首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
本研究以羊草(Leymus chinensis)草甸草原(基于呼伦贝尔草原生态系统国家野外科学观测研究站)为研究对象,通过测算2013年和2014年植物群落地上和地下生物量在不同放牧强度(不放牧、轻度放牧、中度放牧、重度放牧)下的变化,探究不同放牧强度对植物群落地上、地下生物量分布的影响。研究结果显示,群落地上生物量随放牧强度增加而减少,从不放牧的238.14 g·m-2减少至重度放牧的79.60 g·m-2;杂类草地上生物量所占比例增加,由不放牧的35.93%增加至重度放牧的97.66%。群落地下生物量随放牧强度增加呈先降低后增加的趋势,中度放牧时最小(2013年733.25 g·m-2、2014年682.99 g·m-2);轻度放牧下,群落地下生物量在0~10 cm土层分布比例最大,2013年为61.86%,2014年为64.43%。综上可得出,放牧会引起植物群落地上、地下生物量分布发生变化,轻度或中度放牧利用该区域草地比较合理。  相似文献   

2.
以中国北方草甸草原为研究对象,借助GIS等工具手段,在草地群落类型实测数据基础上,对内蒙古草甸草原的地上/地下生物量分配开展定量研究,主要结论如下:1)内蒙古草甸草原的生物量碳密度为660.43 g C/m2,其中地榆群落(460.63 g C/m2)具有最高的地上生物量碳密度,地榆群落(787.10 g C/m2)和五花草塘群落(776.22 g C/m2)具有最高的地下生物量碳密度,其他群落间则不存在显著性差异(P>0.05);2)温带草甸草原以16.60×106 hm2的面积,贡献了111.20 Tg的生物量碳,其中地上生物量碳为27.57 Tg,地下生物量碳为83.63 Tg,根冠比(R∶S)为3.03;3)地下生物量沿土壤深度的分布可分为两种类型:线叶菊、芨芨草、野大麦、地榆、贝加尔针茅、苔草以及五花草塘群落属于“指数型”,其地下生物量主要分布在0~10 cm土壤层,且符合指数函数,该类型占据草原群落的主要部分;拂子茅、小叶锦鸡儿以及芦苇群落属于“抛物线”形,其地下生物量主要分布在0~10 cm和20~40 cm土壤层,该类别群落主要为灌木或半灌木,分布曲线不符合指数函数而符合二次函数。  相似文献   

3.
放牧家畜主要通过践踏、采食和排泄物三方面影响草地稳定性、恢复力和生产力。研究践踏与降水对高寒草甸植物根系特征的影响,有助于全面理解放牧对草地的影响,进而为草地放牧管理提供依据。以天祝高寒草甸分布的阴山扁蓿豆为研究材料进行了为期2年的野外试验,研究了模拟牦牛和藏羊践踏及模拟降水量对阴山扁蓿豆根系特征的影响。结果表明,同一放牧强度下,牦牛践踏对阴山扁蓿豆根系生长的不利影响大于藏羊践踏。随着模拟牦牛和藏羊践踏强度的增加、降水量的降低,阴山扁蓿豆根表面积、根体积和根系生物量在各土层(0~10cm,10~20cm,20~30cm)均呈下降趋势。少雨和牦牛重度践踏抑制了阴山扁蓿豆0~20cm土层的根系生长;平水和丰水处理下阴山扁蓿豆根体积和根系生物量在各处理间均无显著差异,家畜践踏对深层根系(20~30cm)的影响较小。总体来看,降水减少会极显著地影响各土层根表面积、根体积和根系生物量,水分对阴山扁蓿豆根系的影响大于家畜践踏。  相似文献   

4.
内蒙古典型草原生物量碳分配格局   总被引:2,自引:0,他引:2  
以内蒙古呼伦贝尔草原、科尔沁草原、锡林郭勒草原等为研究区域,借助群落分层取样方法,科学估测内蒙古典型草原的生物量碳分配情况,主要结论如下:1)我国内蒙古典型草原的平均生物量碳密度为400.56 g C/m2,其中羊草-杂类草(585.18 g C/m2)、冷蒿-其他小禾草(505.68 g C/m2)以及克氏针茅群落(501.45 g C/m2)具有较高的地下生物量碳密度。2)内蒙古典型草原拥有32.26×106 hm2的面积,贡献了112.76 Tg的生物量碳,其中地上生物量碳20.42 Tg,地下生物量碳92.34 Tg。3)根冠比(R∶S)分布上,内蒙古典型草原的平均根冠比数值为4.52,要大于一般草地类型。4)地下生物量碳(BGB)沿土壤深度的分布情况,糙隐子草、克氏针茅、羊草-杂类草、羊草-丛生禾草、大针茅、冰草等草本群落均属于“指数型”,即BGB沿深度分布符合指数函数,主要分布在0~10 cm土壤层;冷蒿-糙隐子草、冷蒿-其他小禾草、差巴嘎蒿群落等灌丛群落的BGB分布曲线为“抛物线形”,其地下生物量碳主要分布于20~40 cm土壤层,不符合指数函数但符合二次函数。  相似文献   

5.
祁连山北坡天然草地地下生物量及其与环境因子的关系   总被引:7,自引:1,他引:6  
祁连山北坡天然草地植被以高寒草原、山地草甸、山地草甸草原、山地草原和山地荒漠草原等类型为主,对这五类天然草地地下生物量及与环境因子关系的分析结果显示,五类草地的地下生物量除山地草原、山地草甸草原和高寒草原无显著差异外,其他各类草地间差异显著(P<0.05),均呈“T”形分布,且随土层深度的加深呈指数形式递减;地下生物量季节变化在高寒草原表现为“W”型变化规律,其他各类草地均呈“N”型变化规律,且随土层深度的加深依次减小;地下净生产量大小依次为山地草甸(546.84 g/m2)>山地草甸草原(410.76 g/m2)>山地草原(358.12 g/m2)>高寒草原(301.33 g/m2)>山地荒漠草原(81.68 g/m2),地下生物量的周转值均在45%以上;五类草地地下生物量与水热因子的关系为负相关关系,但均没有达到显著相关水平(P>0.05)(除山地荒漠草原外), 但在水热条件较好的7-8月份,五类草地地下生物量与水热因子的相关性(正相关或负相关)均达极显著水平(P<0.01),而在其他月份,不同类型草地地下生物量对环境因子的响应存在较大差异。  相似文献   

6.
放牧家畜主要通过践踏、采食和排泄物三方面影响草地稳定性、恢复力和生产力。研究践踏与降水对高寒草甸植物根系特征的影响,有助于全面理解放牧对草地的影响,进而为草地放牧管理提供依据。以天祝高寒草甸分布的阴山扁蓿豆为研究材料进行了为期2年的野外试验,研究了模拟牦牛和藏羊践踏及模拟降水量对阴山扁蓿豆根系特征的影响。结果表明,同一放牧强度下,牦牛践踏对阴山扁蓿豆根系生长的不利影响大于藏羊践踏。随着模拟牦牛和藏羊践踏强度的增加、降水量的降低,阴山扁蓿豆根表面积、根体积和根系生物量在各土层(0~10 cm,10~20 cm,20~30 cm)均呈下降趋势。少雨和牦牛重度践踏抑制了阴山扁蓿豆0~20 cm土层的根系生长;平水和丰水处理下阴山扁蓿豆根体积和根系生物量在各处理间均无显著差异,家畜践踏对深层根系(20~30 cm)的影响较小。总体来看,降水减少会极显著地影响各土层根表面积、根体积和根系生物量,水分对阴山扁蓿豆根系的影响大于家畜践踏。  相似文献   

7.
不同放牧退化程度典型草原植被—土壤系统的有机碳储量   总被引:2,自引:0,他引:2  
以典型草原大针茅+羊草群落为研究目标,以1979年围封样地为参照(CK),选择轻度(GL)、中度(GM)、重度(GH)放牧退化样地开展植被—土壤系统有机碳分布与储量的研究,结果表明,1)不同放牧退化典型草原植被地上碳储量为42.63~203.16 g/m2,植被地下(0~40 cm)碳储量为664.14~1 199.53 g/m2,且大小顺序均为CK>GL>GM>GH,植被总碳储量CK和GL显著高于GM和GH;植被地上、地下碳储量存在显著相关关系。2)不同放牧退化典型草原土壤0~100 cm有机碳储量均存在显著性差异,碳储量为9.85~13.33 kg/m2,且GM>GL>GH>CK;土壤有机碳随土层深度增加而减少,有机碳储量与深度具有显著相关性。3)放牧退化典型草原植被—土壤系统的碳储量为11.26~14.07 kg/m2,且GM>GL>GH>CK,各类型间亦均存在显著性差异;有机碳主要储存于土壤当中,占比约88%~95%,土壤有机碳储量与植被无显著相关性。4)适度放牧利用有利于发挥草原生态系统的碳汇功能。  相似文献   

8.
通过在甘肃省环县典型草原不同放牧强度下轮牧试验的跟群观测,获得了放牧强度与践踏强度的对应关系,并建立了模拟践踏同质性试验.通过对模拟践踏试验与传统的滩羊夏季轮牧的对比研究表明:在放牧强度相应的践踏区,除植被盖度外,模拟践踏区土层(0~15 cm)紧实度变化曲线、表土层(0~15 cm)储水量、容重、总孔隙度及叶层高度、物种数与滩羊夏季轮牧区无明显差异,说明建立的模拟践踏试验方法在对草地的践踏影响方面与传统的放牧方式具有同质性.  相似文献   

9.
以放牧(CK)、深翻耕(S)、浅翻耕(Q)、免耕(M)和封育(F)5种不同生态恢复措施处理的荒漠草原为对象,研究不同恢复措施条件下0~40 cm土层土壤有机碳,全氮储量的变化特征。结果表明,0~10 cm和10~20 cm土层,有机碳含量均以浅翻耕处理草地最高,分别为14.90和14.50 g·kg-1,显著高于深翻耕处理草地、封育草地和放牧草地(P<0.05);20~30 cm土层,不同处理草地有机碳含量变化范围为5.03~9.93 g·kg-1,以浅翻耕处理草地最高,封育草地最低(P<0.05)。土壤全氮含量,0~10 cm和10~20 cm土层均以浅翻耕处理草地最高,分别为0.17和0.22 g·kg-1,显著高于封育和放牧草地(P<0.05);20~30 cm和30~40 cm土层均以深翻耕处理草地最高,分别为0.14和0.13 g·kg-1,显著高于封育草地(P<0.05)。不同处理草地各土层土壤有机碳和全氮密度的分布范围为0.49~1.58 kg·m-2和0.013~0.039 kg·m-2,其中,0~40 cm各土层有机碳密度及0~10 cm和10~20 cm土层全氮密度均以浅翻耕处理草地较高,封育草地较低,20~40 cm土层全氮密度以深翻耕处理草地最高,封育草地较低。0~40 cm各土层土壤有机碳和全氮储量均以浅翻耕处理草地最高,分别为47.72和1.09 t·hm-2,显著高于封育草地(P<0.05)。浅翻耕处理草地更有利于该区荒漠草原土壤有机碳和全氮储量的积累。  相似文献   

10.
为探讨不同利用方式与程度对草地植被碳含量的影响,对阿坝牧区不同利用方式草地(封育天然割草地、人工栽培、放牧草地)和植物生长季不同利用程度草地植被的地上部分、地下根系和枯落物的碳含量进行调研。结果表明,1)草地地上植被碳含量在不同利用方式上表现为封育天然割草地、冬春放牧草地和人工栽培草地显著高于夏秋放牧草地(P<0.05);生长季不同利用程度上冬春和夏秋轻度放牧草地显著高于重度和中度放牧草地(P<0.05)。2)草地枯落物碳含量在不同利用方式与程度上差异均不显著。3)从根系总碳含量来看,不同利用方式上夏秋放牧草地和封育天然割草地显著高于冬春放牧草地和人工栽培草地 (P<0.05);生长季不同利用程度上夏秋中度和轻度放牧草地显著高于夏秋重度和冬春放牧草地(P<0.05),且各种利用方式与程度草地地下根系总碳含量均从表层向下依次显著的递减(P<0.05),0~10 cm 的根系碳含量占总量的65%以上,10~30 cm各草地根系碳含量差异不显著(P<0.05)。通过数量关系得出,草地植被碳含量在利用方式上表现为封育天然割草地(356.509 g/m2)>冬春放牧草地(297.780 g/m2)>人工栽培草地(164.953 g/m2)>夏秋放牧草地(137.577 g/m2),地上植被碳含量分别为地下根系碳含量的15.334,17.130,9.167和5.146倍;在生长季不同利用程度上表现为冬春放牧草地(297.780 g/m2)>夏秋轻度放牧草地(217.002 g/m2)>夏秋重度放牧草地(113.849 g/m2)>夏秋中度放牧草地(81.882 g/m2),地上植被碳含量分别为地下根系碳含量的17.130,8.636,4.412和2.430倍。利用方式和放牧强度是影响草地植被碳含量的重要因素。  相似文献   

11.
为了解不同放牧强度对内蒙古放牧草原植物群落特征及土壤有机碳的影响,本研究以希拉穆仁草原为研究对象,分析不同放牧强度下植物群落特征及0~20 cm土壤有机碳含量和密度变化,定量评估放牧、植物群落特征对土壤有机碳的影响。结果表明:随着放牧强度的增强,克氏针茅(Stipa krylovii)、阿尔泰狗娃花(Heteropappus altaicus)的重要值降低,银灰旋花(Convolvulus Ammannii)、羊草(Leymus chinensis)和冰草(Agropyron cristatum)的重要值提升,物种多样性指数均呈增长趋势,且在重度放牧强度下差异显著,但覆盖度和地上生物量显著降低;土壤有机碳含量在5~10 cm土壤层最高,重度放牧草场土壤有机碳密度显著高于轻度、中度放牧草场和禁牧草场。通过结构方程得出,对于干旱贫瘠的希拉穆仁草原,放牧造成地上生物量的减少对土壤有机碳密度的影响相对较小,土壤物理性质显著影响土壤有机碳密度。本研究结果对合理增强放牧草原的碳汇能力具有实际指导意义。  相似文献   

12.
环县典型草原放牧家畜践踏的模拟研究   总被引:1,自引:0,他引:1  
践踏是放牧家畜对草地的三大影响因素之一,也是导致草原全面退化的主要原因。但是由于技术和方法的限制,相关报道较少,极大地削弱了对草地农业生态系统的主体-草畜界面生态动力机制的整体认识。基于此,在我国干旱半干旱的黄土高原典型草原区兰州大学环县草畜生产系统野外实验点,通过滩羊夏季轮牧试验践踏强度的跟群观测、践踏同质性试验、模拟降水与试验践踏双因子试验进行了为期2年的系列研究。  相似文献   

13.
不同放牧率对草原植物与土壤C、N、P含量的影响   总被引:80,自引:5,他引:75  
本文研究不同放牧率对草原植物土灌系统中C、N、P含量的影响。结果表明,对照区地上生物量和0~60m土层的总根量显著大于各放牧处理(P<0.01),而放牧处理间差异不显著(P>0.05)。对照区和1.33只羊/hm2处理植物的C含量显著大于4只羊/hm2和6.67只羊/hm2,而后两个处理的N、P含量较高。4只羊/hm2处理的C/N和C/P最小。6.67只羊/hm2处理已使根系和根系中的N素明显向表层聚集。对照区0~10cm土层土壤有机C含量显著大于各放牧处理,而各放牧处理间差异则不显著。土壤有机C,N含量与报系生物量成显著正相关。0~10cm土层中无机N在4只羊/hm2处理中最大。土壤微生物量C、P含量在6.67只羊/hm2处理中显著降低,其它处理间差异不显著。其中4只羊和6.67只羊/hm2处理的微生物N含量较高。  相似文献   

14.
以西藏安多县原生小嵩草(Kobresia pygmaea)草甸草原与退化小嵩草草甸草原2种类型草地为研究对象,对其草地的地上和地下生物量、土壤的有机碳、全氮、全磷、有效氮和有效磷含量进行研究,了解退化对草地植物生物量和基本养分含量的影响。结果表明,退化小嵩草草甸草原的地上、地下以及总生物量均显著下降,地上0~10、10~20cm土层生物量和总生物量分别相当于小嵩草草甸草的80.9%、22.1%,15.8%和20.0%;2种类型草地土壤的全量和有效碳氮磷含量均较低,退化对土壤全量和有效养分的影响并不一致,退化导致0~10和10~20cm土层的有机碳、全氮和全磷含量均显著升高,而导致0~10和10~20cm土层的有效氮和有效磷含量均显著降低,2种类型草地随着土层的加深,土壤有机碳、全氮、全磷、有效氮和有效磷含量没有明显差异。  相似文献   

15.
选择克氏针茅典型草原放牧的西门塔尔牛为研究对象,分析研究短期不同放牧强度(零放牧、轻牧、中牧、重牧)对草地土壤有机碳及pH值的影响,以探索典型草原适宜的载畜率。结果表明:①0~20 cm土层,有机碳含量随着放牧强度的增大而降低,且在重度放牧条件下呈显著差异;而20~30 cm土层,有机碳含量大小顺序为重牧>中牧>零放牧>轻牧,且重牧与轻牧呈显著差异。②土壤pH值随着放牧强度的增大而显著增加。③垂直分布上,土壤有机碳含量随着土层深度的增加而减少,而pH值大小顺序均呈现为10~20 cm>20~30 cm>0~10 cm。由此可见,制定适宜的载畜率,维持土壤养分平衡,是遏制草地退化的必要措施。  相似文献   

16.
黄土丘陵区草地根系生物量对踩踏干扰生物结皮的响应   总被引:2,自引:0,他引:2  
任伟  赵允格  许明祥  徐安凯 《草地学报》2019,27(6):1702-1709
为明确干扰生物结皮对高等维管束植物的影响,本研究以黄土丘陵区退耕封禁20年左右的草地为对象,通过野外调查与室内分析相结合,研究了踩踏干扰对退耕地生物结皮及植物根系生物量的影响。结果表明:干扰降低了生物结皮盖度,增加了植物盖度;干扰显著增加植物根系总生物量,37%干扰度组较不干扰组增加104.55%,其中0~10 cm土层较不干扰组增加204.59%;干扰增加了0~10 cm土壤含水量,48%干扰度组较不干扰组增加22.37%;干扰生物结皮降低了夏季午后土壤温度,37%干扰度组较不干扰组降低5.85℃;干扰增加了生物结皮下层土壤全氮含量,影响了土壤养分循环以及水文、温度的重新分配,促进了与之镶嵌分布的植物根系的生长,并促使草地根系浅层化。  相似文献   

17.
以空间序列代替时间序列的方法,选取未封育、封育3、5、7及10年的荒漠草原为对象,研究封育对荒漠草原土壤总有机碳、颗粒有机碳、水溶性有机碳和易氧化有机碳的影响。结果表明:封育对5~10 cm、10~20 cm和20~40 cm土层总有机碳影响显著(P<0.05),其含量随封育年限的延长总体呈增加的趋势,分布范围为2.24~4.52 g· kg-1,以封育7和10年的荒漠草原较高。封育对荒漠草原土壤颗粒有机碳无显著影响(P>0.05);可溶性有机碳含量在0~5 cm、5~10 cm和20~40 cm土层随封育年限的延长呈先下降后上升的趋势,均以未封育荒漠草原最高,分别为0.59,0.49 和0.56 g·kg-1,封育5和7年的荒漠草原较低;易氧化有机碳含量以封育7年的荒漠草原较高,总含量为2.48 g·kg-1。封育7年是退化荒漠草原自然恢复演替过程中的一个转折。  相似文献   

18.
土壤呼吸的测定对于预测不同生态系统碳收支起着关键性作用。本研究利用Li-8100开路式碳通量测定系统,对内蒙古荒漠草原、典型草原和草甸草原生态系统在不同放牧强度(零放牧的对照、轻度放牧、中度放牧和重度放牧)下土壤呼吸速率进行测定,并分析了土壤呼吸与土壤温度(10 cm处)和空气相对湿度的相关性。结果表明,草地类型、放牧强度及它们的交互作用都对土壤呼吸有显著影响(P<0.05),放牧强度对土壤呼吸的影响主要表现在荒漠草原和典型草原生态系统,对草甸草原没有显著影响。在不同草地生态系统中,随着放牧强度的增加,土壤呼吸速率呈先升高后降低的变化规律。方差结果显示,不同草原类型的土壤10 cm温度和空气相对湿度有极显著性的差异(P<0.001),不同放牧强度对土壤10 cm温度和空气相对湿度无显著性影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号