首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
The allelopathic effects of Adina cordifolia, Alnus nepalensis, Celtis australis and Prunus cerasoides were tested by growing crops of Eleusine coracana, Glycine max and Hordeum vulgare on top soil, rhizosphere soil from the plantation of these trees, and on field soil either mulched with dry leaves or irrigated with aqueous leaf extracts of the agroforestry tree species. Germination percentage, shoot length, root length and dry matter production and pigment contents of crops were depressed by agroforestry tree crops. Maximum reduction in germination percentage, root-shoot length and dry matter production was obtained with experimental garden soil mulched with dry leaves of trees and by the effect of Adina cordifolia followed by P. cerasoides, H. vulgare proved most susceptible and E. coracana highly resistant to these tree-top interactions.  相似文献   

2.
The nitrogen status of most Zambian soils is inherently low. Nitrogen-fixing trees such as Faidherbia albida (F. albida) could have the potential to restore soil fertility. We conducted a study to examine the role of mature F. albida trees on the soil microbial communities and overall N fertility status in Zambia. Soil samples were collected under and outside the canopies of F. albida trees in representative fields from two sites namely; Chongwe (loamy sand) and Monze (sandy loam). To assess the long term canopy effects; total N, mineral N and soil organic carbon (Corg) content were directly measured from soils collected under and outside the canopy. Short term litter effects were assessed by subtracting concentrations of biochemical properties of non-amended controls from amended soils with F. albida litter during an 8 week incubation experiment. We also determined N mineralization rates, microbial community structure—Phospholipid fatty acids, microbial biomass carbon, and labile organic carbon (\({\text{C}}_{{{\text{org[K}}_{ 2} {\text{SO}}_{ 4} ]}}\)) during incubation. For the long term canopy effect, average N mineralization rate, Corg, total N and mineral N content of non-amended soils under the canopy were (all significant at p < 0.05) greater than soils outside the canopy on both sites. In the short term, amending soils with litter significantly increased N mineralization rates by an average of 0.52 mg N kg?1 soil day?1 on soil from Monze. Microbial biomass carbon measured after 4 weeks of incubation was on average significantly higher on amended soils by 193 and 334 mg C kg?1 soil compared with non-amended soils in Chongwe and Monze soils, respectively. After 6 weeks of incubation, the concentration of all selected biomarkers for major microbial groups concentrations in non-amended soils were significantly higher (all p < 0.05) under the canopy than outside in Monze soil. Using principal component analysis, we found that the segregation of the samples under and outside the canopy by the first principal component (PC1) could be attributed to a proportional increase in abundances of all microbial groups. Uniform loadings on PC1 indicated that no single microbial group dominated the microbial community. The second principal component separated samples based on incubation time and location. It was mainly loaded with G-positive bacteria, and partly with G-negative bacteria, indicating that microbial composition was dominated by these bacterial groups probably at the beginning of the incubation on Monze soils. Our results show that the improvement of soil fertility status by F. albida could be attributed to a combination of both long term modifications of the soil biological and chemical properties under the canopy as well as short term litter fall addition.  相似文献   

3.
从孟加拉国Dinajpur地区采集了不同农林复合区内树种和作物种,对采集植物的丛枝菌根多样性进行了研究.在3个取样地采集了18种植物的根和根际土,取样地和被采取植物分别为:取样地Dashmail为黄豆树 (Albizia procera Benth.)、小指椒 (Capsicum frutescens L)、姜黄(Curcuma domestica Vahl)、印度黄檀 (Dalbergia sissoo Roxb.) 和大叶桃花心木(Swietenia macrophylla)5种植物; 取样地Kantaji为姜黄(C.Domestica)、印度檀 (D.Sissoo)、赤桉 (Eucalyptus camaldulensis Dehnn.)、石梓(Gmelina arborea (Roxb) DC) 和水稻 (Oryza sativa L.) 5种植物; 取样地Ramsagar为姜黄(C.Domestica), 印度檀 (D.Sissoo), Litchi chinensis Sonn.和水稻.在取样地Dashmail,植物丛枝的分布范围在36%-79%,其中分布最高的是小指椒,达到79%,而C.Domestica仅占36%.取样地 Kantaji丛枝的分布范围在33%-70%之间,其中分布最高的是石梓,达到79%,而O.Sativa分布最低,仅36%.取样地 Ramsagar丛枝的分布范围在35%-70%之间,印度檀丛枝分布在该地最高, 达70%,而水稻丛枝在该地的分布最小,仅35%.在采样地Dashmail,每100克干土中所含采样植物丛枝菌根孢子群落54-140个;孢子群落最多的是印度檀(140/100g dry soil),最低的是姜黄(C.Domestica) (40/100g dry soil).在采样地Kantaji,孢子群落在63-221/100g dry soil,石梓具有的群落最高,为221/100g dry soil;印度檀为63/100g dry soil.在采样地Ramsagar, 所具有的最高和最低群落分别是 160/100g dry soil (D.Sissoo)和69/100g dry soil(L.Chinensis).土壤Ph值与土壤中丛枝分布和菌根孢子群落无显著相关性.Simpson多样性指数和Shannon多样性指数在取样地Kantaji 的印度檀土壤中最高;而在取样地Ramsagar的水稻土壤中最低.研究表明孟加拉国Dinajpur地区丛枝菌根的存在、树种和作物种中的营养性质、丛枝菌根的必要性和贡献以及复合农林植物生长与丛枝?  相似文献   

4.
The level of colonization by ectomycorrhizae (ECM) and arbuscular endomycorrhizae (AM) of 23 species of native trees and shrub legumes was studied. Root samples were obtained from different regions of Uruguay. Colonization level was determined by observing AM fungal structures (hyphae, arbuscules, vesicules) in stained root segments. The number and morphological type of spores were determined in 100 g of rhizosphere soil. Ectomycorrhizal colonization was evaluated by direct and microscopic observation of root tips. All species had a high level of AM colonization. In Papilionoideae colonization varied between 62% and 78%, in the Mimosoideae between 18% and 69% and in the Caesalpinioideae the variation was larger (6–74%). These results show a significant presence of fungi that form arbuscular mycorrhizae in our soils. The number of spores forming AM in rhizosphere soil (280–l.620 spores/100 g of dry soil) was also highly relative to references for other leguminous trees. Spores were grouped in three principal morphological types Acaulospora, Glomus and Sclerocystis. Presence of ECM fungi was evident only when observed under the microscope. 26% of the plant species exhibited this type of mycorrhizae, reaching a maximal value of 36% in Mimosoideae. Only six plant species exhibited both types of mycorrhizae. Dual colonization could help in the colonization of poor soils and for their use in agroforestry systems.  相似文献   

5.
Fodder trees are integral part of farming system in the hills of Nepal, but designed agroforestry interventions targeted to particular trees and crops are not widely available. This paper examines the joint productivity of an agroforestry practice in which Raikhanim (Ficus semicordata) is planted in a maize (Zea mays) and finger-millet (Eleusine coracana) cropping system at Keware Bhanjyang of the western mid-hills of Nepal. Raikhanim seedlings were planted in a row on terrace risers 2, 4 and 6 m apart in ordinary farming conditions, in a randomized block design with three replications. Maize and finger-millet were grown on the terraces as intercrops with a control plot without trees on risers in each replicate. Growth parameters of Raikhanim—height, diameter at 30 cm above ground (D30) and survival rate—were recorded annually in December until trees were lopped for fodder biomass, and crop yields were measured to determine tree-crop interaction effects. Tree height and D30 differed significantly between spacings until trees reached the lopping stage 3½ years after planting, with the highest growth in 4 m spacing. Tree lopping checked the height growth but the diameter growth continued to increase and differed among spacings after lopping. Fodder biomass increased with tree age and was highest under 4 m spacing (7.294 t/ha) followed by 6 m (5.256 t/ha) and 2 m (3.84 t/ha). Finger-millet yield in the experimental plots decreased with tree age due to shading effects, while maize yield was not substantially affected. Among spacings, control plots produced the highest finger-millet yield (1,624 kg/ha) while the 6 m spacing produced the highest maize yield (2,463 kg/ha). It is concluded that planting Raikhanim at 6 m intervals will produce additional fodder without significant effect on maize yield and only a moderate effect on finger-millet yield. The agroforestry practice of planting fodder trees on under-utilised terrace risers is a viable option for mid-hill farmers for simultaneous production of fodder and cereal crops while sustaining the hill farming system.  相似文献   

6.
Cultivation of Burgundy black truffles (Tuber aestivum syn. T. uncinatum) in Midwestern agroforestry has the potential to provide important income not only to landowners, but also to the hospitality industry. Economically viable harvest depends upon both successful seedling colonization by the truffle fungus and successful growth of the fungus along with the extending root system. We evaluated an established hybrid oak (Quercus bicolor × Q. robur) truffière 5 and 6 years after planting in May 2005, to evaluate the effects of three seedling production methods on tree growth and root colonization by T. aestivum. Oak seedlings produced using two variations on the RPM© (Root Production Method) substrate grew significantly faster in height and diameter, but were significantly less well colonized by the truffle fungus compared with saplings from seedlings produced by the “Typical” method. We found that 0.7–19.8 % of root tips (mean 5.1 %) sampled from saplings grown from Typical seedlings were colonized by T. aestivum. By 2010, two distinct canopy forms had developed: ‘upright’ versus ‘spreading’. Although root colonization was not related to canopy form, future fruit body production may be influenced by the greater soil shading provided by the spreading canopy form. A comparison of autumn/winter air temperatures in Missouri, USA with European conditions suggests that fruit body production in Missouri will likely be greatest from mid-September through mid-December. Soil pH modification by application of crushed limestone prior to planting was effective in maintaining average pH at 7.16 through 2010, a level consistent with fruit body production.  相似文献   

7.
Phosphorus (P) in soil exists both in organic and inorganic forms and their relative abundance could determine P supplying capacity of soil. Differential input of exogenous and plant-mediated phosphorus and carbon in soil under different land-uses could influence P availability and fertilizer P management. While the effect of land-use on soil organic carbon (SOC) is fairly well-documented, its effect on soil P fractions is relatively less known. We investigated the effect of different land-uses including rice–wheat, maize–wheat, cotton–wheat cropping systems and poplar-based agroforestry systems on soil P fractions and organic carbon accrual in soils. Total P concentration was the highest under agroforestry (569 mg P kg?1) and the lowest under maize–wheat (449 mg P kg?1) cropping systems. On the contrary, soils under rice–wheat had significantly higher available P concentration than the agroforestry systems, probably because of higher fertilizer P application in rice–wheat and prevailing wetland conditions during rice growth. In soils under sole cropping systems viz. rice–wheat, maize–wheat and cotton–wheat, inorganic P was the dominant fraction and accounted for 92.2–94.6% of total P. However, the soils under agroforestry had smaller proportion (73%) of total P existing as inorganic P. Among soil P fractions, water soluble inorganic P (0.13–0.26%) represented the smallest proportion inorganic P in soils under different land-uses. Agroforestry showed significantly (p < 0.05) higher concentrations of SOC than the other land-uses. Soil organic C was significantly correlated with soil P fractions. It was concluded that poplar-based agroforestry systems besides leading to C accrual in soil result in build-up of organic P and the P supplying capacity of soil.  相似文献   

8.
This study assessed the arbuscular mycorrhizal (AM) status of Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands in relation to season, management and soil depth in Ethiopia. We studied 43 woody species in 52 plots in three areas. All woody species were colonized by AM fungi, with average root colonization being relatively low (16.6% – ranging from 0% to 95%). Mean spore abundance ranged from 8 to 69 spores 100 g−1 of dry soil. Glomus was the dominant genus in all study sites. Season had a strong effect on root colonization and spore abundance. While spore abundance was higher (P < 0.001) in the dry season in all three study sites, root colonization showed a more variable response. Root colonization was reduced in the dry season in the site that was least subject to stress, but increased in the dry season in the harshest sites. Management in the form of exclosures (that exclude grazing) had a positive effect on spore abundance in one of the two sites considered. Spore abundance did not significantly differ (P = 0.17) between the two soil depths. Our results show that in this arid region all trees are mycorrhizal. This has profound consequences for rehabilitation efforts of such dry deciduous woodlands: underground processes are vital for understanding species adaptation to pulsed resource availability and deserve increasing attention.  相似文献   

9.
Agroforestry systems are widely practiced in tropical forests to recover degraded and deforested areas and also to balance the global carbon budget. However, our understanding of difference in soil respiration rates between agroforestry and natural forest systems is very limited. This study compared the seasonal variations in soil respiration rates in relation to fine root biomass, microbial biomass, and soil organic carbon between a secondary forest and two agroforestry systems dominated by Gmelina arborea and Dipterocarps in the Philippines during the dry and the wet seasons. The secondary forest had significantly higher (p < 0.05) soil respiration rate, fine root biomass and soil organic matter than the agroforestry systems in the dry season. However, in the wet season, soil respiration and soil organic matter in the G. arborea dominated agroforestry system were as high as in the secondary forest. Whereas soil respiration was generally higher in the wet than in the dry season, there were no differences in fine root biomass, microbial biomass and soil organic matter between the two seasons. Soil respiration rate correlated positively and significantly with fine root biomass, microbial biomass, and soil organic C in all three sites. The results of this study indicate, to some degree, that different land use management practices have different effects on fine root biomass, microbial biomass and soil organic C which may affect soil respiration as well. Therefore, when introducing agroforestry system, a proper choice of species and management techniques which are similar to natural forest is recommended.  相似文献   

10.
Among several agroforestry practices in the Central Rift Valley (CRV) of Ethiopia, Acacia tortilis-dominated Parkland agroforestry systems are common. Utilizable information regarding the effects of the tree species on soil conditions in Ethiopia is very scarce to be of use for improved agricultural productivity. This study was conducted in three land use types in CRV areas in Oromia National Regional State in Ethiopia. The aim of the study was to determine the effects of A. tortilis on soil fertility variations along a gradient from the tree base to open area in different land use types. Soil samples from surface layers (0–15 cm) were taken at four concentric transects distances from tree base (0.5, 2 and 4 m), compared with soil samples from the adjacent open areas (15 m distance from the tree canopy cover), and then analyzed following the standard procedures. The results of the study indicated that except for Na the amount of soil nutrients under A. tortilis were significantly varied (P < 0.05) in the land use types. Generally, comparisons between under the canopy and outside the canopy of the tree species indicated a highly significant difference on major soil fertility parameters. The effect of the tree species on soil fertility parameters was significantly higher with the distance from the tree base to outside of the canopy. But soil texture was not affected, indicating that it is more related to parent material and land use practices than the tree influence. The study revealed that the indigenous Parkland agroforestry practices of A. tortilis tree improve soil fertility. Hence, the soil patches observed under A. tortilis trees can be important local nutrient reserves, leading to soil heterogeneity in an otherwise uniform agricultural landscape. This may be important for the agricultural landscape health and on farm biodiversity conservation in agricultural landscapes of similar agroecological conditions.  相似文献   

11.
Arbuscular mycorrhiza fungi(AMF) are vital in the regeneration of vegetation in disturbed ecosystems due to their numerous ecological advantages and therefore are good indicators of soil and ecosystem health at large. This study was aimed at determining how the seasonal, vegetation cover density, edaphic and anthropogenic factors affect AMF root colonization(RC) and spore density(SD)in Desa'a dry Afromontane forest. AMF RC and SD in the rhizosphere of five dominant woody species, Juniperus procera, Olea europaea, Maytenus arbutifolia, Carissa spinarum and Dodonaea angustifolia growing in Desa'a forest were studied during the rainy and the dry seasons in three permanent study vegetation cover density plots(dense, medium, and poor). Each plot(160 x40 m~2) has two management practices(fenced and unfenced plots) of area. A 100 g sample of rhizosphere soil from moisturefree composite soil was used to determine spore density.Spore density ranged from 50 to 4467 spores/100 g soil,and all species were colonized by AMF within a range of 4–95%. Glomus was the dominant genus in the rhizosphere of all species. Vegetation cover density strongly affected SD and RC. The SD was significantly higher(p 0.05) in the poor vegetation cover density than in the other two and lowest in the dense cover; root colonization showed the reverse trend. Management practices significantly(p 0.05) influenced AMF SD and RC, with the fenced plots being more favoured. Seasons significantly(p 0.05) affected RC and SD. More RC and SD were observed in the wet period than the dry period. Correlating AMF SD and RC with soil physical and chemical properties showed no significant difference(p 0.05) except for total nitrogen. Disturbance, vegetation cover density, season and total nitrogen are significant factors that control the dynamics and management interventions to maintain the forest health of dry Afromontane forests.  相似文献   

12.
The growing of tree crops along with the field crops is a common practice in foothills of lower Himalayas with the twin objective of checking soil erosion by water and covering the risk of crop failure due to frequently occurring droughts. A study was conducted to evaluate dry and water stable aggregates for their soil organic carbon (SOC) stocks under different tree-based cropping systems. The treatments consisted of three cropping systems viz. maize-wheat (sole crop), agroforestry and agrohorticulture (tree-based) in the similar soil texture and in 6 year old plantations. The soil samples were obtained from different layers (0–15, 15–30, 30–60, 60–90 and 90–120 cm) and analyzed for SOC. The undisturbed aggregate samples (as big clods) were collected from 0–15 and 15–30 cm soil layer for dry and wet aggregate stability. The data so obtained was analyzed by using CRD factorial deigns at LSD (P ≤ 0.05). The SOC concentration decreased with soil depth, the decrease was higher (89.6%) in soils under maize-wheat than in soils under agrohorticulture (81.3%) and agroforestry (77.8%). The mean SOC concentration decreased with the size of the dry stable aggregates (DSA) and water stable aggregates (WSA). In DSA, the mean SOC concentration was 58.06 and 24.2% higher in large and small macroaggregates than in microaggregates respectively; in WSA it was 295.6 and 226.08% higher in large and small macroaggregates than in microaggregates respectively in surface soil layer. The mean SOC concentration in surface soil was higher in DSA (0.79%) and WSA (0.63%) as compared to bulk soil (0.52%). The SOC concentration and stock being highest in soils under agroforestry resulted in higher SOC concentration in dry as well as WSA.  相似文献   

13.
In seasonally dry environments such as the Zagros woodlands (Iran), severe drought stress and lack of appropriate management practices can cause failure of oak afforestation or reforestation. We investigated the effect of soil properties and burial depth on Persian oak (Quercus brantii Lindl.) establishment in different microhabitats resulting from traditional forest practices. Four microhabitats that were based on forest structure were considered for oak acorn seeding: (1) inside old sprout clumps (ISPC); (2) under the canopy of tall trees (UCTT); (3) outside the canopy of tall trees and sprout clumps; and (4) near recent stumps or sprout clumps. Acorns were seeded at two depths (2 and 5 cm), and seedling survival and growth variables were recorded for 4 years, together with soil chemical and biological attributes. Stepwise discriminant analysis showed that a combination of total soil nitrogen, cation exchange capacity, available phosphorus and potassium, litter depth, microbial quotient, metabolic coefficient, substrate-induced respiration and earthworm abundance was the best variables to characterise the microhabitats. With the exception of pH, bulk density and soil texture, these variables were higher in UCTT and ISPC than in the other microhabitats. Seedling emergence and survival were greater at a seed depth of 5 cm than at 2 cm. Seedling height and shoot, root and leaf biomasses were higher in the UCTT microhabitat compared to the other microhabitats and correlated positively with soil nutrients contents and most of the soil biological variables but negatively with soil bulk density. This study emphasised the role of microhabitats in creating a “canopy effect” producing favourable physical, chemical and biological soil conditions. In particular, large oak trees form islands of fertility and therefore are of key importance for successful seedling establishment in forests subjected to intense human activities.  相似文献   

14.
Increasingly, plantations for food, fiber and wood, are necessary to provide a growing world population. Agroforestry systems become more and more important, however these systems usually develop in marginal conditions, limited land, restricted funding, occasional technical support and above this, there is limited documentation and evaluation of innovated traditional systems in indigenous and small-scale contexts, which challenge forest scientists. The aim of this research was to assess the quality of trees in plots managed by Mayan indigenous farmers who planted agroforestry systems with fine wood species to increase the value of land and labor in localities with highly-marginal social conditions in Northern Chiapas, México. Twenty oldest plots were selected within a group of previously established plots (eight with improved fallow, six with shaded coffee and six with maize crop associated to trees) where forest inventories were carried out in nested 100 and 1000 m2-circular plots. In all plots tree diameter, height, quality indicators and the incidence of the pest Hypsipyla grandella were measured. Trees in the maize-associated-to-trees system are favored by the practices applied to annual crop during the first 3rd–5th years, a period in which they are free from the interference of other trees and benefit from favorable light conditions, weeding and a higher intensive care from the farmer while shaded coffee and improved fallow have higher tree densities and a more closed canopy condition than maize associated to trees. In consequence, maize associated to trees shows 68.1 % stems with good form; shaded coffee and improved fallow averaged 40.5 and 39.7 % of good quality stems, respectively; improved fallow exhibited a greater number of suppressed trees than shaded coffee and maize associated to trees (p < 0.0001). In addition, maize associated to trees showed the highest proportion of trees with commercial value with 56.9 %, followed by improved fallow with 28.2 %, and shaded coffee with 11.8 % (p < 0.0001); the rest were trees with domestic uses. However, maize associated to trees significantly result with high incidence of H. grandella probably due to the crown exposure. Timber volume averaged 92.9 ± 68.9 m3 for improved fallow, 77.3 ± 24.8 m3 for shaded coffee, and 52.5 ± 39.7 m3 for maize associated to trees. The value of the fine wood represents increment in income, variety of products and self-employment for households. Nonetheless, improved fallow and coffee plantations might benefit from the elimination of competitors from larger trees to favor promising immature ones and pruning, while maize crop associated to trees might benefit from opportune pruning for controlling the stem borer as well as tree replacement to achieve long term replacement and harvesting.  相似文献   

15.
The benefits of inoculation with six arbuscular mycorrhizal fungi (AMF) isolates (Glomus aggregatum, G. fasciculatum, G. intraradices, G. manihotis, G. mosseae, and G. verriculosum) were investigated on seedlings of Acacia senegal (L.) Willd., a multipurpose tree legume highly valued for arabic gum production. Mycorrhizal root colonization, plant growth and relative mycorrhizal dependency (RMD) were measured in A. senegal seedlings growing in soils from three geographical sites in Senegal (Dahra, Bambey and Goudiry) and two soil conditions (sterilized vs unsterilized) in the glasshouse. The impact of inoculation on mycorrhizal root colonization and plant growth depended on AMF isolates, soil origins and soil conditions. Mycorrhizal root colonization and plant growth were increased in sterilized soils regardless of soil origin and AMF isolates. The degree of RMD of A. senegal seedlings varied with soil origin, soil condition and AMF isolates. A. senegal showed the highest RMD values, reaching a maximum of 45 %, when inoculated with G. manihotis. However, in unsterilized soils, no significant effect of AMF inoculation on plant growth was observed despite significant root colonization with certain AMF isolates in Dahra and Goudiry soils. This indicates that the most infective AMF isolates were not the most effective and unsterilized soils may contain effective mycorrhizal propagules. In conclusion, it is important to consider the native mycorrhizal component of the soils before harnessing mycorrhizal inoculation programs for sustainable agroforestry systems.  相似文献   

16.
An on-farm trial was conducted to determine dry matter production of four fodder tree species and their effect on soil water and maize production. The trees were planted in rows intercropped with maize. The four tree species selected were Acacia karroo Hayne (indigenous fodder tree), Leucaena leucocephala (Lam.) De Wit (nitrogen fixing), Morus alba L. (fodder and fruit), and Gleditsia triacanthos L. (fodder and fuel). Volumetric soil water was measured in the upper 0.3 m of soil in each row of the trial using the time domain reflectometry technique. The neutron probe technique was used for monitoring the water content deeper in the soil. Geostatistical methods were used to analyse treatment differences in the upper 0.3 m of soil. The soil water content did not differ significantly between the maize and tree rows indicating that competition for water in the upper horizon was not the reason for lower maize yields. However, at greater soil depths (75–125 cm) trees in the wide spacing used less water than those in the narrow spacing. Light interception was an important factor in reducing maize yields in the row nearest to the trees. High soil water values recorded during summer indicated that in the current cycle of good rainfall the plants in the agroforestry trial were not stressed. Thus the trees do not compete with the crops for soil moisture in good rainfall seasons. However, this study would need further evaluation for the competition for water for the low rainfall years. Since the trees have access to water at greater depths, they are likely to be more productive into the dry season than shallow rooted crops.  相似文献   

17.
Biological activity in tree rhizosphere and association of VAM fungi with tree-roots could be used as selection criteria for agroforestry trees in arid ecosystems. Dehydrogenase activity and VAM fungi association in rhizosphere of six agroforestry trees (Azadirachta indica, Acacia tortilis, Eucalyptus camaldulensis, Prosopis cineraria and Tecomella undulata) were studied under irrigated and rainfed conditions in the arid zone of India. Higher dehydrogenase activity (9.5 to 16.8∼p kat g soil−1), root colonization (58.3 to 68.5%) and spore density (132.5 to 234.7 spores 100 g soil−1) were observed in tree rhizosphere as compared to that in non-rhizosphere (7.4, 37.7 and 44.4). Irrigation had increased dehydrogenase activity by 22.1% while it reduced root colonization and spore density by 14.2% and 16.2%, respectively. Trees of A. indica had registered maximum growth while E. camaldulensis the least. Findings suggest that selection of A. nilotica, A. indica, and T. undulata for plantations of agroforestry in arid region would reduce the risk and ensure sustainability of the agroforestry system.  相似文献   

18.
Integrating native trees in farmland can support soil, water and biodiversity conservation. This is particularly important in regions characterized by long periods of drought and soil erosion, such as the Bolivian Andes, where agroforestry with native woody species is rarely applied. Better knowledge on the effects of environmental stress on propagation and establishment of such native plants is needed to optimize their cultivation. In our study, we tested the effects of temperature and scarification on seed germination, and assessed seedling survival and juvenile growth of two potential agroforestry species (Prosopis laevigata var. andicola, Schinus molle) under diverse soil and water conditions. Temperatures above 30 °C accelerated germination, but they increased fungi infestation in the case of S. molle. The application of acid and mechanical scarification significantly improved the germination capacity of P. laevigata var. andicola. Medium to high moisture levels in sand provided the most favourable conditions for plant growth. S. molle was more sensitive to dry and P. laevigata var. andicola more vulnerable to water-saturated clay loam. Mulching enhanced the survival and growth of S. molle juveniles, but increased P. laevigata var. andicola’s growth in sand and dry soils only. Our results may facilitate guidance on improving propagation of these two potential agroforestry species under environmental stress conditions. More generally, our study shows that easily applicable treatments, such as mulching, can significantly improve the cultivation of native species, provided that their habitat requirements and limiting factors are well known. This highlights the relevance of identifying and closing such knowledge gaps for native trees and shrubs in order to promote their potential for use in agroforestry.  相似文献   

19.
Average population growth in the African Sudanian belt is 3 % per year. This leads to a significant increase in cultivated areas at the expense of fallows and forests. For centuries, rural populations have been practicing agroforestry dominated by Vitellaria paradoxa parklands. We wanted to know whether agroforestry can improve local rainfall recycling as well as forest. We compared transpiration and its seasonal variations between Vitellaria paradoxa, the dominant species in fallows, and Isoberlinia doka, the dominant species in dry forests in the Sudanian belt. The fallow and dry forest we studied are located in northwestern Benin, where average annual rainfall is 1200 mm. Sap flow density (SFD) was measured by transient thermal dissipation, from which tree transpiration was deduced. Transpiration of five trees per species was estimated by taking into account the radial profile of SFD. The effect of the species and of the season on transpiration was tested with a generalized linear mixed model. Over the three-year study period, daily transpiration of the agroforestry trees, V. paradoxa (diameters 8–38 cm) ranged between 4.4 and 26.8 L day?1 while that of the forest trees, I. doka, (diameters 20–38 cm) ranged from 9.8 to 92.6 L day?1. Daily transpiration of V. paradoxa was significantly lower (15 %) in the dry season than in the rainy season, whereas daily transpiration by I. doka was significantly higher (13 %) in the dry season than in the rainy season. Our results indicate that the woody cover of agroforestry systems is less efficient in recycling local rainfall than forest cover, not only due to lower tree density but also to species composition.  相似文献   

20.
Indices of shallow rootedness and fractal methods of root system study were combined with sapflow monitoring to determine whether these ‘short-cut’ methods could be used to predict tree competition with crops and complementarity of below ground resource use in an agroforestry trial in semi-arid Kenya. These methods were applied to Grevillea robusta Cunn., Gliricidia sepium (Jacq.) Walp., Melia volkensii Gürke and Senna spectabilis syn. Cassia spectabilis aged two and four years which were grown in simultaneous linear agroforestry plots with maize as the crop species. Indices of competition (shallow rootedness) differed substantially according to tree age and did not accurately predict tree:crop competition in plots containing trees aged four years. Predicted competition by trees on crops was improved by multiplying the sum of proximal diameters squared for shallow roots by diameter at breast height2, thus taking tree size into account. Fractal methods for the quantification of total length of tree root systems worked well with the permanent structural root system of trees but seriously underestimated the length of fine roots (less than 2 mm diameter). Sap flow measurements of individual roots showed that as expected, deep tap roots provided most of the water used by the trees during the dry season. Following rainfall, substantial water uptake by shallow lateral roots occurred more or less immediately, suggesting that existing roots were functioning in the recently wetted soil and that there was no need for new fine roots to be produced to enable water uptake following rainfall. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号