benefits. However, its susceptibility to high temperatures has been reported as a serious obstacle to its global production. The objective of this study was to evaluate quinoa growth and pollen morphology in response to high temperatures. Pollen morphology and viability, plant growth and seed set, and several physiological parameters were measured at anthesis in two genotypes of quinoa subjected to day/night temperatures of 22/16°C as a control treatment and 40/24°C as the heat stress treatment. Our results showed that heat stress reduced the pollen viability between 30% and 70%. Although no visible morphological differences were observed on the surface of the pollen between the heat‐stressed and non‐heat‐stressed treatments, the pollen wall (intine and extine) thickness increased due to heat stress. High temperature did not affect seed yield, seed size and leaf greenness. On the other hand, high temperature improved the rate of photosynthesis. We found that quinoa has a high plasticity in response to high temperature, though pollen viability and pollen wall structure were affected by high temperatures in anthesis stage. This study is also the first report of quinoa pollen being trinucleate.  相似文献   

10.
High temperature (HT) stress is one of the major environmental factors influencing yield of soybean (Glycine max L. Merr.) in the semi‐arid regions. Experiments were conducted in controlled environments to study the effects of HT stress on anatomical changes of pollen and their relationship to pollen function in soybean genotype K 03‐2897. Objectives of this study were to (a) quantify the effect of HT stress during flowering on pollen function and pod set and (b) observe the anatomical changes in pollen grains of soybean plants grown under HT stress. Plants were exposed to HT (38/28 °C) or optimum temperature (OT, 28/18 °C) for 14 days at flowering stage. HT stress significantly decreased in vitro pollen germination by 22.7 % compared to OT. Pollen from HT stress was deformed; it had a thicker exine wall and a disintegrated tapetum layer. HT stress decreased pod set percentage (35.2 %) compared to OT. This study showed that decreases in pollen in vitro germination by HT stress were caused by anatomical changes in pollen, leading to decreased pod set percentage under HT stress.  相似文献   

11.
Radiant frost is a major abiotic stress, particularly at the reproductive stage, in field pea (Pisum sativum L.) grown in Mediterranean environments. Here, response to frost was studied for flowering stage (FS) organs (buds, flowers and set pods) and pod development stage (PDS) organs (flat, swollen and mature pods) under controlled conditions, with plants exposed to a minimum temperature of –4.8°C for 4 h. This frost treatment adversely affected seed yield through (i) abortion of buds, flowers and set pods (ii) death of pods and (iii) reduction in seed size. FS organs were more sensitive to frost than PDS organs. Genetic variation was observed among 83 accessions collected from 34 countries worldwide for survival of FS buds, flowers and set pods. In 60 of 83 accessions, no buds, flowers or set pods survived the frost treatment. Five accessions: ATC 104 (origin: United Kingdom), ATC 377 (Estonia), ATC 968 (Italy), ATC 3992 (Kazakhstan) and ATC 4204 (China), showed the highest frost tolerance of FS organs and lowest numbers of abnormal seeds. The frost tolerant accessions identified in this study may be useful as parents for breeding field pea varieties that will be less likely to suffer yield loss due to radiant frost during the reproductive stage.  相似文献   

12.
Chickpea (Cicer arietinum L.) is more sensitive to water stress during its reproductive growth and consequently experiences substantial yield loss. Wild species being relatively tolerant to abiotic stresses offer a potential gene source for incorporation of drought tolerance in cultivated species. In the present study, the differential stress sensitivity of wild (Cicer reticulatum Ladiz.) and cultivated species (C. arietinum) was evaluated by subjecting the plants of both the species to water stress for 14 days during the reproductive phase and examined for stress injury, endogenous status of polyamines (PA) and abscisic acid (ABA). Comparatively, the cultivated species experienced higher stress injury (assessed as electrolyte leakage, 2,3,5‐triphenyl tetrazolium chloride reduction ability, chlorophyll loss) as well as decreased leaf water potential (Ψw; ?2.48 MPa) than the wild species (?1.98 MPa). The stressed plants of cultivated species lost more number of flowers (62 %) and pods (65 %) when compared with the unstressed ones while those of wild species showed 30 % and 44 % loss, respectively. The number of infertile pods was significantly more in stressed plants of cultivated species than in those of wild species. The endogenous status of PA revealed that putrescine (PUT), spermidine (SPD) and spermine (SPM) levels accumulated to a higher extent in the cultivated species relative to the wild species until the eighth day of stress, and thereafter, the wild species had significantly higher levels of PA. In contrast, ABA levels increased to a higher extent in the wild species until the eighth day of stress and declined subsequently to a greater degree than the cultivated species. The injury to reproductive growth appeared to accentuate with reduction in leaf Ψw that was coupled with depletion of PA in both the species, especially in the cultivated one. Exogenous application of 10 mm PUT partially alleviated the damage to reproductive growth by increasing the leaf water status and chlorophyll content while decreasing the ABA content, which resulted in improvement of retention of flowers and pods, particularly in the cultivated species.  相似文献   

13.
The effect of terminal drought on the dry matter production, seed yield and its components including pod production and pod abortion was investigated in chickpea (Cicer arietinum L.). Two desi (with small, angular and dark brown seeds) and two kabuli (with large, rounded and light coloured seeds) chickpea cultivars differing in seed size were grown in a controlled-temperature greenhouse, and water stress was applied by withholding irrigation 1 (early podding water stress, ES), 2 (mid-podding water stress, MS) or 3 (late-podding water stress, LS) weeks after the commencement of pod set. In addition, the pod and seed growth of well-watered plants was followed for the first 19 days after pod set. Growth of the pod wall followed a sigmoid pattern and was faster in the desi than in the kabuli cultivars, while no difference was found in early seed growth among genotypes. Time of pod set affected the yield components in all treatments with the late-initiated pods being smaller, having fewer seeds per pod and smaller seeds, but no significant difference between pods initiated on the same day on the primary and secondary branches was observed. Early stress affected biomass and seed yield more severely than the later stresses, and in all stress treatments secondary branches were more affected than primary ones. Pod production was more affected by early stress than by late stress, regardless of cultivar. Pod abortion was more severe in the kabuli than in the desi cultivars, but final seed size per se did not appear to be a determinant of pod abortion under terminal drought conditions. The data indicated that the production and viability of pods was affected as soon as water deficits began to develop. The results show that pod abortion is one of the key traits impacting on seed yield in chickpeas exposed to terminal drought and that irrespective of differences in phenology, kabuli types have greater pod abortion than desi types when water deficits develop shortly after first pod set.  相似文献   

14.
Drought stress effects on leaf gas exchange, cell membrane stability, seed yield and yield attributes of synthesized Brassica napus L. cv. Bangla kale and Bangla cabbage were compared. Drought stress treatments were imposed at early vegetative, late vegetative and flowering stages by withholding watering. Bangla cabbage produced greater pods/plant, larger seed size, greater total dry matter/plant, seeds/pot, and 17% greater yield than Bangla kale. The seed yield in plants stressed at early vegetative, late vegetative and flowering stages were 59, 74, 88% lower respectively, than watered plants. Drought stress reduced leaf photosynthesis by 67 to 97%. Bangla cabbage had 68% greater photosynthesis and 56% greater stomatal conductance than Bangla kale under stress at flowering stage. Leaf temperature was 1 to 2°C higher in stressed plants than watered plants. The cell membrane stability (CMS) increased up to 83% at flowering stage under stress compared to 21% under watered conditions. Although Bangla cabbage had high seed yield, yield attributes and photosynthesis under stressed conditions at flowering stage, its CMS values were lower than those of Bangla kale.  相似文献   

15.
The possibility of selecting spring rape for cold tolerance at the mature pollen grain stage was studied by investigating the effects of pollen storage at low temperatures on the quality of pollen grains and on the cold tolerance of the plants generated from them. Pollen treatments of F1 hybrids affected fertilization ability much more than viability and even after 10 days storage at 3 or 10°C the pollen germination percentage was reasonably high. Pollen storage for 7 or 10 days at 3 or 10°C significantly increased the cold tolerance of F2 seed germination, with 3°C being more effective. Pollen storage for a shorter time had no effect upon the number of resulting genotypes tolerant to low temperature. This approach may be successfully applied in plant breeding to enrich segregating plant populations with cold-tolerant genotypes.  相似文献   

16.
Two experiments were conducted under field conditions to evaluate reproductive abscission, seed yield and yield components of three cowpea [Vigna unguiculata (L.) Walp.] genotypes. In the first experiment, level of abscission and yield of two cultivars, California Blackeye Pea No. 5 (CA-5) and Speckle Purple Hull (SPH), and one experimental line (AZ-54) were studied. In the second experiment, effect of drought stress on abscission at three nodal positions, seed yield, and yield components of CA-5 were studied. Abscission in both experiments was determined by counting scars left by dropprd reproductive structures including floral buds, open flowers, and immature pods. Abscission of CA-5 and AZ-54 in the first experiment ranged between 68 and 76 % while that of SPH ranged between 86 and 89 %. CA-5 and AZ-54 retained two to three pods per peduncle, and SPH retained only one mature pod per peduncle. Average seed yields of SPH and AZ-54, respectively, were 45 and 50 % of CA-5. Drought stress in the second experiment did not affect production of floral buds Peduncle?1 (average of 10) but significantly increased percent reproductive abscission and decreased pod retention of CA-5. Abscission in the bottom two-third nodes increased from 82 % in well-irrigated plants to 93 % in non-irrigated plants. This increase in abscission corresponded to nearly 60 % reduction in pod retention. The number of pods per peduncle in the bottom two-third nodes decreased from 1.9 in well-irrigated plants to only. 77 in non-irrigated plants. The increase in abscission and decrease in pod retention with increasing intensity of drought was greatest in the bottom one-third nodes. Drought stress did not affect abscission and pod retention in the top one-third nodes. Stress also decreased peduncles plant?1, seeds pod?1, and dry matter and seed yield plant?1 but did not affect seed weight and harvest index. The decrease in seed yield was largely due to reductions in pods plant?1 and seeds pod?1. The reduction in the number of pods and, therefore, seed yield due to stress was because of reductions in the number of peduncles plant?1 and increases in reproductive abscission. It is concluded external conditions that increase abscission beyond that of normal occurrence affect seed yield adversely.  相似文献   

17.
The grain legume grass pea (Lathyrus sativus L.) is adapted to drought‐prone environments, but the extent and mechanisms of its tolerance are not well understood. In a pot experiment, water deficit was imposed on plants by withholding water from first flowering until predawn leaf water potential (LWPpd) was ?3.12 MPa. Water deficit reduced dry matter, seed yield, harvest index and water use efficiency by 60 %, 87 %, 67 % and 75 %, respectively, when compared with the controls. Flower production stopped when LWPpd fell to ?1.8 MPa. At LWPpd?1.5 MPa, only 25 % of flowers resulted in filled pods (compared with 95 % filled pods in the control) with the rest aborted as flowers (48 %) or pods (27 %). Filled pods had more aborted ovules than controls, resulting in 29 % less seeds per pod. Water deficit reduced pollen viability, germination and the number of pollen tubes reaching the ovary by 13 %, 25 % and 31 %, respectively. Emergence from seeds produced from water‐deficient plants was 21 % less than controls, but seedling shoot dry mass was 18 % higher, in accordance with the 19 % higher seed mass. The sensitivity of flowering to drought limited pod numbers but enabled plants to retain existing pods and develop near‐normal seeds with low β‐N‐oxalyl‐l ‐α‐β‐diaminopropionic acid toxin concentrations. This trait is useful for farming systems reliant on harvested seed for the next crop and in cases where seed size influences the value of the product.  相似文献   

18.
Field pea (Pisum sativum) is an important pulse crop globally for human consumption and livestock feed. A panel of 92 diverse pea cultivars was evaluated across nine environments and genotyped using 1536 single nucleotide polymorphisms (SNPs) arranged in a GoldenGate array. Population structure analysis revealed three subpopulations roughly consistent with the cultivar origin. Phenotyping included days to flowering (DTF), duration of flowering (DOF), number of reproductive nodes, number of pods on the main stem, percentage of pods set, percentage of pods retained with seed and pollen germination reduction due to heat stress. Association analyses identified a total of 60 SNPs significantly associated (?log10 p ≥ 4.3) with these seven reproductive development-related traits. Among these 60 marker-trait associations, 33 SNPs were associated with the onset of flowering, 8 SNPs with pod development and 19 SNPs with the number of reproductive nodes. No SNP marker was significantly associated with in vitro pollen germination reduction caused by high temperature stress. We found that 12 SNPs associated with DTF and 2 SNPs associated with DOF overlapped with the SNP markers associated with the number of reproductive nodes. Genomic regions associated with variation for reproductive development-related traits identified in this study provide grounds for future genetic improvement in pea.  相似文献   

19.
The reproductive stage of flowering plants is sensitive to high-temperature stresses. High temperature is a major factor influencing pollen grain viability in upland cotton (Gossypium hirsutum). The objective of this study was to identify the relationship between cotton pollen germination percentage and temperature by assaying the pollen germination of four upland cotton cultivars in vitro at different temperatures during the blooming period. The results showed that in vitro pollen germination percentage was related to the culture temperature of pollen germination and the temperature of the square development process. High temperature affected pollen development and germination, and high-temperature tolerance differed among the cotton cultivars. The pollen germination percentage decreased rapidly with changes in the culture temperature from 30 to 39 °C. A culture temperature of 35 °C might be a critical temperature for the pollen viability transition and could be used to screen cotton cultivars that have pollen grains with high-temperature resistance. Before the high-temperature stage, cultivars with rates of decrease in the percentage of pollen germination of less than 41 % at 35 °C relative to the rates at 30 °C might be considered as high-temperature tolerance cultivars, and cultivars with rates of decrease in the percentage of pollen germination greater than 41 % might be considered as susceptible cultivars. The high-temperature stress for pollen grain germination in vitro was greater than 30 °C, and the high-temperature stress for square development might be greater than 33 °C. Boll retention was significant; it was positively correlated with the pollen germination percentage and negatively correlated with temperature during the high-temperature stage. This study provided a method for rapidly screening cultivars (lines) with high-temperature tolerance pollen in upland cotton breeding.  相似文献   

20.
We investigated heat tolerance at the reproductive stage in six spring‐type B. rapa accessions and one B. juncea accession as a control. Plants were subjected to two temperature treatments for seven days in controlled environmental rooms, beginning one day before the first open flower on the main stem inflorescence. The high‐temperature treatment ranged from 25 °C to 35 °C during 16 h light and 25 °C during 8 h dark. The control temperature treatment was set at 23 °C during 16 h light and 15 °C during 8 h dark. Soil moisture was maintained at close to field capacity to avoid drought stress. Main stem buds that emerged during the treatment period were tagged, and pod and seed production was recorded at each reproductive node. Leaf temperature depression and leaf conductance increased in the high‐temperature treatment which indicated that plants were not drought stressed. A leafy vegetable type of B. rapa from Indonesia was the most tolerant to high temperature, as defined by its ability to set seed equally well in the control and high‐temperature treatments, followed by an oilseed type from Pakistan. Pollen viability remained above 87 % in all accessions and treatments. We conclude that bud number and length, and pod number produced under high temperatures, might provide a useful preliminary screen for high‐temperature tolerance and that B. rapa may be a valuable source of heat tolerance in canola (B. napus).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号