首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Fusarium head blight (FHB), primarily caused by Fusarium graminearum in North America can result in significant losses in the yield and quality of wheat (Triticum aestivum L). Resistance sources have been largely limited to Chinese germplasm and, in particular, Sumai 3 or its derivatives. In recent years, resistance has been identified in Europe. Previous studies using the wheat line ‘Bizel’, developed in France, have shown that it has resistance to Fusarium head blight. Pedigree information shows that one of its progenitors is rye. This experiment was conducted to determine if ‘Bizel’ has rye chromatin, with the goal of developing a strategy for mapping FHB resistance genes. Two methods based on repetitive DNA sequences specific to rye were implemented. With both approaches, it was demonstrated that ‘Bizel’ does not contain rye chromatin. Consequently, wheat SSRs can be used to map ‘Bizel’ resistance genes for FHB.  相似文献   

2.
In order to develop QTL applications, eight new loci were mapped on barley chromosome 7 using 124 doubled haploid lines of the North American Barley Genome Mapping Project (NABGMP) progeny (‘Steptoe’בMorex’)- These loci involve six genomic DNA restriction fragment length polymorphisms (RFLPs) and two cDNA-RFLPs including a puroindoline gene. The distribution of these markers on barley chromosome 7 was compared with that of homoeologous wheat counterparts, i.e. wheat group 5. One locus on chromosome 7 was associated with a QTL for β-glucanase activity measured in green and finished barley malt.  相似文献   

3.
The aim of the present study was to produce backcross progenies in a new winter wheat (‘Asakaze komugi’) × winter barley (‘Manas’) hybrid produced in Martonvasar. As no backcross seeds were obtained from the initial hybrids, young inflorescences of the hybrids were used for in vitro multiplication in three consecutive cycles until a backcross progeny was developed. The chromosome constitution of the regenerated hybrids was analysed using genomic in situ hybridization (GISH) after each in vitro multiplication cycle. The seven barley chromosomes were present even after the third in vitro multiplication cycle but abnormalities were observed. Sixteen BC; plants containing, according to GfSH analysis, one to three complete barley chromosomes, two deletion barley chromosomes and a dicentric wheat‐barley translocation were grown to maturity from the single backcross progeny. The barley chromatin was identified using 20 chromosome‐specific barley SSR markers. All seven barley chromosomes were represented in the BC: plants. A deletion breakpoint at FL ±0,3 on the 5HL chromosome arm facilitated the physical localization of microsatellite markers.  相似文献   

4.
Genetic analysis of resistance in barley to barley yellow dwarf virus   总被引:1,自引:0,他引:1  
J. Ovesná    J. Vacke    L. Kucera    J. Chrpová    I. Nováková    A. Jahoor  V. &#;ip 《Plant Breeding》2000,119(6):481-486
The inheritance of resistance to barley yellow dwarf virus (BYDV) was studied in the selected 24 spring and winter barley cultivars that showed a high or intermediate resistance level in 1994‐97 field infection tests. The polymerase chain reaction diagnostic markers YLM and Ylp were used to identify the resistance gene Yd2. The presence of the Yd2 gene was detected with both markers in all the resistant spring barley cultivars and lines from the CIMMYT/ICARDA BYDV nurseries. The results of field tests and genetic analyses in winter barley corresponded with marker analyses only when the Ylp marker was used. Genes non‐allelic with Yd2 were detected by genetic analyses and the Ylp marker in moderately resistant spring barley cultivars ‘Malvaz’, ‘Atribut’ and ‘Madras’, and in the winter barley cultivars ‘Perry’ and ‘Sigra’. Significant levels of resistance to BYDV were obtained by combining the resistance gene Yd2 with genes detected in moderately resistant cultivars. The utilization of analysed resistance sources in barley breeding is discussed.  相似文献   

5.
许如根  吕超  缪丽霞  莫惠栋 《作物学报》2005,31(12):1537-1543
研究了大麦4种杂交类型(含二棱×二棱、二棱×六棱、六棱×二棱和六棱×六棱)的F1杂种的性状表现和优势特征,比较了同棱型相配组(二棱×二棱和六棱×六棱)和异棱型相配组(二棱×六棱和六棱×二棱)的超高亲优势(Hh)组合数及其出现率。研究性状包括株高、穗长、穗下节间长、穗数、粒数、粒重、籽粒产量、籽粒蛋白质含量和赖氨酸含量等13个.结果表明,(1)二棱×二棱杂种的穗长较长、每株穗数较多、千粒重较高;六棱×六棱杂种的每穗粒数、每株粒数较多、籽粒产量较高;而异棱型相配杂种则比同棱型相配组有较高的株高、穗下节间长和千粒重。(2)4种杂交类型杂种的类型内杂种间变异,在大多数性状上均为同质,仅有株高、穗长和主穗粒数在六棱×六棱杂种中变异增大,有较大的选择潜力。(3)在13个数量性状中,有9个性状的Hh优势出现率与杂交类型显著关联;株高、穗下节间长和千粒重的Hh优势出现率在二棱×六棱和/或六棱×二棱杂种中最高,而主穗粒数、每穗粒数、每株粒数、每粒重和每株干重的Hh优势出现率则在六棱×六棱和/或六棱×二棱杂种中最高。(4)异棱型相配组杂种的株高、穗下节间长和千粒重的Hh优势率显著高于同棱型相配组杂种,依次为20/30对8/33、30/30对18/33和22/30对5/33;但同棱型相配组杂种籽粒产量的Hh优势率显著高于异棱型相配组杂种,为10/33对2/30。说明异棱型杂种易产生生物量和千粒重优势,而同棱型杂种易产生籽粒产量优势。  相似文献   

6.
In order to determine the genetic relatedness of individual barley chromosomes to wheat chromosomes, ‘Betzes’ barley chromosomes 1, 3 and 6 were substituted for individual ‘Chinese Spring’ wheat chromosomes of homoeologous groups 7, 3 and 6, respectively. The substitution status of these lines has been confirmed using isozyme selective markers, chromosome pairing behaviour in F1 hybrids between the substitution lines and the appropriate double ditelocentric stocks of wheat, and hybridization of cDNA probes to the genomic DNA digests of these substitution lines. Each of the three barley chromosomes provided genetic compensation for the wheat chromosomes they replaced in the substitution plants. From the basis of this compensation with respect to plant vigour and fertility, barley chromosomes 1, 3 and 6 have been designated 7H, 3H and 6H.  相似文献   

7.
Twenty‐two wheat cultivars and a wheat line were analysed with two‐colour fluorescence in situ hybridization (FISH) using the pSc119.2 and pAs1 repetitive DNA clones to detect if polymorphism could be observed in the hybridization patterns of different wheat cultivars. The FISH hybridization pattern of ‘Chinese Spring’ was compared with wheat cultivars of different origins. Differences were observed in the hybridization patterns of chromosomes 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 1D, 2D, 3D and 4D. Although a low level of polymorphism exists in the FISH pattern of different wheat cultivars, it is possible to identify 17 pairs of chromosomes according to their hybridization patterns with these two probes. This study will help to predict the expected variation in the FISH pattern when analysing wheat genetic stocks of different origin. It is presumed that variation in hybridization patterns are caused by chromosome structural rearrangements and by differences in the amount and location of repetitive sequences in the cultivars analysed.  相似文献   

8.
Mapping quantitative trait loci (QTLs) responsible for malting quality traits in barley populations has been the main genetic approach to malting quality breeding. A ‘winter × spring’ doubled haploid barley population ‘Nure’ × ‘Tremois’, where such traits were segregating, has been recently developed. Our objective was to map QTLs for malting quality from 2 years of trials in two contrasting locations. QTLs were found on six chromosomes, with a main cluster on chromosome 1H. For wort viscosity and malt extract, favourable alleles at two loci on chromosome 5H were carried by the winter feeding parent ‘Nure’. Doubled‐haploids with higher quality than the spring malting cultivar ‘Tremois’ showed either a facultative or a winter growth habit and a level of frost tolerance comparable with that of the winter tolerant parent ‘Nure’. Markers and QTLs of quality traits were further validated on a separate set of DH lines, coming from the same cross, by means of marker‐assisted selection. This showed that, at least in the present cross combination, positive contributions to malting quality can be found in winter feed barley.  相似文献   

9.
K. K. Nkongolo    K. C. Armstrong    A. Comeau    C. A. St.  Pierre 《Plant Breeding》1992,109(2):123-129
Common wheat × hexaploid triticale hybrids were produced and evaluated for tolerance to barley yellow dwarf virus disease (BYD). The BYD tolerance expression varied with wheat × triticale combination. The selection for BYD tolerance increased the recovery of tolerant genotypes in the next generations. Homozygous tolerant and susceptible lines were obtained in advanced generations. The rye chromosomes 1R, 2R, and 4R with 7R were transmitted as disomic or monosomic, disomic, and double disomic substitution to the late generations of ‘Musala’ (common wheat) בMuskox 658’ (triticale), ‘Encruzilhada’ (common wheat) בNord Kivu’ (triticale) and ‘Encruzilhada’× 12th. International Triticale Screening Nursery 267 (12ITSN267) (triticale), respectively. A clear association was established between the 1R chromosome of the ‘Muskox 658’ triticale line and the tolerance to BYDV. Results suggest that the 2R chromosome may be involved in BYD tolerance of ‘Nord Kivu’ triticale line.  相似文献   

10.
Manganese (Mn) deficiency is a major constraint of alkaline soils around the world, particularly for cultivation of durum wheat, which is more intolerant of low Mn levels than either common wheat or barley. Genetic variation for Mn efficiency exists in the current germplasm of durum wheat. Several restriction fragment length polymorphisms (RFLPs) previously shown to be linked to the Mel1 locus for Mn efficiency on chromosome 4HS of barley were tested on 88 selected F2 plants of the durum cross, ‘Stojocri 2’ (Mn efficient) בHazar’ (Mn inefficient). The Mel1‐linked RFLP marker Xcdo583a was closely linked to the trait and explained over 42% of the total variation for Mn efficiency in the ‘Stojocri 2’/‘Hazar’ F2 progeny. This marker has the potential to provide a valuable tool for the marker‐assisted selection of Mn‐efficient durum progeny derived from crosses with ‘Stojocri 2’.  相似文献   

11.
Accurate assessments of genetic gains ensuing from plant breeding for the most important agronomic characteristics in Nordic spring barley (Hordeum vulgareL.) are not available. Hence this research was aimed to determine the rate of genetic improvement in the Nordic barley breeding pool. This study included 90, 2-row spring barley cultivars released (1942–1988) and29, 6-row spring barley cultivars released(1930–1991) adopted by Nordic farmers that were tested in four Nordic locations for three consecutive years. Relative genetic gain owing to plant breeding was 13% in2-row barley and 34% in 6-row barley for grain yield. The absolute gain for this characteristic was 13 ± 3 kg ha-1 year -1 in 2-row barley, and22 ± 3 kg ha-1 year-1 in6-row barley. Improved yield was achieved in Nordic barley by reducing plant height(0.20 ± 0.04 cm year-1 for 2-rowbarley and 0.16 ± 0.06 cm year-1for 6-row cultivars), thereby reducing significantly lodging (0.5 ± 0.1%year-1 and 0.4 ± 0.1year-1), and increasing significantly the harvest index (0.0008 ± 0.0002year-1 and 0.0018 ± 0.0002year-1). Additionally, in 2-row spring barley cultivars resistance to powdery mildew (0.19 ± 0.08% year-1)and thousand-kernel weight (0.07 ±0.03 g year-1) were also significantly enhanced, whereas hectoliter weight was improved (0.06 ± 0.02 kg year-1)in 6-row barley cultivars in the period investigated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Anther culture (AC) was carried out on a fertile triploid hybrid between Hordeum vulgare L. (cultivated barley) and H. bulbosum L, (bulbous barley grass) to determine whether AC-derived regenerants differed from progeny obtained through selfing and backcrossing. Chromosome counts were carried out on all plants and DNA was extracted from them to prepare Southern blots for molecular analysis. To identify true recombinants, the blots were probed with rye repetitive sequence probes (pSc119.1 and pScl19.2). which hybridize strongly and specifically to H. bulbosum DNA. Twenty probes that detect single- or low-copy sequences were hybridized with Southern blots containing restricted DNA extracted from 25 AC-derived plants, 11 selfed and six backcrossed progeny that showed hybridizations with pScll9. Although restriction fragment length polymorphisms (RFLPs) were only observed using probes that map to four of the possible 14 chromosome arms, an introgression associated with chromosome 6HS was frequently observed among plants derived from AC. selfing and backcrossing. Plants from AC differed from selfed and backcrossed progeny in their chromosome number; unique RFLP bands that were occasionally observed may indicate chromosomal rearrangements.  相似文献   

13.
The 1AL.1RS wheat-rye chromosomal translocation originally found in ‘Amigo’ wheat possesses resistance genes for stem rust, powdery mildew and greenbug biotypes B and C, but also has a negative effect on wheat processing quality. Recently, a second 1AL.1RS translocation carrying Gb6, a gene conferring resistance to greenbug biotypes B, C, E, G and I, was identified in the wheat germplasm line ‘GRS1201′. Protein analytical methods, and the DNA polymerase chain reaction were used to identify markers capable of differentiating the 1RS chromosome arms derived from ‘Amigo’ and ‘GRS1201′. The secalin proteins encoded by genes on 1RS chromosome arms differed in ‘Amigo’ and ‘GRS1201′. A 70 kDa secalin was found in the ‘Amigo’1AL.1RS, but did not occur in the ‘GRS1201’1AL.1RS. Polymorphisms detected by PCR primers derived from a family of moderately repetitive rye DNA sequences also differentiated the two translocations. When ‘GRS1201’was mated with a non-1RS wheat, no recombinants between 1RS markers were observed. In crosses between 1RS and non-1RS parents, both DNA markers and secalins would be useful as selectable markers for 1RS-derived greenbug resistance. Recombination between 1RS markers did occur when 1RS from ‘Amigo’ and 1RS from ‘GRS1201’were combined, but in such intermatings, the molecular markers described herein could still be used to develop a population enriched in lines carrying Gb6. No differences in grain yield or grain and flour quality characteristics were observed when lines carrying 1RS from ‘Amigo’ were compared with lines with 1RS from ‘GRS1201′. Hence, differences in secalin composition did not result in differential quality effects. When compared with sister lines with 1AL.1AS derived from the wheat cultivar ‘Redland’, lines with ‘GRS1201’had equal grain yield, but produced flours with significantly shorter mix times, weaker doughs, and lower sodium dodecyl sulphate sedimentation volumes.  相似文献   

14.
Variation in agronomic and quality characteristics was investigated in 220 Nordic spring barley cultivars across distinct environments (6 locations during 3 years) in the Nordic Region of Europe. The objectives of this research were to determine the importance of the genotype by environment interaction in all characteristics evaluated and to establish the relationship among different stability statistics for grain yield. Combined analysis of variance across locations indicated that both environments and genotype by environment interactions influenced significantly the cultivar phenotypes for all characteristics, irrespective of their type (row number) or earliness. The first two interaction principal component axes of the additive-main-effects-and-multiplicative-interaction (AMMI) model accounted together between 35% and 75% of the total genotype-by-environment interaction for all characteristics. Grain yield was, on average, higher in 2-row than in 6-row cultivars, which were significantly earlier in heading and grain maturity than the former. However, in some of the most northern locations, 6-row barley cultivars significantly outyielded on average 2-row barley lines. The genotype by location interaction variance (σ2 GL) accounted by each genotype was significantly associated to the deviation from regression (Tai's λ) while the coefficient of regression (β) was significantly correlated to the IPCA1 and IPCA2 of the AMMI model in 2-row, 6-row and early barley cultivars. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
T. Cardi  M. Mazzei  L. Frusciante 《Euphytica》2002,124(1):111-119
A phenotypic diversity index (PDI) was calculated using 10 agronomiccharacteristics recorded in 90 accessions of 2-row spring barleys and 29accessions of 6-row spring barleys grown in the Nordic Region. The PDIranged from 0.0308 to 0.6245 in 2-row barley accessions and from0.0314 to 0.7016 in 6-row barley accessions. The average PDIs were0.2178 and 0.2438 in 2-row and 6-row barley germplasm, which confirmsthat some older cultivars were parents of newer cultivars. The lowest PDIwas between accessions with the same name, which suggest that irrespectiveof their market source, they were the same cultivars. The largest PDI rangesin 2-row barley cultivars within the same country or release decade werecorrelated to the number of accessions in the respective cluster, whichsuggests that phenotypic diversity in this germplasm depends on the numberof cultivars included in the cluster. However, this association was not alwaysobserved in 6-row barley cultivars. The most distinct 2-row cultivars wereArla and Akka from Sweden, whereas Sigur and Tampa from Iceland werethe most distinct 6-row cultivars as determined by both PDI and averagelinkage cluster analysis. This analysis also confirm that the 2-row barleyaccessions Jenny, Triumph, and Vega, which were obtained from twodistinct market sources, and the 6-row barley accessions under the nameAgneta (but from three market sources) were the same. The analysis ofvariance of the PDI indicates that 6-row germplasm may be clusteredaccording to their geographical origin or decade of release, but this was notobserved in 2-row barley germplasm. This research demonstrates theadvantage of PDI to assess variation among breeding pools.  相似文献   

16.
Powdery mildew resistance in Czech and Slovak barley cultivars   总被引:5,自引:0,他引:5  
Fifteen powdery mildew resistance genes and the gene MlaN81 derived from ‘Nepal 81’were found in 76 Czech and Slovak spring and winter barley cultivars when tested for reaction to a set of powdery mildew isolates. Nine cultivars (‘Donum’, ‘Expres’, ‘Jubilant’, ‘Orbit’, ‘Primus’, ‘Progres’, ‘Stabil’, ‘Vladan’ and ‘Zlatan’) are composed of lines with different resistance genes. The Mlat gene is present in nine cultivars and was transferred from the Anatolian landrace ‘A‐516′. The resistances derived from ‘KM‐1192’and ‘CI 7672’were identical and designated Ml(Kr). Five winter barley cultivars possess the Ml(Bw) resistance. The winter barley line ‘KM‐2099’carries the mlo gene. The parental cultivar ‘Palestine 10’was also tested in which the genes Mlk1, MlLa were identified. The German cultivar ‘Salome’, a parent of seven cultivars tested, probably carries the gene MlLa in addition to mlo and Mla7. The gene mlo6 may be present in the cultivar ‘Heris’. Most of the results were confirmed by the pedigrees of the cultivars.  相似文献   

17.
I. Leonova    E. Pestsova    E. Salina    T. Efremova    M. Röder  A. Börner  G. Fischbeck 《Plant Breeding》2003,122(3):209-212
An F2 population segregating for the dominant gene Vrn‐B1 was developed from the cross of the substitution line ‘Diamant/'Miro‐novskaya 808 5A’ and the winter wheat cultivar ‘Bezostaya 1′. Microsatellite markers (Xgwm and Xbarc) with known map locations on chromosome 5B of common wheat were used for mapping the gene Vrn‐B1. Polymorphism between parental varieties was observed for 28 out of 34 microsatellite markers (82%). Applying the quantitative trait loci mapping approach, the target gene was mapped on the long arm of chromosome 5B, closely linked to Xgwm408. The map position of Vrn‐B1 suggests that the gene is homoeologous to other vernalization response genes located on the homoeologous group 5 chromosomes of wheat, rye and barley.  相似文献   

18.
Stem rust of wheat (caused by Puccinia graminis f.sp. tritici) gained high international attention in the last two decades, but does not occur regularly in Germany. Motivated by a regional epidemic in 2013, we analysed 15 spring and 82 winter wheat cultivars registered in Germany for their resistance to stem rust at the seedling stage and tested 79 of these winter wheat cultivars at the adult‐plant stage. A total of five seedling stem rust resistance genes were postulated: Sr38 occurred most frequently (n = 29), followed by Sr31 (n = 11) and Sr24 (n = 8). Sr7a and Sr8a occurred only in two spring wheat genotypes each. Four cultivars had effective seedling resistance to all races evaluated that could only be explained by postulating additional resistance genes (‘Hyland’, ‘Pilgrim PZO’, ‘Tybalt’) or unidentified gene(s) (‘Memory’). The three winter wheat cultivars (‘Hyland’ ‘Memory’ and ‘Pilgrim PZO’) were also highly resistant at the adult‐plant stage; ‘Tybalt’ was not tested. Resistance genes Sr24 and Sr31 highly protected winter wheat cultivars from stem rust at the adult‐plant stage in the field. Disease responses of cultivars carrying Sr38 varied. Mean field stem rust severity of cultivars without postulated seedling resistance genes ranged from 2.71% to 41.51%, nine of which were significantly less diseased than the most susceptible cultivar. This suggests adult‐plant resistance to stem rust may be present in German wheat cultivars.  相似文献   

19.
为分析小麦品种抗倒春寒能力与其柱头活力及花粉活性间的关联性,以5个黄淮麦区主导小麦品种为试验材料,杂交时互为母本和父本,去雄后1、3、5、7、9天进行饱和授粉,成熟收获后统计各杂交组合的杂交结实率,以各品种作为母本、父本时的平均杂交结实率分别代表该品种柱头活力及花粉活性。试验结果表明:当5个小麦品种为母本时:平均杂交结实率由高到低依次是‘周麦18’、‘百农207’、‘西农979’、‘良星99’和‘偃师4110’,‘周麦18’的平均杂交结实率最高为72.13%,柱头活力最强;‘百农207’的平均杂交结实率居第2位,与‘周麦18’的平均杂交结实率差异不显著;‘周麦18’的平均杂交结实率与‘西农979’、‘良星99’和‘偃师4110’的平均杂交结实率差异达极显著水平。当5个小麦品种为父本时:平均杂交结实率由高到低依次是‘百农207’、‘周麦18’、‘偃师4110’、‘西农979’和‘良星99’,‘百农207’的平均杂交结实率最高为72.00%,花粉活性最强;‘周麦18’的平均杂交结实率居第2位,与‘百农207’的平均杂交结实率差异不显著;‘百农207’、‘周麦18’的平均杂交结实率与‘偃师4110’、‘西农979’和‘良星99’的平均杂交结实率差异达极显著水平。  相似文献   

20.
In order to identify the chromosome arm carrying a gene for resistance to barley mild mosaic virus (BaMMV) in German winter barley cultivars, a line trisomic for the long arm of chromosome 3 (telo-trisomic 3L) was crossed to the resistant cvs. ‘Sonate’ and ‘Ogra’. Results of tests for BaMMV reaction in the F2 indicate that the gene for resistance in German cultivars is located on the long arm of chromosome 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号