首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The range of neutralizing activity to bovine viral diarrhea (BVD) virus and viral protein specificity of antibodies induced by 3 inactivated vaccines were evaluated by use of samples of sera obtained from 13 cattle 14 days after vaccination. Viral neutralizing antibodies wee detected in all cattle to each of 10 noncytopathic and 10 cytopathic isolates of BVD virus. A viral-induced polypeptide (53,000 to 56,000 daltons) was detected by radioimmunoprecipitation with serum from all vaccinates. Other viral-induced polypeptides of 115,000, 80,000, 48,000, and 25,000 daltons were precipitated with sera from some vaccinates. Precipitation of those polypeptides was related to the vaccine used. When multiple viral polypeptides were precipitated, the 53,000- to 56,000-dalton polypeptide appeared immunodominant.  相似文献   

2.
Samples of sera were obtained from 5,725 cows in a semiclosed herd. In each of the preceding 7 years, the herd was vaccinated against bovine viral diarrhea (BVD) with killed virus. Neutralizing antibody tests were done on all samples of sera, using cytopathic virus, BVD-TGAC virus, that was antigenically distinct from the vaccine virus. Most samples of sera had high titers of neutralizing antibodies against BVD-TGAC virus. In 48 samples of sera, neutralizing antibodies were not detected against BVD-TGAC virus, but were detected against the vaccine virus. Neutralizing antibodies against selected noncytopathic BVD viruses were not detected in several samples of serum that had neutralizing antibodies against the vaccine virus and BVD-TGAC virus. Noncytopathic BVD virus was isolated from sera obtained from 3 cows less than 4 years old. Two cows were available for further testing, and persistent infection with BVD virus was confirmed in both cows. The BVD viruses isolated from those cows were not neutralized by several samples of sera. Immunoprecipitation of polypeptides induced by the vaccine virus was done with selected samples of serum. Two patterns of immuno-precipitated viral-induced polypeptides were identified. One pattern was consistent with exposure of cows with live virus. The other pattern was consistent with exposure of cows with only the killed virus vaccine.  相似文献   

3.
Newborn calves were inoculated IV with highly plaque-purified bluetongue virus (BTV), serotype 10. The electrophoretic migration patterns of RNA segments and proteins of viruses isolated from calves at intervals after inoculation were compared. In addition, sera collected from calves at intervals after inoculation were compared for their abilities to neutralize several virus isolates from the same calf. Viremia persisted in calves for up to 56 days. Differences were not detected in the electrophoretic migration pattern of RNA segments or proteins of any of the BTV isolates. All calves produced high titers of neutralizing antibody to the original BTV inoculum by 28 days after inoculation, and significant (greater than or equal to 4-fold) differences were not detected in the neutralizing titers of sera to viruses collected at intervals after inoculation. The plaque-purified strain of BTV appeared to be stable genetically in infected calves, and failure to demonstrate antigenic variation among isolates indicated that antigenic shift was not the mechanism that allowed viremia to persist in BTV-infected calves.  相似文献   

4.
Thirty-five vaccinates and 29 control beef calves from five farms were studied. Vaccinates in group 1 received a modified live virus vaccine against infectious bovine rhinotracheitis (IBR) and bovine virus diarrhea (BVD) 30 days after shipment; vaccinates in groups 2, 3 and 4 received live virus vaccines agains IBR and bovine parainfluenza 3 (PI3) seven to 17 days before shipment. Half of group 5 were given bovine origin antiserum containing antibodies against IBR, BVD and PI3. Three weeks later, the animals that had received serum were given a live modified vaccine containing IBR, BVD and PI3. In group 1, WBC counts were lower in the vaccinates than in the controls for two weeks after vaccination. WBC counts in groups 3 and 4 were higher in vaccinates than in controls after addition to the feedlot. Seroconversions to BVD virus occured in all groups. Clinical disease apparently due to BVD affected one vaccinated calf in group 2 and eight calves in group 5. Combined weight gains were significantly higher in three groups of calves vaccinated before shipment compared to unvaccinated control animals after addition to the feedlot. Vaccination with IBR and PI3 live virus vaccines should be given at least 17 days before shipment to feedlots containing infected cattle. Antiserum containing antibodies against the three viruses showed no apparent advantage in preventing clinical respiratory disease over control calves not receiving the serum.  相似文献   

5.
A non-cytopathic strain of BVDV-2 was isolated from a batch of live infectious bovine rhinotracheitis (IBR) vaccine, and inoculated intranasally into four 3-month-old calves. Severe signs of disease developed by days 4 and 6 in three of the calves, free of BVDV and antibodies to BVDV, that had been exposed to the virus. These calves survived the acute phase of the infection and progressively recovered. BVDV was consistently isolated, or the respective viral RNA was detected, in the buffy coats from blood samples collected starting from days 2 or 4 up to days 11 or 14 after the experimental infection. Viral RNA was also detected in sera from these infected calves until the presence in the serum of virus neutralizing antibodies was demonstrated. By contrast, the only calf having pre-existing neutralizing antibodies to BVDV at the start of the study was protected from the disease. No virus was detected at any time after experimental inoculation of this calf. Genomic characterization of the BVDV-2 isolated in cell cultures, or detected in sera from the experimentally infected animals, revealed 100% homology in the nucleotide sequence with the BVDV-2 detected as a contaminant of the live IBR virus vaccine. These findings provided evidence of the infective nature of the contaminant BVDV-2 and of its potential to generate disease outbreaks when inoculated into susceptible animals.  相似文献   

6.
Neutralizing and nonneutralizing antibodies to bovine viral diarrhea (BVD) virus were detected in 3 cows persistently infected with noncytopathic BVD virus after vaccination with modified-live cytopathic BVD virus. Neutralizing antibodies detected in serum samples from each persistently infected cow at 3 weeks after vaccination were highly specific for certain isolates of cytopathic BVD virus and reacted only with a viral protein with a molecular weight of 53,000. Neutralizing antibodies to 1 of 3 isolates of noncytopathic BVD virus were detected in a serum sample obtained at 12 weeks after vaccination from 1 of 3 persistently infected cows. Nonneutralizing antibodies were detected in all cows at 7 to 12 weeks after vaccination. The nonneutralizing antibodies were less specific for isolates of BVD virus and reacted with viral proteins with molecular weights of 115,000, 80,000, 53,000, and 47,000.  相似文献   

7.
Isolates of non-cytopathogenic bovine viral diarrhoea (BVD) virus from 18 persistently infected calves from one herd were compared by using monoclonal antibodies directed against the major viral glycoprotein gp53. All the isolates displayed an almost identical reaction pattern. Based on this antigenic analysis three cytopathogenic BVD and three non-cytopathogenic BVD viruses closely related to the non-cytopathogenic BVD herd isolate were selected. Six of the persistently infected calves were inoculated with a pool of the three closely related cytopathogenic BVD viruses and two with a pool of the three non-cytopathogenic BVD viruses. In addition three animals were infected with one closely related cytopathogenic BVD strain (Indiana) and two animals with the antigenetically different cytopathogenic BVD viral strain A1138/69. Regardless of the inoculation route all the animals superinfected with closely related cytopathogenic BVD viruses developed the characteristic lesions of mucosal disease within 14 days of infection. Animals which were inoculated with non-cytopathogenic BVD viruses which closely resembled the herd isolate, or with cytopathogenic BVD viruses which did not resemble the herd isolate did not develop any signs of disease. However, the latter group produced antibodies to the superinfecting virus.  相似文献   

8.
Six calves inoculated intranasally with a vaccinal strain of infectious bovine rhinotracheitis (IBR) virus and 6 control calves were given a placebo. All calves were subsequently challenge exposed (by aerosol) with rhinovirus--3 of the calves from each group at 2 days after they were inoculated with IBR virus or with placebo and the remaining calves at 6 days. Nasal excretion of viruses, interferon (IFN) concentrations in nasal secretions (NS), and neutralizing antibody in sera and NS were determined. All calves given the vaccinal IBR virus subsequently had IFN in their NS. Interferon was detected as early as 1 day, reached maximal titers at 2 to 4 days, and persisted in individual calves for 5 to 10 days after inoculation. Rhinovirus shedding was not detected from IBR virus-inoculated calves whose NS contained both rhinovirus antibody and IFN at the time of challenge exposure; such calves were protected at either 2 or 6 days after IBR virus inoculation. The outcome of rhinovirus challenge exposure of calves whose NS contained IFN, but not rhinovirus antibody, varied with the day of challenge exposure. Rhinovirus excretion was detected from 2 of these calves challenge exposed 2 days after IBR virus inoculation, but was not detected from a calf challenge exposed 6 days after inoculation. However, while IFN was present in NS from the former 2 calves, rhinovirus shedding was markedly reduced as compared with that from control calves without IFN or NS antibody at the time of challenge exposure. Consistent relationship was not observed between the rhinovirus neutralizing antibody titer of calves' sera and NS. The antibody titer of NS more closely correlated with protective immunity to rhinovirus infection than did the serum antibody titer.  相似文献   

9.
The immune response to modified live-virus bovine viral diarrhea (BVD) vaccine and infectious bovine rhinotracheitis (IBR) vaccine was examined in calves that had received passive maternal antibodies to these viruses. Blood serum samples from vaccinated and control (nonvaccinated) calves were examined for more than 1 year to determine the rate of decline of passive anti-BVD and anti-IBR antibodies and the effect that vaccination had on these antibody titers. The control calves lost their antibodies to BVD and IBR viruses at the rate of one half their remaining antibody titer every 21 days. Calves serologically responded to BVD vaccine at a time when maternal antibody titers remained between 1:96 and 1:20. However, animals did not seroconvert to the IBR vaccine until maternal antibodies had decreased and become undetectable. Evidence is presented to show that although passive immunity will inhibit IBR vaccination, priming for a secondary response will occur so that on subsequent vaccination, at a time when maternal antibodies have disappeared, the animals will respond anamnestically to IBR vaccination.  相似文献   

10.
The onset of protection offered by intranasal vaccination with attenuated bovine herpesvirus-1 (BHV-1) was studied in 18 calves given a virulent BHV-1 aerosol challenge inoculum and an aerosol challenge exposure to Pasteurella haemolytica. Calves challenge exposed with virus 3, 7, 11, 15, or 19 days after vaccination and challenge exposed 4 days later with Pasteurella haemolytica did not develop viral-bacterial pneumonia, whereas 2 of 3 control calves died of fibrinous bronchopneumonia 40 and 60 hours after the bacterial aerosol and the 3rd control calf had similar lesions. All vaccinated and control calves had detectable amounts of interferon at the time of viral challenge exposure. Protection was observed before detection of neutralizing antibodies to BHV-1 in nasal secretions or in serum. Protection was therefore present from day 3 through day 19 after vaccination, but the mechanism could not be explained completely by neutralizing antibody or interferon.  相似文献   

11.
Six calves were inoculated with 1 of 2 North American serotypes of epizootic hemorrhagic disease virus (EHDV) and then inoculated with the second serotype 16 weeks later. One calf did not develop an immune response to EHDV after primary inoculation and was removed from the study. Viremia after primary inoculation was transient. Although each infected calf developed a high serum neutralizing antibody titer to EHDV, at no time after inoculation with one or both viruses was antibody detected that neutralized any US serotypes of bluetongue virus. After exposure to both serotypes of EHDV, 4 of 5 calves developed antibodies that cross-reacted with group-specific bluetongue virus antigens.  相似文献   

12.
Isolation of viruses from calves with acute respiratory tract disease were attempted on bovine embryonic lung cell cultures. An isolate obtained from one calf with oral lesions and respiratory disease, designated 44-M-E482, was characterized as a paravaccinia virus on the basis of biological and physical properties. The calf from which the paravaccinia virus 44-M-E482 was isolated did not possess serum neutralizing antibody in its convalescent sera; neither did experimentally inoculated calves possess serum neutralizing antibody to the isolate. However, a low titer of serum neutralizing antibody was produced in one calf after several intravenous injections of the virus. Inoculation of calves with 44-M-E482 into the oral mucosa, skin, nasal cavity and pharynx did not cause any noticeable illness or lesions. The relation of 44-M-E482 to the viruses which cause bovine papular stomatitis and pseudocowpox is discussed.  相似文献   

13.
A total of 1745 healthy cattle from 295 farms in Saskatchewan and Alberta was tested by ELISA for antibodies to four viruses. Antibodies to infectious bovine rhinotracheitis (IBR) virus were found in 37.8% of sera (59.5% of properties), to parainfluenza 3 (PI3) virus in 93.9% of sera (99.7% of properties), to bovine respiratory syncytial (BRS) virus in 78.5% of sera (86.6% of properties), and to bovine viral diarrhea (BVD) virus in 40.6% of sera (66.7% of properties)

The prevalence of PI3 viral antibodies among Saskatchewan cattle was not affected by district of origin, breed, sex, age, or vaccination practices, though BRS viral antibodies appeared less frequent in young, male, and unvaccinated animals. Antibodies to IBR and BVD viruses were less prevalent in the Prince Albert/Tisdale districts and in young, male, and unvaccinated animals, but were more common in Holstein cattle. Antibodies to IBR virus appeared less frequent in Herefords. Antibodies were more prevalent in cattle which had been vaccinated against IBR, BRS, and BVD virus infections.

The relatively small number of cattle sampled from Alberta had a similar prevalence of antibodies to PI3 and BRS viruses to that seen in cattle in Saskatchewan, though IBR and BVD prevalence rates were lower.

  相似文献   

14.
During late may 2004, Some dairy cows at Al-Kharj area of central Saudi Arabia, gave birth to severely malformed calves which died, few hours to few days following birth. Samples were collected from the affected calves and their dams of virological and serological investigations. Bovine viral diarrhoea virus was detected by capture enzyme linked immuno-sorbent assay (ELISA) in the brains of affected calves. Serum antibodies were detected in the dams. The present study indicated that in spite of vaccination against BVD in the country, still severe affections of the disease are encountered. Further insight epidemiological studies to elucidate the BVD situation in Saudi Arabia is urgently needed.  相似文献   

15.
Summary

A calf persistently infected and immunotolerant to Bovine Virus Diarrhoea virus (BVD virus) was, on purpose, introduced to a herd of heifer calves over 4 months of age that had been reared as recipients for embryo transplantation.

All calves were brought in contact with the persistently infected animal. In total, 240 calves were involved in this experiment, 22 of which were serologically negative when introduced. These serologically negative animals developed antibodies against BVD virus within 5 months after introduction. At short distances from the persistently infected BVD virus shedder, negative calves seroconverted within 2 months, but at greater distances the moment of seroconversion was unpredictable.

The calves that had undergone a natural infection with BVD virus received embryos after transportation to an allied farm. In total, 14 calves were born after embryo transplantation, all of which were free of BVD virus, in spite of the presence of BVD‐virus on the latter farm.  相似文献   

16.
This study was initiated to determine the etiologic and pathogenic significance of an American strain of bovine viral diarrhea (BVD) virus (strain NADL-MD) in enteritis of neonatal calves (calf scours).

Three colostrum-fed calves from dams exposed intravenously to BVD virus at 6, 16 and 25 days prepartum, respectively, had moderate diarrhea persisting until the eighth day of life. The BVD virus was isolated from all 3 calves and persisted up to 93 days in 1 calf, indicating either that BVD was transmitted in utero or via the dam's milk.

Three specific pathogen free (SPF) calves permitted dams' colostrum for the first 4 feedings and then given milk replacer were exposed orally on the day of birth to BVD virus. One calf died of neonatal enteritis 28 hours post-exposure and at necropsy the BVD virus was isolated from several of its organs. The remaining 2 calves had a mild diarrhea persisting to the eighth day of age.

Two calves permitted dams' colostrum ad lib. for 72 hours, and then weaned, were exposed orally to BVD virus. Both calves had a mild persistent diarrhea and BVD virus was isolated from their blood for 56 days post-exposure.

Of 13 SPF, colostrum-deprived calves exposed orally or intranasally at birth to the BVD virus, 4 had severe diarrhea and died of neonatal enteritis from 38 hours to 13 days postexposure. Isolations of BVD virus were made from several of the organs of the calves at necropsy. All of the 9 surviving calves had a moderate to severe diarrhea frequently persisting for 7 to 10 days, and BVD virus was isolated from the survivors up to 103 days postexposure.

Several strains of Escherichia coli were isolated from calves after the second day of life, but were neither pathogenic for mice, nor serologically related to strains of E. coli usually associated with outbreaks of calf scours. Four colostrum-deprived SPF calves were exposed orally at birth to a strain of E. coli isolated from the intestine of the calf with the most acute symptoms and fatal neonatal enteritis. None of the four calves receiving the E. coli had diarrhea. One calf, however, had respiratory distress and died on day 5.

Two SPF colostrum-deprived control calves had neither diarrhea nor respiratory distress.

The above findings support the conclusion that BVD virus should not be overlooked as a primary cause of the neonatal calf enteritis complex.

  相似文献   

17.
Seven of nine colostrum‐deprived calves, free from infection with bovine virus diarrhoea virus (BVDV), were vaccinated with Rispoval? RS‐BVD on two occasions, 21 days apart, while the other two were kept as BVDV infection controls. The virus neutralizing (VN) serum antibodies induced by vaccination were tested for their ability to neutralize 18 European BVDV isolates, including laboratory reference strains and recent field isolates, both cytopathic and non‐cytopathic biotypes as well as genotypes I and II. The strains were isolated in Belgium, France, Germany and the United Kingdom. While there were large variations in the vaccine‐induced VN titres of the individual calves against all the strains, e.g. the titres against Osloss NCP, the European reference strain ranged from 1.7 to 6.7 (1 : log2), serum from each animal was capable of neutralizing between nine and all 18 of the strains tested. Nevertheless, from the results of this study, it can be concluded that in colostrum‐deprived BVDV seronegative calves, Rispoval? RS‐BVD can stimulate the production of VN antibodies capable of neutralizing a wide range of antigenically diverse European isolates of BVDV, including genotypes I and II.  相似文献   

18.
Four newborn calves were experimentally infected with two distinct serotypes of bovine rotavirus (BRV-1 and BRV-2). Initially, three colostrum-deprived calves were inoculated orally with either BRV-1 or BRV-2; all developed severe diarrhea and produced serotype-specific neutralizing antibodies. Fecal virus was first demonstrated by immunofluorescence the day after inoculation. The virus titers reached a maximum of 10(5.2)-10(6.6) fluorescent focus forming units g-1 of feces 2-5 days after inoculation and then decreased. Fecal virus was detected in low titers beyond 28 days after inoculation despite the development of serum neutralizing antibodies. One calf, which had acquired specific active immunity against BRV-1 following oral infection, was further infected orally with BRV-2 4 weeks later. The calf again manifested diarrhea, excreted BRV-2 and showed an increase in serum neutralizing antibody against BRV-2. These results indicated that calves infected with either BRV-1 or BRV-2 do not have cross-protection to infection with heterologous BRV, and that recurrence of the disease can occur. The possible mechanisms of the persistence of BRV in calves and its role in the epidemiology of this infection are discussed.  相似文献   

19.
In calves inoculated with bovine viral diarrhea (BVD) viruses and soluble antigen, the complement-fixing (CF) antibodies appeared before serum-neutralizing (SN) antibodies and remained at high levels throughout the test period. A rapid rise in SN antibodies occurred after challenge with homologous virus with no apparent effect on CF antibody levels.

The CF antibody responses in calves infected with cytopathogenic NADL-MD and noncytopathogenic CG-1220 viruses were similar whereas SN antibody responses indicated strain specificity by reciprocal cross-neutralization tests.

The CF antibody levels in 5 hog cholera (HC) antisera were assayed using the soluble antigen of NADL-MD BVD virus. No demonstrable SN antibodies were present in four HC antisera tested against NADL-MD virus, but a significant titer was present in the commercially prepared antiserum.

Virus was reisolated from animals infected with BVD viruses by buffy coat culture technique during 3 weeks postinoculation, even when significant levels of CF and SN antibodies were present.

  相似文献   

20.
A calf persistently infected and immunotolerant to Bovine Virus Diarrhoea virus (BVD virus) was, on purpose, introduced to a herd of heifer calves over 4 months of age that had been reared as recipients for embryo transplantation. All calves were brought in contact with the persistently infected animal. In total, 240 calves were involved in this experiment, 22 of which were serologically negative when introduced. These serologically negative animals developed antibodies against BVD virus within 5 months after introduction. At short distances from the persistently infected BVD virus shedder, negative calves seroconverted within 2 months, but at greater distances the moment of seroconversion was unpredictable. The calves that had undergone a natural infection with BVD virus received embryos after transportation to an allied farm. In total, 14 calves were born after embryo transplantation, all of which were free of BVD virus, in spite of the presence of BVD-virus on the latter farm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号