首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Marine fungi represent a huge potential for new natural products and an increased number of new metabolites have become known over the past years, while much of the hidden potential still needs to be uncovered. Representative examples of biodiversity studies of marine fungi and of natural products from a diverse selection of marine fungi from the author’s lab are highlighting important aspects of this research. If one considers the huge phylogenetic diversity of marine fungi and their almost ubiquitous distribution, and realizes that most of the published work on secondary metabolites of marine fungi has focused on just a few genera, strictly speaking Penicillium, Aspergillus and maybe also Fusarium and Cladosporium, the diversity of marine fungi is not adequately represented in investigations on their secondary metabolites and the less studied species deserve special attention. In addition to results on recently discovered new secondary metabolites of Penicillium species, the diversity of fungi in selected marine habitats is highlighted and examples of groups of secondary metabolites produced by representatives of a variety of different genera and their bioactivities are presented. Special focus is given to the production of groups of derivatives of metabolites by the fungi and to significant differences in biological activities due to small structural changes.  相似文献   

2.
Dust has been widely recognised as an important source of nutrients in the marine environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous Plankton Recorder collected masses of fungal spores and mycelia (~150,000 spores/m3) forming a floating raft that covered a coastal area equivalent to 25 times the surface of England. Cultured A. sydowii strains exhibited varying metabolite profiles, but all produced sydonic acid, a chemotaxonomic marker for A. sydowii. The Australian marine fungal strains share major metabolites and display comparable metabolic diversity to Australian terrestrial strains and to strains pathogenic to Caribbean coral. Secondary colonisation of the rafts by other fungi, including strains of Cladosporium, Penicillium and other Aspergillus species with distinct secondary metabolite profiles, was also encountered. Our bioassays revealed that the dust-derived marine fungal extracts and known A. sydowii metabolites such as sydowic acid, sydowinol and sydowinin A adversely affect photophysiological performance (Fv/Fm) of the coral reef dinoflagellate endosymbiont Symbiodinium. Different Symbiodinium clades exhibited varying sensitivities, mimicking sensitivity to coral bleaching phenomena. The detection of such large amounts of A. sydowii following this dust storm event has potential implications for the health of coral environments such as the Great Barrier Reef.  相似文献   

3.
Bioassay-guided fractionation of extracts from temperate Australian collections of the marine sponge Pseudoceratina purpurea resulted in the isolation and characterisation of two new and six known bromotyrosine-derived alkaloids with antibiotic activity. Surprisingly, a single specimen of the mollusc Tylodina corticalis, which was collected while feeding on P. purpurea, contained only a few of the compounds found in the sponge suggesting selective accumulation and chemical modification of sponge metabolites.  相似文献   

4.
Forty four marine actinomycetes of the family Microccocaceae isolated from sponges collected primarily in Florida Keys (USA) were selected from our strain collection to be studied as new sources for the production of bioactive natural products. A 16S rRNA gene based phylogenetic analysis showed that the strains are members of the genera Kocuria and Micrococcus. To assess their biosynthetic potential, the strains were PCR screened for the presence of secondary metabolite genes encoding nonribosomal synthetase (NRPS) and polyketide synthases (PKS). A small extract collection of 528 crude extracts generated from nutritional microfermentation arrays was tested for the production of bioactive secondary metabolites against clinically relevant strains (Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumannii and Candida albicans). Three independent isolates were shown to produce a new anti-MRSA bioactive compound that was identified as kocurin, a new member of the thiazolyl peptide family of antibiotics emphasizing the role of this family as a prolific resource for novel drugs.  相似文献   

5.
Two unusual pyridones, trichodin A (1) and trichodin B (2), together with the known compound, pyridoxatin (3), were extracted from mycelia and culture broth of the marine fungus, Trichoderma sp. strain MF106 isolated from the Greenland Seas. The structures of the new compounds were characterized as an intramolecular cyclization of a pyridine basic backbone with a phenyl group. The structure and relative configuration of the new compounds were established by spectroscopic means. The new compound 1 and the known compound 3 showed antibiotic activities against the clinically relevant microorganism, Staphylococcus epidermidis, with IC50 values of 24 μM and 4 μM, respectively.  相似文献   

6.
External otitis is a diffuse inflammation around the external auditory canal and auricle, which is often occurred by microbial infection. This disease is generally treated using antibiotics, but the frequent occurrence of antibiotic resistance requires the development of new antibiotic agents. In this context, unexplored bioactive natural candidates could be a chance for the production of targeted drugs provided with antimicrobial activity. In this paper, microbial pathogens were isolated from patients with external otitis using ear swabs for over one year, and the antimicrobial activity of the two methanol extracts from selected marine (Dunaliella salina) and freshwater (Pseudokirchneriella subcapitata) microalgae was tested on the isolated pathogens. Totally, 114 bacterial and 11 fungal strains were isolated, of which Staphylococcus spp. (28.8%) and Pseudomonas aeruginosa (P. aeruginosa) (24.8%) were the major pathogens. Only three Staphylococcus aureus (S. aureus) strains and 11 coagulase-negative Staphylococci showed resistance to methicillin. The two algal extracts showed interesting antimicrobial properties, which mostly inhibited the growth of isolated S. aureus, P. aeruginosa, Escherichia coli, and Klebsiella spp. with MICs range of 1.4 × 109 to 2.2 × 1010 cells/mL. These results suggest that the two algae have potential as resources for the development of antimicrobial agents.  相似文献   

7.
Some microbial species are chemically homogenous, and the same secondary metabolites are found in all strains. In contrast, we previously found that five strains of P. luteoviolacea were closely related by 16S rRNA gene sequence but produced two different antibiotic profiles. The purpose of the present study was to determine whether such bioactivity differences could be linked to genotypes allowing methods from phylogenetic analysis to aid in selection of strains for biodiscovery. Thirteen P. luteoviolacea strains divided into three chemotypes based on production of known antibiotics and four antibacterial profiles based on inhibition assays against Vibrio anguillarum and Staphylococcus aureus. To determine whether chemotype and inhibition profile are reflected by phylogenetic clustering we sequenced 16S rRNA, gyrB and recA genes. Clustering based on 16S rRNA gene sequences alone showed little correlation to chemotypes and inhibition profiles, while clustering based on concatenated 16S rRNA, gyrB, and recA gene sequences resulted in three clusters, two of which uniformly consisted of strains of identical chemotype and inhibition profile. A major time sink in natural products discovery is the effort spent rediscovering known compounds, and this study indicates that phylogeny clustering of bioactive species has the potential to be a useful dereplication tool in biodiscovery efforts.  相似文献   

8.
Increased interest in marine resources has led to increased screening of marine fungi for novel bioactive compounds and considerable effort is being invested in discovering these metabolites. For compound discovery, small-scale cultures are adequate, but agitated bioreactors are desirable for larger-scale production. Calcarisporium sp. KF525 has recently been described to produce calcaride A, a cyclic polyester with antibiotic activity, in agitated flasks. Here, we describe improvements in the production of calcaride A in both flasks (13-fold improvement) and stirred bioreactors (200-fold improvement). Production of calcaride A in bioreactors was initially substantially lower than in shaken flasks. The cultivation pH (reduced from 6.8 to <5.4), carbon source (sucrose replacing glucose), C/N ratio and nature of mycelial growth (pellets or filaments) were important in improving calcaride A production. Up to 4.5 mg·g−1 biomass (85 mg·L−1) calcaride A were produced in the bioreactor, which was only slightly less than in shaken flasks (14 mg·g−1, 100 mg·L−1). The results demonstrate that a scalable process for calcaride A production could be developed using an iterative approach with flasks and bioreactors.  相似文献   

9.
Ascidians have developed multiple defensive strategies mostly related to physical, nutritional or chemical properties of the tunic. One of such is chemical defense based on secondary metabolites. We analyzed a series of colonial Antarctic ascidians from deep-water collections belonging to the genera Aplidium and Synoicum to evaluate the incidence of organic deterrents and their variability. The ether fractions from 15 samples including specimens of the species A. falklandicum, A. fuegiense, A. meridianum, A. millari and S. adareanum were subjected to feeding assays towards two relevant sympatric predators: the starfish Odontaster validus, and the amphipod Cheirimedon femoratus. All samples revealed repellency. Nonetheless, some colonies concentrated defensive chemicals in internal body-regions rather than in the tunic. Four ascidian-derived meroterpenoids, rossinones B and the three derivatives 2,3-epoxy-rossinone B, 3-epi-rossinone B, 5,6-epoxy-rossinone B, and the indole alkaloids meridianins A–G, along with other minoritary meridianin compounds were isolated from several samples. Some purified metabolites were tested in feeding assays exhibiting potent unpalatabilities, thus revealing their role in predation avoidance. Ascidian extracts and purified compound-fractions were further assessed in antibacterial tests against a marine Antarctic bacterium. Only the meridianins showed inhibition activity, demonstrating a multifunctional defensive role. According to their occurrence in nature and within our colonial specimens, the possible origin of both types of metabolites is discussed.  相似文献   

10.
In our search for quorum-sensing (QS) disrupting molecules, 75 fungal isolates were recovered from reef organisms (endophytes), saline lakes and mangrove rhizosphere. Their QS inhibitory activity was evaluated in Chromobacterium violaceum CVO26. Four strains of endophytic fungi stood out for their potent activity at concentrations from 500 to 50 μg mL−1. The molecular characterization, based on the internal transcribed spacer (ITS) region sequences (ITS1, 5.8S and ITS2) between the rRNA of 18S and 28S, identified these strains as belonging to four genera: Sarocladium (LAEE06), Fusarium (LAEE13), Epicoccum (LAEE14), and Khuskia (LAEE21). Interestingly, three came from coral species and two of them came from the same organism, the coral Diploria strigosa. Metabolic profiles obtained by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) suggest that a combination of fungal secondary metabolites and fatty acids could be the responsible for the observed activities. The LC-HRMS analysis also revealed the presence of potentially new secondary metabolites. This is, to the best of our knowledge, the first report of QS inhibition by marine endophytic fungi.  相似文献   

11.
An LC-MS-based metabolomics approach was used to characterise the variation in secondary metabolite production due to changes in the salt content of the growth media as well as across different growth periods (incubation times). We used metabolomics as a tool to investigate the production of rifamycins (antibiotics) and other secondary metabolites in the obligate marine actinobacterial species Salinispora arenicola, isolated from Great Barrier Reef (GBR) sponges, at two defined salt concentrations and over three different incubation periods. The results indicated that a 14 day incubation period is optimal for the maximum production of rifamycin B, whereas rifamycin S and W achieve their maximum concentration at 29 days. A “chemical profile” link between the days of incubation and the salt concentration of the growth medium was shown to exist and reliably represents a critical point for selection of growth medium and harvest time.  相似文献   

12.
The search for new antimicrobial compounds has gained added momentum in recent years, paralleled by the exponential rise in resistance to most known classes of current antibiotics. While modifications of existing drugs have brought some limited clinical success, there remains a critical need for new classes of antimicrobial compound to which key clinical pathogens will be naive. This has provided the context and impetus to marine biodiscovery programmes that seek to isolate and characterize new activities from the aquatic ecosystem. One new antibiotic to emerge from these initiatives is the antibacterial compound tropodithietic acid (TDA). The aim of this study was to provide insight into the bioactivity of and the factors governing the production of TDA in marine Pseudovibrio isolates from a collection of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent antimicrobial activity against a broad spectrum of clinical pathogens, while TDA tolerance was frequent in non-TDA producing marine isolates. Comparative genomics analysis suggested a high degree of conservation among the tda biosynthetic clusters while expression studies revealed coordinated regulation of TDA synthesis upon transition from log to stationary phase growth, which was not induced by TDA itself or by the presence of the C10-acyl homoserine lactone quorum sensing signal molecule.  相似文献   

13.
Two novel cyclodepsipeptides containing an unusual anthranilic acid dimer and a d-phenyllactic acid residues, clavatustides A (1) and B (2), were identified from cultured mycelia and broth of Aspergillus clavatus C2WU isolated from Xenograpsus testudinatus, which lives at extreme, toxic habitat around the sulphur-rich hydrothermal vents in Taiwan Kueishantao. This is the first example of cyclopeptides containing an anthranilic acid dimer in natural products, and the first report of microbial secondary metabolites from the hydrothermal vent crab. Clavatustides A (1) and B (2) suppressed the proliferation of hepatocellular carcinoma (HCC) cell lines (HepG2, SMMC-7721 and Bel-7402) in a dose-dependent manner, and induced an accumulation of HepG2 cells in G1 phase and reduction of cells in S phase.  相似文献   

14.
Recent developments in marine drug discovery from three South African marine invertebrates, the tube worm Cephalodiscus gilchristi, the ascidian Lissoclinum sp. and the sponge Topsentia pachastrelloides, are presented. Recent reports of the bioactivity and synthesis of the anti-cancer secondary metabolites cephalostatin and mandelalides (from C. gilchristi and Lissoclinum sp., respectively) and various analogues are presented. The threat of drug-resistant pathogens, e.g., methicillin-resistant Staphylococcus aureus (MRSA), is assuming greater global significance, and medicinal chemistry strategies to exploit the potent MRSA PK inhibition, first revealed by two marine secondary metabolites, cis-3,4-dihydrohamacanthin B and bromodeoxytopsentin from T. pachastrelloides, are compared.  相似文献   

15.
Polyketide 13 [=2-hydroxy-5-((6-hydroxy-4-oxo-4H-pyran-2-yl)methyl)-2-propylchroman-4-one] and three related known compounds 7, 9 and 11 were obtained and structurally characterized from Streptomyces sundarbansensis strain, an endophytic actinomycete isolated from the Algerian marine brown algae Fucus sp. Compound 13 was obtained as the major metabolite from optimized culture conditions, by using Agar state fermentation. Due to tautomeric equilibrium, 13 in CD3OD solution was able to incorporate five deuterium atoms, as deduced by NMR and ESI-MS/MS analysis. The 2-hydroxy-γ-pyrone form was established for these metabolites based on the comparison of their experimental IR spectra with the DFT calculated ones, for both the corresponding 4-hydroxy-α-pyrone and 2-hydroxy-γ-pyrone forms. During antibacterial evaluation, compound 13 stood out as the most active of the series, showing a selective activity against the gram positive pathogenic methicillin-resistant S. aureus (MRSA, MIC = 6 μΜ), with a bacteriostatic effect.  相似文献   

16.
The ocean is a rich resource of flora, fauna, and food. A wild-type bacterial strain showing confluent growth on marine agar with antibacterial activity was isolated from marine water, identified using 16S rDNA sequence analysis as Pseudoalteromonas sp., and designated as strain M2. This strain was found to produce various secondary metabolites including quinolone alkaloids. Using high-resolution mass spectrometry (MS) and nuclear magnetic resonance (NMR) analysis, we identified nine secondary metabolites of 4-hydroxy-2-alkylquinoline (pseudane-III, IV, V, VI, VII, VIII, IX, X, and XI). Additionally, this strain produced two novel, closely related compounds, 2-isopentylqunoline-4-one and 2-(2,3-dimetylbutyl)qunoline-4-(1H)-one, which have not been previously reported from marine bacteria. From the metabolites produced by Pseudoalteromonas sp. M2, 2-(2,3-dimethylbutyl)quinolin-4-one, pseudane-VI, and pseudane-VII inhibited melanin synthesis in Melan-A cells by 23.0%, 28.2%, and 42.7%, respectively, wherein pseudane-VII showed the highest inhibition at 8 µg/mL. The results of this study suggest that liquid chromatography (LC)-MS/MS-based metabolite screening effectively improves the efficiency of novel metabolite discovery. Additionally, these compounds are promising candidates for further bioactivity development.  相似文献   

17.
The marine environment is an important source of structurally-diverse and biologically-active secondary metabolites. During the last two decades, thousands of compounds were discovered in marine organisms, several of them having inspired the development of new classes of therapeutic agents. Marine mollusks constitute a successful phyla in the discovery of new marine natural products (MNPs). Over a 50-year period from 1963, 116 genera of mollusks contributed innumerous compounds, Aplysia being the most studied genus by MNP chemists. This genus includes 36 valid species and should be distinguished from all mollusks as it yielded numerous new natural products. Aplysia sea hares are herbivorous mollusks, which have been proven to be a rich source of secondary metabolites, mostly of dietary origin. The majority of secondary metabolites isolated from sea hares of the genus Aplysia are halogenated terpenes; however, these animals are also a source of compounds from other chemical classes, such as macrolides, sterols and alkaloids, often exhibiting cytotoxic, antibacterial, antifungal, antiviral and/or antifeedant activities. This review focuses on the diverse structural classes of secondary metabolites found in Aplysia spp., including several compounds with pronounced biological properties.  相似文献   

18.
Iron, as inorganic ion or as oxide, is widely used by biological systems in a myriad of biological functions (e.g., enzymatic, gene activation and/or regulation). In particular, marine organisms containing silica structures—diatoms and sponges—grow preferentially in the presence of iron. Using primary sponge cell culture from S. domuncula–primmorphs—as an in vitro model to study the Demospongiae spiculogenesis, we found the presence of agglomerates 50 nm in diameter exclusively inside sponge specialized cells called sclerocytes. A clear phase/material separation is observed between the agglomerates and the initial stages of intracellular spicule formation. STEM-HRTEM-EDX analysis of the agglomerates (30–100 nm) showed that they are composed of pseudohexagonal nanoparticles between 5 and 15 nm in size, displaying lattice parameters corresponding to hematite (Fe2O3) and mixed iron oxide phases typically attributed to ferritin. Further analysis, using western blotting, inductively coupled plasma mass spectrometry (ICP-MS), sequence alignment analysis, immunostaining and magnetic resonance imaging (MRI), of mature spicule filaments confirm the presence of ferritin within these organic structures. We suggest that S. domuncula can be classified as a dual biomineralizating organism, i.e., within the same cellular structure two distinct biomineralizing processes can occur as a result of the same cellular/metabolic function, spiculogenesis.  相似文献   

19.
During our search for new natural products from the marine environment, we discovered a wide range of cyclic peptides from a marine Photobacterium, closely related to P. halotolerans. The chemical fingerprint of the bacterium showed primarily non-ribosomal peptide synthetase (NRPS)-like compounds, including the known pyrrothine antibiotic holomycin and a wide range of peptides, from diketopiperazines to cyclodepsipeptides of 500–900 Da. Purification of components from the pellet fraction led to the isolation and structure elucidation of four new cyclodepsipeptides, ngercheumicin F, G, H, and I. The ngercheumicins interfered with expression of virulence genes known to be controlled by the agr quorum sensing system of Staphylococcus aureus, although to a lesser extent than the previously described solonamides from the same strain of Photobacterium.  相似文献   

20.
Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term “cytotoxicity” to be synonymous with “anticancer agent”, which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号