首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The field of semiconductor spintronics explores spin-related quantum relativistic phenomena in solid-state systems. Spin transistors and spin Hall effects have been two separate leading directions of research in this field. We have combined the two directions by realizing an all-semiconductor spin Hall effect transistor. The device uses diffusive transport and operates without electrical current in the active part of the transistor. We demonstrate a spin AND logic function in a semiconductor channel with two gates. Our study shows the utility of the spin Hall effect in a microelectronic device geometry, realizes the spin transistor with electrical detection directly along the gated semiconductor channel, and provides an experimental tool for exploring spin Hall and spin precession phenomena in an electrically tunable semiconductor layer.  相似文献   

2.
Although microscopic laws of physics are invariant under the reversal of the arrow of time, the transport of energy and information in most devices is an irreversible process. It is this irreversibility that leads to intrinsic dissipations in electronic devices and limits the possibility of quantum computation. We theoretically predict that the electric field can induce a substantial amount of dissipationless quantum spin current at room temperature, in hole-doped semiconductors such as Si, Ge, and GaAs. On the basis of a generalization of the quantum Hall effect, the predicted effect leads to efficient spin injection without the need for metallic ferromagnets. Principles found here could enable quantum spintronic devices with integrated information processing and storage units, operating with low power consumption and performing reversible quantum computation.  相似文献   

3.
The hyperfine interaction of an electron with the nuclei is considered as the primary obstacle to coherent control of the electron spin in semiconductor quantum dots. We show, however, that the nuclei in singly charged quantum dots act constructively by focusing the electron spin precession about a magnetic field into well-defined modes synchronized with a laser pulse protocol. In a dot with a synchronized electron, the light-stimulated fluctuations of the hyperfine nuclear field acting on the electron are suppressed. The information about electron spin precession is imprinted in the nuclei and thereby can be stored for tens of minutes in darkness. The frequency focusing drives an electron spin ensemble into dephasing-free subspaces with the potential to realize single frequency precession of the entire ensemble.  相似文献   

4.
Manipulation of single spins is essential for spin-based quantum information processing. Electrical control instead of magnetic control is particularly appealing for this purpose, because electric fields are easy to generate locally on-chip. We experimentally realized coherent control of a single-electron spin in a quantum dot using an oscillating electric field generated by a local gate. The electric field induced coherent transitions (Rabi oscillations) between spin-up and spin-down with 90 degrees rotations as fast as approximately 55 nanoseconds. Our analysis indicated that the electrically induced spin transitions were mediated by the spin-orbit interaction. Taken together with the recently demonstrated coherent exchange of two neighboring spins, our results establish the feasibility of fully electrical manipulation of spin qubits.  相似文献   

5.
Spin currents can apply useful torques in spintronic devices. The spin Hall effect has been proposed as a source of spin current, but its modest strength has limited its usefulness. We report a giant spin Hall effect (SHE) in β-tantalum that generates spin currents intense enough to induce efficient spin-torque switching of ferromagnets at room temperature. We quantify this SHE by three independent methods and demonstrate spin-torque switching of both out-of-plane and in-plane magnetized layers. We furthermore implement a three-terminal device that uses current passing through a tantalum-ferromagnet bilayer to switch a nanomagnet, with a magnetic tunnel junction for read-out. This simple, reliable, and efficient design may eliminate the main obstacles to the development of magnetic memory and nonvolatile spin logic technologies.  相似文献   

6.
We observe spin blockade due to Pauli exclusion in the tunneling characteristics of a coupled quantum dot system when two same-spin electrons occupy the lowest energy state in each dot. Spin blockade only occurs in one bias direction when there is asymmetry in the electron population of the two dots, leading to current rectification. We induce the collapse of the spin blockade by applying a magnetic field to open up a new spin-triplet current-carrying channel.  相似文献   

7.
Spin manipulation using electric currents is one of the most promising directions in the field of spintronics. We used neutron scattering to observe the influence of an electric current on the magnetic structure in a bulk material. In the skyrmion lattice of manganese silicon, where the spins form a lattice of magnetic vortices similar to the vortex lattice in type II superconductors, we observe the rotation of the diffraction pattern in response to currents that are over five orders of magnitude smaller than those typically applied in experimental studies on current-driven magnetization dynamics in nanostructures. We attribute our observations to an extremely efficient coupling of inhomogeneous spin currents to topologically stable knots in spin structures.  相似文献   

8.
The excitation spectrum of a model magnetic system, LiHoF4, was studied with the use of neutron spectroscopy as the system was tuned to its quantum critical point by an applied magnetic field. The electronic mode softening expected for a quantum phase transition was forestalled by hyperfine coupling to the nuclear spins. We found that interactions with the nuclear spin bath controlled the length scale over which the excitations could be entangled. This generic result places a limit on our ability to observe intrinsic electronic quantum criticality.  相似文献   

9.
Thin film nanoscale elements with a curling magnetic structure (vortex) are a promising candidate for future nonvolatile data storage devices. Their properties are strongly influenced by the spin structure in the vortex core. We have used spin-polarized scanning tunneling microscopy on nanoscale iron islands to probe for the first time the internal spin structure of magnetic vortex cores. Using tips coated with a layer of antiferromagnetic chromium, we obtained images of the curling in-plane magnetization around and of the out-of-plane magnetization inside the core region. The experimental data are compared with micromagnetic simulations. The results confirm theoretical predictions that the size and the shape of the vortex core as well as its magnetic field dependence are governed by only two material parameters, the exchange stiffness and the saturation magnetization that determines the stray field energy.  相似文献   

10.
An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.  相似文献   

11.
The key challenge in experimental quantum information science is to identify isolated quantum mechanical systems with long coherence times that can be manipulated and coupled together in a scalable fashion. We describe the coherent manipulation of an individual electron spin and nearby individual nuclear spins to create a controllable quantum register. Using optical and microwave radiation to control an electron spin associated with the nitrogen vacancy (NV) color center in diamond, we demonstrated robust initialization of electron and nuclear spin quantum bits (qubits) and transfer of arbitrary quantum states between them at room temperature. Moreover, nuclear spin qubits could be well isolated from the electron spin, even during optical polarization and measurement of the electronic state. Finally, coherent interactions between individual nuclear spin qubits were observed and their excellent coherence properties were demonstrated. These registers can be used as a basis for scalable, optically coupled quantum information systems.  相似文献   

12.
An electron hopping on non-coplanar spin sites with spin chirality obtains a complex phase factor (Berry phase) in its quantum mechanical amplitude that acts as an internal magnetic field, and is predicted to manifest itself in the Hall effect when it is not cancelled. The present combined work of transport measurement, neutron scattering, and theoretical calculation provides evidence that the gigantic anomalous Hall effect observed in Nd2Mo2O7, a pyrochlore ferromagnet with geometrically frustrated lattice structure, is mostly due to the spin chirality and the associated Berry phase originating from the Mo spin tilting.  相似文献   

13.
Quantum spin hall insulator state in HgTe quantum wells   总被引:1,自引:0,他引:1  
Recent theory predicted that the quantum spin Hall effect, a fundamentally new quantum state of matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells. We fabricated such sample structures with low density and high mobility in which we could tune, through an external gate voltage, the carrier conduction from n-type to p-type, passing through an insulating regime. For thin quantum wells with well width d < 6.3 nanometers, the insulating regime showed the conventional behavior of vanishingly small conductance at low temperature. However, for thicker quantum wells (d > 6.3 nanometers), the nominally insulating regime showed a plateau of residual conductance close to 2e(2)/h, where e is the electron charge and h is Planck's constant. The residual conductance was independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance was destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d = 6.3 nanometers, was also independently determined from the magnetic field-induced insulator-to-metal transition. These observations provide experimental evidence of the quantum spin Hall effect.  相似文献   

14.
An experimental method based on the Landau-Zener model was developed to measure very small tunnel splittings in molecular clusters of eight iron atoms, which at low temperature behave like a nanomagnet with a spin ground state of S = 10. The observed oscillations of the tunnel splittings as a function of the magnetic field applied along the hard anisotropy axis are due to topological quantum interference of two tunnel paths of opposite windings. Transitions between quantum numbers M = -S and (S - n), with n even or odd, revealed a parity effect that is analogous to the suppression of tunneling predicted for half-integer spins. This observation is direct evidence of the topological part of the quantum spin phase (Berry phase) in a magnetic system.  相似文献   

15.
Double quantum dots provide an ideal model system for studying interactions between localized impurity spins. We report on the transport properties of a series-coupled double quantum dot as electrons are added one by one onto the dots. When the many-body molecular states are formed, we observe a splitting of the Kondo resonance peak in the differential conductance. This splitting reflects the energy difference between the bonding and antibonding states formed by the coherent superposition of the Kondo states of each dot. The occurrence of the Kondo resonance and its magnetic field dependence agree with a simple interpretation of the spin status of a double quantum dot.  相似文献   

16.
Magnetoencephalography and epilepsy research   总被引:6,自引:0,他引:6  
Magnetoencephalography is the detection of the magnetic field distribution across the surface of the head, which is generated by a neuronal discharge within the brain. Magnetoencephalography is used in clinical epilepsy to localize the epileptogenic region prior to its surgical removal. A discussion of the instrumentation based on the superconducting quantum interference device that is used for detecting the magnetic field distribution, the analytical techniques, current research, and future directions of magnetoencephalography in epilepsy research is presented.  相似文献   

17.
Coherent spin states in semiconductor quantum dots offer promise as electrically controllable quantum bits (qubits) with scalable fabrication. For few-electron quantum dots made from gallium arsenide (GaAs), fluctuating nuclear spins in the host lattice are the dominant source of spin decoherence. We report a method of preparing the nuclear spin environment that suppresses the relevant component of nuclear spin fluctuations below its equilibrium value by a factor of approximately 70, extending the inhomogeneous dephasing time for the two-electron spin state beyond 1 microsecond. The nuclear state can be readily prepared by electrical gate manipulation and persists for more than 10 seconds.  相似文献   

18.
We measured the phase evolution of electrons as they traverse a quantum dot (QD) formed in a two-dimensional electron gas that serves as a localized spin. The traversal phase, determined by embedding the QD in a double path electron interferometer and measuring the quantum interference of the electron wave functions manifested by conductance oscillation as a function of a weak magnetic field, evolved by pi radians, a range twice as large as theoretically predicted. As the correlation weakened, a gradual transition to the familiar phase evolution of a QD was observed. The specific phase evolution observed is highly sensitive to the onset of Kondo correlation, possibly serving as an alternative fingerprint of the Kondo effect.  相似文献   

19.
Cavity optomechanics studies the coupling between a mechanical oscillator and the electromagnetic field in a cavity. We report on a cavity optomechanical system in which a collective density excitation of a Bose-Einstein condensate serves as the mechanical oscillator coupled to the cavity field. A few photons inside the ultrahigh-finesse cavity trigger strongly driven back-action dynamics, in quantitative agreement with a cavity optomechanical model. We approach the strong coupling regime of cavity optomechanics, where a single excitation of the mechanical oscillator substantially influences the cavity field. The results open up new directions for investigating mechanical oscillators in the quantum regime and the border between classical and quantum physics.  相似文献   

20.
A bidirectional single-electron counting device is demonstrated. Individual electrons flowing in forward and reverse directions through a double quantum dot are detected with a quantum point contact acting as a charge sensor. A comprehensive statistical analysis in the frequency and time domains and of higher order moments of noise reveals antibunching correlation in single-electron transport through the device itself. The device can also be used to investigate current flow in the attoampere range, which cannot be measured by existing current meters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号