首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty-nine Holstein steer calves were assigned to one of five treatments at birth and individually fed for 200 d with milk replacer reconstituted to equal the fat and protein concentration of beef cow milk. Treatment levels were the quantities of reconstituted milk fed per day based on lactation curves, which were based on peak milk levels (PML) of 2.72, 5.44, 8.16, 10.88, and 13.6 kg/d, respectively. In addition to reconstituted milk, chopped alfalfa hay was offered ad libitum to allow for maximal voluntary forage consumption. All calves were fed a high-energy diet postweaning until they reached a similar degree of fatness in the 12th rib (4 to 5% chemical fat) as determined by ultrasound. There were differences (P < 0.05) among groups in weaning weight, preweaning ADG, age, and weight at slaughter. During the preweaning phase, there was a linear relationship (P < 0.01) for daily milk and forage DE intake; however, DE intake per unit of BW did not differ across treatments (P = 0.06). Increasing PML resulted in a linear (P < 0.01) decrease in alfalfa hay intake in the preweaning phase, and G:F increased quadratically (P < 0.01). During the postweaning phase, preweaning milk intake had no meaningful effect on postweaning ADG, but overall ADG had a linear relationship (P < 0.01) with preweaning milk level. There was no effect of PML on the 12th-rib lipid percent, marbling score, or quality grade, but protein and fat concentration in the carcass and empty BW increased linearly (P < 0.01) with PML. The group fed at 2.72 kg/d PML was 58 kg lighter (P = 0.03) and required 34 d more (P < 0.01) to reach the predetermined degree of fatness at slaughter than the group fed at 13.6 kg/d PML, suggesting that increased milk production by the dam can decrease the number of days to the slaughter weight at which a similar rib lipid concentration is reached.  相似文献   

2.
Calves following an enhanced-growth feeding program usually show lower starter intakes during the preweaning period compared with conventionally-fed calves. To assess whether this low intake in calves following an enhanced-growth feeding program affects calf capacity to digest starter after weaning, 19 Holstein male calves were used to measure apparent nutrient digestibility at weaning. Calves were divided in two groups: calves on a conventional feeding program (CF) and calves on an enhanced-growth feeding program (EF). After one week of adaptation to milk replacer (25% CP and 19% fat), the CF calves were fed 4 l/d of milk replacer (MR) at 12.5% DM dilution rate from d 1–28, and 2 l/d from d 29 to weaning day at d 35, and the EF calves were offered MR at 18% DM dilution rate: 4 l/d from d 1–6, 6 l/d from d 7–13, 7 l/d from d 14–20, 6 l/d from d 21–28, and 3 l/d from d 29 to 35. Calf starter (20% CP) was offered ad libitum from the beginning to the end of study at d 42, and its consumption was recorded daily. Calves were weighed at d 3, 17, 24, 31, 38 and 42. Daily total faeces collection was conducted for the last 5 d of study. Final BW was numerically greater in EF than in CF calves (88.6 vs 81.2 ± 3.36 kg, respectively). Starter DMI was greater (P < 0.05) in CF compared with EF calves during the preweaning (0.68 vs 0.36 ± 0.078 kg/d, respectively) and postweaning (2.52 vs 1.90 ± 0.102 kg/d, respectively) periods, but there were no differences in total DMI (1.12 and 1.26 ± 0.078 kg/d, in CF and EF calves, respectively) during the preweaning period. However, apparent DM, OM, NDF, CP, and GE digestibility coefficients were greater (P < 0.05) in CF compared with EF calves (77.4 vs 71.8 ± 1.23%, 78.7 vs 73.2 ± 1.18%, 34.7 vs 20.3 ± 3.79%, 77.1 vs 71.6 ± 1.29%, and 75.6 vs 69.8 ± 1.25%, respectively) the week after weaning. It is concluded that calves in the EF treatment presented lower nutrient digestibility coefficients compared with CF calves the week after weaning.  相似文献   

3.
本试验旨在研究不同饲喂方式对断奶前犊牛生长性能的影响。试验选择46头体重和出生日期相近的犊牛,随机分成两组,每组23头。其中,Ⅰ组采用传统饲喂模式(粉状开食料+干草+牛奶),从4日龄开始补充粉状开食料,10日龄开始补充苜蓿干草和精饲料,干草自由采食;Ⅱ组采用现代饲喂模式(颗粒型开食料+牛奶),从4日龄开始补充颗料型开食料。两组均60日龄断奶。结果表明,Ⅰ组犊牛日均干物质采食量显著高于Ⅱ组(P<0.05),但两组的平均日增重、体高、体斜长、胸围、前管围均无显著差异(P>0.05);血清中葡萄糖(GLU)、甘油三酯(TG)水平组间无差异(P>0.05),45d、60dⅡ组总蛋白(TP)浓度显著高于Ⅰ组(P<0.05),45dⅠ组尿素氮(BUN)显著高于Ⅱ组(P<0.05);Ⅱ组CP、EE和P的表观消化率显著高于Ⅰ组(P<0.05);Ⅱ组犊牛腹泻率(2.39%)低于Ⅰ组(3.12%)。试验表明,断奶前饲喂颗粒开食料有利于降低犊牛腹泻的发生率,提高犊牛对固体饲料的适应性。  相似文献   

4.
Data from 403 calves from Angus, Brahman, and reciprocal-cross cows sired by Polled Hereford bulls were used to evaluate the impact of postweaning backgrounding forages on postweaning BW, gains, and carcass traits. Calves were born (spring of 1991 through 1994) and reared on either endophyte-infected tall fescue or common bermudagrass pastures. After weaning, calves were transported 360 km to the Grazinglands Research Laboratory, west of El Reno, OK, and, within breed and preweaning forage, were assigned to one of the following winter stocker treatments: 1) winter wheat pasture or 2) dormant native prairie plus supplemental CP. In March, winter stocker treatments were ended and calves were grazed as a single group on cool-season grasses until early July (1992, 1993, and 1994) or late May (1995), when the feedlot phase began. In the feedlot, calves were fed a high concentrate diet for an average of 120 d until a backfat thickness of > 10 mm was reached. Calves were shipped in truck load lots to Amarillo, TX (350 km), for processing and collection of carcass data. Averaged over calf breed group, calves wintered on wheat pasture gained faster (P < 0.01) during the stocker phase (0.71 vs 0.43 kg); had heavier (P < 0.01) final feedlot weights (535 vs 512 kg); lower feedlot (P < 0.01) ADG (1.37 vs 1.53 kg); heavier (P < 0.01) carcass weights (337 vs 315 kg); larger (P < 0.01) longissimus muscle (84.9 vs 81.8 cm2); higher percentage (P < 0.01) of kidney, heart, and pelvic fat (2.32 vs 2.26); and higher (P < 0.01) dressing percentage (62.2 vs 61.3) than calves backgrounded on native prairie. Maternal heterosis for stocker ADG was evident in calves backgrounded on native prairie but not on winter wheat (P < 0.10), but the two environments were similar in maternal heterosis for feedlot ADG and carcass traits. Calves wintered on native prairie were restricted in growth and expressed compensatory gain during the feedlot phase but not during the spring stocker phase. Dormant native grasses can be used to winter stocker calves excess to the winter wheat pasture needs, but ownership of these calves would have to be retained through the feedlot phase to realize any advantage of built-in compensatory gain. Finally, these data suggest that expression of maternal heterosis for weight gain is more likely in calves backgrounded on native prairie than in calves grazed on winter wheat.  相似文献   

5.
The aim of the present study was to investigate whether besides age and solid feed intake, monocarboxylic acid transporter type 1 (MCT1) expression in the rumen epithelium of calves is affected by liquid feed type [whole milk (WM) or milk replacer (MR)]. Thirty bull calves at the mean age of 5 days were randomly allocated to five experimental groups (six calves/group). Six calves were slaughtered immediately after allocation to the trial (5 days of life), eighteen calves were fed MR and slaughtered at week intervals (on 12, 19, 26 days of life respectively), and six calves were fed WM and slaughtered at the 26 days of life. MCT1 protein abundance and the MCT1 mRNA level were investigated in the dorsal and ventral sack of the rumen. Solid feed intake and short‐chain fatty acids (SCFA) concentration in the rumen fluid increased linearly with calves' age. The amount of the MCT1 protein and mRNA in the dorsal sac of rumen as well as the amount of MCT1 protein in the cranial ventral sac of rumen also increased linearly with calves' age. Calves fed WM had greater solid feed intake in the last week of the study as compared to calves fed MR, but SCFA concentration in the rumen fluid was not different. MCT1 mRNA expression in the cranial dorsal sac of rumen and protein MCT1 expression in both dorsal and ventral cranial sack of the rumen were higher in calves fed WM as compared to calves fed MR. This study confirmed age‐dependent changes of MCT1 expression in the rumen epithelium of newborn calves and showed that its expression might be affected by liquid feed type.  相似文献   

6.
Data from 403 Polled Hereford-sired calves from Angus, Brahman, and reciprocal-cross cows were used to evaluate the effects of preweaning forage environment on postweaning performance. Calves were spring-born in 1991 to 1994 and managed on either endophyte-infected tall fescue (E+) or common bermudagrass (BG) during the preweaning phase. After weaning, calves were shipped to the Grazinglands Research Laboratory, El Reno, OK and stratified to one of two winter stocker treatments by breed and preweaning forage; stocker treatments were winter wheat pasture (WW) or native range plus supplemental CP (NR). Each stocker treatment was terminated in March, calves grazed cool-season grasses, and calves were then moved to a feedlot phase in June. In the feedlot phase, calves were fed to approximately 10 mm fat over the 12th rib and averaged approximately 115 d on feed. When finished, calves were weighed and shipped to Amarillo, TX for slaughter. Averaged over calf breed group, calves from E+ gained faster during the stocker phase (P<.10), had lighter starting and finished weights on feed (P< .01), lighter carcass weights (P<.01), and smaller longissimus muscle areas (P<.05) than calves from BG. Calves from E+ were similar to calves from BG in feedlot ADG, percentage kidney, heart, and pelvic fat, fat thickness over 12th rib, yield grade, marbling score, and dressing percentage. Maternal heterosis was larger in calves from E+ for starting weight on feed (P<.01), finished weight (P<.10), and carcass weight (P<.16). These data suggest that few carryover effects from tall fescue preweaning environments exist, other than lighter, but acceptable, weights through slaughter. These data further suggest that the tolerance to E+ in calves from reciprocal-cross cows, expressed in weaning weights, moderated postweaning weight differences between E+ and BG compared to similar comparisons in calves from purebred cows.  相似文献   

7.
为研究饲喂模式对犊牛肠道及胰腺内消化酶活性的影响。试验选择24头体重和出生日期相近的犊牛,随机分成2组,每组12头,其中Ⅰ组采用传统饲喂模式(干草+粉状开食料),4 d开始补充开食料,10 d开始补充苜蓿干草,干草自由采食。Ⅱ组采用现代饲喂模式(颗粒型开食料)犊牛于4 d开始补充开食料。60 d断奶。各组分别在0、15、30、60 d屠宰3头犊牛。结果表明:Ⅰ组犊牛中性洗涤纤维以及酸性洗涤纤维日均摄入量均显著高于Ⅱ组(P<0.05),粗蛋白、消化能、粗脂肪、钙和磷的日均摄入量差异均不显著(P>0.05)。Ⅱ组犊牛小肠以及胰腺内淀粉酶、糜蛋白酶、胰蛋白酶、脂肪酶均高于Ⅰ组,尤其是胰蛋白酶以及糜蛋白酶在60 d时显著高于Ⅰ组(P<0.05)。结果提示,断奶前饲喂颗粒开食料有利于促进犊牛小肠以及胰腺内消化酶的分泌,利于提高犊牛对饲料的消化利用率。  相似文献   

8.
A study was conducted to compare Brangus, Beefmaster, Gelbray, and Simbrah breed influences for economically important traits. Brangus (9), Beefmaster (12), Gelbray (10), and Simbrah (7) sires were used in purebred and crossbred (Brahman x Hereford F1 cows) matings to generate calves (326) in eight breed groups. Beefmaster cows were of similar size (448 kg), Brangus and Gelbray cows were 11% heavier (501 and 503 kg), and Simbrah cows were 21% heavier (548 kg) compared to Brahman x Hereford F1 cows (452 kg). Calves sired by Brangus and Beefmaster bulls had lower birth weights (35 vs 38 kg; P < 0.05), preweaning growth rates (0.87 vs 0.91 kg x d(-1); P < 0.01), and weaning weights (206 vs 219 kg; P < 0.01) than Gelbray- and Simbrah-sired calves. Birth weights, preweaning ADG, and weaning weight and hip heights were similar between Brangus- and Beefmaster-sired calves. Simbrah-sired calves had greater preweaning growth rates (0.94 vs 0.88 kg x d(-1); P < 0.05), weaning weights (227 vs 211 kg; P < 0.01), and adjusted 205-d hip heights (126 vs 122 cm; P < 0.05) than Gelbray-sired calves. Straightbred Angus steers were introduced in the postweaning portion of the study. Steer calves were placed on feed at an average age of 14.5 mo. Steers were removed from the feedlot upon attaining a targeted 10 mm of backfat. Feedlot ADG did not differ among sire breeds. Brahman-derivative sired steers required an additional 54 d on feed (P < 0.01) and were 86 kg heavier (P < 0.01) at harvest than Angus steers. Continental-Brahman steers spent an additional 25 d on feed (P < 0.05) and were 35 kg heavier (P < 0.01) at harvest than British-Brahman steers. Simbrah-sired steers were 52 kg heavier (P < 0.01) at harvest than Gelbray-sired steers when fed for a similar number of days (211 vs 203 d). However, straightbred Simbrah steers required an additional 12 d on feed (P < 0.01) and weighed 47 kg more (P < 0.01) than Simbrah-sired crossbred steers. The economic value of the heavier calf weaning weights may be offset by the attendant larger cow size of the Continental-Brahman compared to the British-Brahman breeds. Similarly, the heavier weights of Continental-Brahman compared to British-Brahman steers, when harvested at a prescribed level of fatness may be viewed as a benefit, but the increased number of requisite days in the feedlot is a disadvantage.  相似文献   

9.
M. Terr  M. Devant  A. Bach 《Livestock Science》2006,105(1-3):109-119
Thirty-seven Holstein and seven crossbred female calves (16.1 ± 4.60 days, and an initial BW of 36.5 ± 3.19) were used to study the effects of conventional (CF) vs enhanced-growth feeding programs (EF) on performance, plasma amino acid (AA) concentrations, and rumen microbial development. After 1 week of adaptation to milk replacer (MR), the CF calves received 4 l/day of MR at 12.5% DM throughout the preweaning period, and the EF calves were offered MR at 18% DM: 6 l/day from 1 to 6 days, 8 l/day from 7 to 26 days, and 4 l/day from 27 days to weaning day (38 days). Calf starter and water were offered ad libitum throughout the study (87 days). Calves fed EF were heavier (P < 0.05) than CF calves at the end of the study (111.7 vs 102.6 ± 1.72 kg, respectively). Until the 27 days, average daily gain (ADG) was greater (P < 0.001) for EF than for CF calves (1.00 vs 0.49 ± 0.061 kg/day, respectively), but it was lower (P < 0.001) from days 27 to 45 of the study (0.32 vs 0.71 ± 0.061 kg/day, respectively), coinciding with the days around weaning. Starter intake was greater (P < 0.001) for CF than for EF calves during the first 45 days of the study (0.60 vs 0.27 ± 0.061 kg/day, respectively) but similar afterwards. As a consequence, EF treatment may have delayed rumen function as suggested by total daily purine derivatives urinary excretion (49.52 vs 33.27 ± 3.095 mmol/day, in CF and EF calves, respectively). Linear regression analyses showed a positive relationship between plasma Trp and Phe concentrations and ADG, and a negative relationship between these two AA and plasma urea concentrations, suggesting that Trp and Phe could be limiting growth in calves fed conventional feeding programs.  相似文献   

10.
A 2-yr study was conducted to determine the first limiting nutrient for gain in nursing calves grazing native range in southeastern North Dakota. Thirty-two calves (20 steers, 12 heifers) in Trial 1 (169 +/- 5 kg initial BW) and 31 (16 steers, 15 heifers) in Trial 2 (214 +/- 5 kg initial BW) grazed common pastures. Calves were blocked by sex and stratified by weight. Calves were stratified by age of dam in Trial 1 and by pretrial milk intake (MI) in Trial 2. Treatments were nonsupplemented control (CON); energy supplement (ENERGY; 100% soyhulls); degradable intake protein supplement (DIP; 68% soyhulls, 32% SBM); and degradable with undegradable intake protein supplement (DIP+UIP; 80% sulfite-liquor treated SBM, 16% feather meal, 4% blood meal). In Trial 2, 5% molasses was added to all supplements with the ratios of other ingredients held constant. Supplements were formulated to be similar in NE. The DIP and DIP+UIP supplements supplied equal amounts of degradable protein. Supplemented calves were fed individually, with similar supplement DMI. Weight and MI were measured in July, August, and September. Forage intake (FI) was measured in July, August, and September of Trial 1 and July and August of Trial 2. Gain data were analyzed as a randomized complete block and MI and FI as a split-plot in time. Orthogonal contrasts were used to separate means and included CON vs supplemented, ENERGY vs protein, and DIP vs DIP+UIP. No trial effect or trial x treatment interactions (minimum P-value = 0.30) were detected for ADG. Supplemented calves gained faster than CON (P = 0.06). No other contrast differences were observed (minimum P-value = 0.50). Treatment did not affect FI (P > or = 0.55). Forage intake was lower (P < 0.001) in Trial 1 than in Trial 2. A linear increase (P = 0.0001) in FI (kg OM/d and percentage BW) occurred over time. Calves in Trial 2 consumed more (P = 0.004) fluid milk than calves in Trial 1, though no difference (P = 0.28) was observed relative to BW. No treatment or period differences were detected for fluid MI (minimum P-value = 0.23). Relative to BW, MI declined linearly (P = 0.0001) with successive periods. Energy may be limiting weight gain of nursing calves grazing native range in southeastern North Dakota.  相似文献   

11.
The objective of this study was to compare the effects of ad libitum and restricted computer-controlled milk replacer (MR) feeding strategies on performance of group-reared dairy calves during preweaning (from 0.5 to 2.0 months of age), weaning (2.0 to 2.5) and postweaning (2.5 to 6.0) periods. Two feeding trials comprised a total of 34 Finnish Ayrshire and 6 Holstein–Friesian bull calves. The calves were randomly (balanced for breed) allotted to pens (5 calves/pen) which were thereafter randomly allotted to two experimental treatments: 1) ad libitum MR feeding (F) with ad libitum access to MR and 2) restricted MR feeding (R) where the calves were given 6.0 L of MR daily. All the calves had free access to water, commercial starter and grass silage before weaning. The weaned calves had free access to water and silage and were given 3 kg/day (air-dry basis) of a concentrate mixture. Due to increased metabolizable energy intake (16.4 vs. 12.7 MJ/day; P < 0.05), the daily gain of the F calves was higher (690 vs. 543 g/day; P < 0.05) than that of the R calves during the preweaning period. Due to the more rapid increase in concentrate intake of the R calves during the weaning period the R calves grew better than the F calves (482 vs. 1038 g/day; P < 0.01) and the differences in live weight evened out during the weaning period. During the postweaning period there were no treatment differences in feed intake or gain. The average gain during the whole study was not affected by either of the treatments. Ad libitum feeding increased the variation in the MR intake and gain compared to restricted feeding.  相似文献   

12.
The study objective was to determine health and performance of ranch calves from different preconditioning strategies during a 42-d receiving period when commingled with calves of unknown health histories from multiple sources. Steer calves from a single source ranch (RANCH) were weaned and immediately shipped to a feedlot (WEAN, initial BW = 247 +/- 29 kg); weaned on the ranch for 45 d before shipping, but did not receive any vaccinations (WEAN45, initial BW = 231 +/- 26 kg); or weaned, vaccinated with modified live viral vaccine, and held on the ranch for 45 d before shipping (WEANVAC45, initial BW = 274 +/- 21 kg). Multiple-source steers were purchased through auction markets (MARKET, initial BW = 238 +/- 13 kg), and upon receiving, a portion of ranch-origin steers from each weaning group was commingled with a portion of MARKET cattle (COMM). The experimental design was completely randomized with a 2 x 3 +1 factorial arrangement of treatments. Factors were RANCH vs. COMM and weaning management (WEAN vs. WEAN45 vs. WEANVAC45) as the factors; MARKET cattle served as the control. Calves of WEAN, WEAN45, and MARKET were vaccinated on arrival at the feedlot. Ranch-origin calves tended (P = 0.06) to have greater ADG than COMM or MARKET calves, although ADG was not affected (P = 0.46) by weaning management. Across the 42-d receiving period, DMI was not affected (P = 0.85) by cattle origin. However, MARKET, WEAN45, and WEANVAC45 calves consumed more (P < 0.001) DM than WEAN calves. Gain efficiency was not affected (P > or = 0.11) by treatment. Ranch-origin calves were less (P < 0.001) likely to be treated for bovine respiratory disease than MARKET calves; COMM calves were intermediate. Calves that were retained on the ranch after weaning (WEAN45 and WEANVAC45) were also less likely to be treated (P = 0.001) than MARKET or WEAN calves. As expected, differences in morbidity related to differences in health costs. Calves of WEAN45 and WEANVAC45 had less (P < 0.001) health costs than MARKET and WEAN calves. On arrival, serum haptoglobin concentrations were greater (P < 0.001) in MARKET and WEAN compared with WEAN45 and WEANVAC45 calves. Calves from a single source that are retained on the ranch for 45 d after weaning exhibit less morbidity and less health costs during the receiving period at the feedyard than when cattle are commingled or trucked to the feedyard immediately after weaning.  相似文献   

13.
Forty crossbred steers (Brahman x English) were categorized into two groups: 1) early weaned (EW; n = 20); and 2) normal weaned (NW; n = 20). Calves were 89 and 300 d of age at the time of EW and NW, respectively; SEM = 4.4. Early-weaned calves were kept on-site (University of Florida, Ona), provided supplement (1% of BW), and grazed on annual and perennial pastures until NW. At the time of normal weaning, all calves were loaded on a commercial livestock trailer and transported to the North Carolina State University Research Feedlot in Butner (approximately 1,200 km). Upon arrival, calves were stratified by BW and randomly allotted to four pens per weaning age treatment. Individual calf BW and blood samples were collected at the time of normal weaning, on arrival at the feedlot (d 1; 24 h following weaning), and on d 3, 7, 14, 21, and 28 of the receiving period. Individual BW was collected at the start and end of the growing and finishing periods, and feed intake by pen was measured daily. As an estimate of stress during the receiving period, plasma was collected and analyzed for the acute-phase proteins, haptoglobin and ceruloplasmin. Early-weaned calves were lighter (P = 0.03) at normal weaning than NW calves (221 vs. 269 kg; SEM = 10.6). By d 28, EW calves tended (P = 0.12) to be lighter than NW calves (242 vs. 282 kg, respectively). Gain:feed was improved for EW compared with NW calves during both the receiving (G:F = 0.157 vs. 0.081) and growing (0.159 vs. 0.136) periods. There tended (P < 0.10) to be weaning age x day interactions for each acute-phase protein. Ceruloplasmin concentrations increased in NW, but not EW calves, and peaked on d 7 (27.6 and 34.2 mg/100 mL for EW and NW calves, respectively; P < 0.05). Haptoglobin concentrations increased in both groups and were greatest (P < 0.05) in NW calves on d 3 (7.63 vs. 14.86 mg of haptoglobin/hemoglobin complexing/100 mL). No differences in ADG or G:F were detected during the finishing phase; however, overall G:F was improved (P = 0.03) for EW vs. NW calves (0.155 vs. 0.136). Carcass measures, including backfat thickness, USDA yield grade, marbling score, and LM area, did not differ between treatments. These data imply that EW calves, which are maintained onsite before shipping, may be more tolerant to the stressors associated with transportation and feed yard entry. Early weaned calves, managed within the system described in this study, may have improved G:F.  相似文献   

14.
Seventy Angus x Simmental calves (BW = 166.3 +/- 4.2 kg) were used in a 3 x 2 factorial arrangement to determine the effect of age at feedlot entry and castration on growth, performance, and carcass characteristics. At 82 d of age, steers were castrated. Calves were placed in the feedlot at 111 (early-weaned), 202, or 371 (yearling) d of age. Steers were implanted with Synovex-S followed 93 d later with Revalor-S. Calves were harvested on an individual basis when fat thickness was estimated to be 1.27 cm. During the feedlot phase, yearlings gained faster (P < 0.01) than calves placed in the feedlot at 202 or 111 d of age (1.88, 1.68, and 1.62 kg/d, respectively); however, from 111 d of age until harvest, ADG was greatest for early-weaned calves, intermediate for cattle placed in the feedlot at 202 d of age, and lowest for yearlings (1.62, 1.47, and 1.21 kg/d, respectively; P < 0.01). Early-weaned calves spent the most days in the feedlot, followed by calves placed in the feedlot at 202 d of age; yearlings spent the fewest days in the feedlot (221, 190, and 163 d, respectively; P < 0.01). Total DMI when in the feedlot was similar (P = 0.22) among age groups; however, daily DMI was lowest for early-weaned calves, intermediate for calves placed in the feedlot at 202 d of age, and the highest for yearlings (7.1, 8.1, 10.5 kg/ d, respectively; P < 0.01). Early-weaned calves were the most efficient, followed by calves placed in the feedlot at 202 d of age; yearlings were the least efficient (227, 207, 180 g gain/kg feed, respectively; P < 0.01). Weight at harvest (682, 582, 517 kg, respectively; P < 0.01) and hot carcass weight (413, 358, 314 kg, respectively; P < 0.01) were greatest for yearlings, intermediate for cattle placed in the feedlot at 202 d of age, and lowest for early-weaned calves. Early-weaned calves had the smallest longissimus area, followed by calves placed in the feed-lot at 202 d of age; yearlings had the largest longissimus area (77, 86, 88 cm2, respectively; P < 0.01). Calves placed in the feedlot at 111 and 202 d of age had lower yield grades (3.2, 3.1, 3.5, respectively; P < 0.04), and produced fewer select carcasses than yearlings (25, 13, 48%, respectively; P < 0.01). Bulls and implanted steers both had an ADG of 1.7 kg/d when in the feedlot; however, bulls had a greater (P < 0.09) hot carcass weight (370 vs 354 kg) and a larger (P < 0.01) longissimus area (85.8 vs 81.3 cm2) than steers. Earlier feedlot placement resulted in greater quality grades but lower carcass weights.  相似文献   

15.
The first phase of this study was the production of contemporary straightbred (SB) and reciprocal crossbred (F1) bulls by mating Angus (A) bulls to A and Santa Gertrudis (SG) cows and SG bulls to SG and A cows. Of the bulls produced during the 4-yr period, those used for breeding included 15 A, 15 SG, 8 A X SG and 8 SG X A. For 205-d weight and weight/day of age (W/DA) postweaning, A X SG had higher (P less than .05) performance than SG X A bulls and SG had higher (P less than .05) performance than A bulls. There was no difference (P greater than .05) between SG and A X SG for 205-d weight, postweaning average daily gain (ADG) or postweaning W/DA. Heterosis estimates were 5.2 (P less than .10), 9.9 (P less than .01) and 5.8% (P less than .01) for 205-d weight, postweaning ADG and W/DA, respectively. The second phase of this study was the comparison of SB and F1 bulls for reproductive and progeny performance by exposing them as yearlings to 25 Polled Hereford cows each. There were no differences (P greater than .05) among the four sire groups for proportion of cows exposed that had a calf, had a live calf or weaned a calf. Reproductive performance of sires also was evaluated in terms of number of days (NOD) from the beginning of the breeding period until calves were born. The NOD for calves by SG was greater (P less than .05) than for calves by A or F1 sires. Compared with calves from SB sires, the NOD for calves from A X SG and SG X A sires were 5.0 and 10.6 d (P less than .05) lower. Differences among sires within year and breeding of sire were significant for all preweaning traits and for W/DA postweaning of their progeny. The SG-sired calves were heavier (P less than .05) for birth and 205-d weight and had higher (P less than .05) postweaning ADG than A-sired calves. Mean performance of calves by reciprocal F1 sires did not deviate (P greater than .05) from the mean performance of those by SB sires. Calves by A X SG sires had higher (P less than .05) 205-d weight, postweaning ADG and W/DA than calves by SG X A sires. Results indicated that the primary genetic effects responsible for differences in performance of calves sired by F1 vs SB bulls were mean transmitted and mean heterotic effects.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The relationship of injected Fe doses on blood hematology and pig growth performance during both preweaning and postweaning periods was studied. In Exp. 1, the effect of BW of 347 pigs injected with 200 mg of Fe (dextran) intramuscularly (i.m.) at birth on hemoglobin (Hb) and percent hematocrit (Hct) at weaning was assessed. As BW increased there was a decline (P < 0.01) in Hb and Hct. In Exp. 2, Fe injection doses and timing of injected Fe on blood hematology and pig growth were evaluated. Injections were as follows: 1) 200 mg of Fe at birth; 2) 300 mg of Fe at birth; or 3) 200 mg of Fe at birth + 100 mg of Fe at d 10. A total of 269 pigs were allotted within litter to 3 treatments. The 2 greater quantities of injected Fe (i.e., 300 or 200 + 100 mg of Fe) had similar but greater (P < 0.05) Hb and Hct values than pigs receiving 200 mg of Fe, but growth rates were similar at weaning. The effects of injecting 200 mg of Fe at birth and either saline or 100 mg of Fe at 10 d of age were investigated in Exp. 3. Weaned pigs of each group were fed diets with 0, 80, or 160 mg/kg of added Fe for 35 d as a 2 × 3 factorial arrangement with 12 replicates (n = 360 pigs) in a randomized complete block design (RCB). The innate Fe contents of diets averaged 200 mg/kg. The greater Fe injection group (200 + 100 mg) had greater (P < 0.01) Hb and Hct values through 14 d postweaning (P < 0.05) and greater (P < 0.01) Hct values through 21 d postweaning. As dietary Fe increased, Hb was greater only at d 14 (P < 0.05 4), whereas Hct increased linearly to d 35 (P < 0.01) postweaning. Dietary Fe resulted in linear increases (P < 0.01) in ADG from d 21 to 35 and d 0 to 35. In Exp. 4, 3 dietary Fe (80, 160, and 240 mg/kg of diet), 2 injected Fe treatments (200 or 300 mg of Fe) at birth, and birth BW (<1.5 or ≥1.5 kg) were evaluated as a 2 × 2 × 3 factorial arrangement of treatments in a RCB design with 6 replicates (n = 280 pigs). The 300 mg of Fe injection group had lighter BW in both birth BW groups, with a birth BW × injected Fe interaction (P < 0.01). This resulted in the lighter birth BW pigs receiving 200 mg of Fe having greater BW gains to 240 mg/kg of dietary Fe, whereas light birth BW pigs injected with 300 mg of Fe plateaued at 160 mg/kg of Fe. Pigs in the heavy birth BW group injected with 200 or 300 mg of Fe at birth responded similarly to dietary Fe postweaning. These results indicate that blood Hb and Hct were affected by pig BW at weaning, but the additional 100 mg of Fe i.m. at 10 d of age increased blood hematology and that Fe injected preweaning affected initial postweaning performance.  相似文献   

17.
The objective of this study was to investigate the effectiveness of early weaning fall-born calves on heifer and calf performance in Florida. Over two consecutive years, 3-yr-old Braford and Brahman x Angus first-calf heifers were assigned randomly to one of two treatments; early-weaned (EW, n = 20 and 30 for yr 1 and 2, respectively) and normal-weaned (NW, n = 20 and 38 for yr 1 and 2, respectively). Calves were EW on January 23 and 3 for yr 1 and 2, respectively. Following EW, all first-calf heifers were returned to bahiagrass (Paspalum notatum) pastures with the mature cowherd. Early-weaned calves were maintained on annual ryegrass (Lolium multiflorum) pastures at 8.2 and 10.7 calves/ha for yr 1 and 2, respectively, and were provided supplemental grain mixture (14% CP) at 1.0% of BW daily. Normal-weaned calves remained with their dams in the mature cowherd on bahiagrass. Final calf BW was collected on April 17 (d 84) and April 24 (d 111) for yr 1 and 2, respectively. Early-weaned calves had a greater (P < 0.001) ADG (0.17 kg/d) in yr 1, but a lower (P < 0.001) ADG (-0.24 kg/d) in yr 2 compared with NW calves. Early weaning resulted in heavier first-calf heifers with greater BCS at the time of normal weaning (August 1; 491 vs. 452 kg, with BCS = 6.34 vs. 4.75 for EW and NW heifers, respectively; SEM = 5.0 and 0.07). Heifers with EW calves had a higher (P < 0.07) pregnancy rate during both years than normal-weaned heifers (89.5 vs. 50.0 and 96.7 vs. 80.0% pregnant during yr 1 and 2, respectively). Early-weaned, first-calf heifers also had a lower (P < 0.05) calving interval in yr 2 (384 vs. 404 d; SEM = 6.0). These data suggest that EW will improve body condition of first-calf heifers resulting in an increased pregnancy rate. Early-weaned calves maintained on winter ryegrass provide producers with the ability to optimize early-weaned calf performance, while capitalizing on low cost of gain and favorable spring markets.  相似文献   

18.
Nine ruminally and duodenally cannulated (145 +/- 21 kg of initial BW; Exp. 1) and sixteen intact (181 +/- 36 kg of initial BW; Exp. 2), commercial, Angus, nursing, steer calves were used to evaluate the effects of advancing season and corn distillers dried grains with solubles in creep feed on intake, digestion, microbial efficiency, ruminal fermentation, and performance while grazing native rangeland. Calves were assigned to 1 of 2 treatments: a supplement containing 41% soybean meal, 26.25% wheat middlings, 26.25% soybean hulls, 5% molasses, and 1.5% limestone (control) or a supplement containing 50% corn distillers dried grains with solubles, 14.25% wheat middlings, 14.25% soybean hulls, 14% soybean meal, 5% molasses, and 1.5% limestone (CDDGS). Calves were offered supplement individually (0.45% of BW) once daily. Three 15-d collection periods occurred in June, July, and August. In Exp. 1, there were no differences in OM intake, or OM, N, NDF, or ADF digestion between control calves and those fed CDDGS. Forage and total OM intake increased (P < 0.03), whereas OM digestion decreased (P < 0.01), with advancing season. Duodenal microbial N flow (g/d) was not affected (P = 0.50) by treatment and increased linearly (P = 0.003) as season progressed. Calves consuming CDDGS had decreased (P < 0.01) ruminal acetate:propionate ratio, increased (P < 0.01) molar proportion of butyrate, and decreased (P < 0.001) molar proportions of isobutyrate and isovalerate. In Exp. 2, supplement OM intake (% of BW) was less for CDDGS compared with control calves, but there were no differences in performance or subsequent carcass composition between treatments. Inclusion of 50% corn distillers dried grains with solubles in a creep supplement for nursing calves produced similar results compared with a control creep feed based on soybean meal, soybean hulls, and wheat middlings.  相似文献   

19.
The objective of this study was to determine the effect of varying concentrations of dietary fat and carbohydrate on changes in body composition of Holstein bull calves fed under isocaloric and isonitrogenous intake conditions. Thirty-two calves were assigned to a randomized block design with three dietary treatments, eight calves per treatment, and one baseline group of eight calves. Animals were reared from birth to 85 kg live BW (SEM = 0.57). All calves began treatments between 2 and 6 d of age. Three different milk replacer treatment diets were designed to deliver 14.8 (low fat, LF), 21.6 (medium fat, MF), or 30.6% of DM (high fat, HF) fat; 55.3, 46.7, or 35.4% of DM lactose; and 23.5, 24.8, or 27.0% of DM CP, respectively. Gross energy values were 4.62, 5.09, and 5.77 Mcal/kg for the LF, MF, and HF milk replacers, respectively. From d 1 to 14, calves were offered 0.24 Mcal intake energy/kg BW(0.75), adjusted weekly based on increases in BW, and 0.28 Mcal intake energy/kg BW(0.75) from d 15 to slaughter. Dry feed was not offered. Dry matter, energy, CP, and fat intakes were 55.2 kg, 257.6 Mcal, 13.0 kg, and 8.2 kg; 52.8 kg, 268.8 Mcal, 13.1 kg, and 11.4 kg; and 46.8 kg, 270.3 Mcal, 12.6 kg, and 14.3 kg for the LF, MF and HF treatments, respectively. Energy and CP intakes did not differ among treatments (P = 0.63 and 0.79, respectively). Fat and DMI were different among treatments (P = 0.001 and 0.02, respectively). Empty BW gains were 0.61, 0.61, and 0.65 kg/d for LF, MF, and HF, respectively, and were not different among treatments (P = 0.27). Empty body CP, water, and ash gain were not different among treatments (P = 0.65, 0.99, and 0.57, respectively). Empty body retained energy and fat gain were 27.2 and 57.7% greater for calves fed the HF than for those fed the LF diet (P = 0.06 and 0.006, respectively). Fat as a percentage of the whole empty body on a water-free basis was lower for calves consuming the LF diet (28.6%) than for those fed the HF diet (34.6%), whereas percentage of CP on an empty body, water-free basis was greater for calves consuming the LF diet (59.2%) than for those fed the HF diet (54.9%) (P = 0.006). The results of this study demonstrated that, under isocaloric and isonitrogenous intake conditions, equivalent dietary energy from fat compared to carbohydrate, above 15% fat, has no beneficial purpose unless additional fat deposition is required in the animal. Further, the data demonstrate significant changes in body composition independent of growth rate.  相似文献   

20.
Mature pregnant crossbred ewes (n = 90) were used in a randomized complete block design and assigned to 1 of 3 winter-feeding systems differing in primary feed source: haylage (HL), limit-fed corn (CN), or limit-fed dried distillers grains (DDGS). Effects of these winter-feeding strategies on ewe and lamb performance were determined. Diets were formulated to meet or exceed NRC (1985) nutrient requirements during gestation and were fed from about d 60 of gestation until parturition. All ewes were fed a common diet postpartum. Every 2 wk during gestation, BW and BCS were collected and diets were adjusted to maintain similar BW gain for ewes fed CN and DDGS vs. HL. At 80 and 122 d of gestation, jugular blood samples were collected at 0, 3, 6, and 9 h postfeeding to measure plasma glucose, insulin, NEFA, and blood urea nitrogen concentrations. At birth, 6 lambs per treatment were killed to measure body composition. At 28 ± 2 d postpartum, milk yield was measured. Lambs were weaned at 61 ± 4 d of age. During mid gestation (d 60 to 115), BW gain of ewes was similar among treatments; however, at d 115 of gestation ewes fed HL had a smaller (P = 0.04) BCS than ewes fed DDGS or CN. Plasma glucose concentrations were greater (P ≤ 0.004) in ewes fed CN than in those fed HL or DDGS just before feeding on d 80 and 122 of gestation, whereas ewes fed DDGS vs. CN or HL had greater (P ≤ 0.04) plasma insulin concentrations at 3 h postfeeding. At parturition, ewe BW was greatest for DDGS, least for HL, and intermediate for CN (P ≤ 0.003). Ewes fed CN and DDGS had greater BCS at parturition than those fed HL, but by weaning, ewes fed DDGS had greater BCS (P ≤ 0.05) than those fed CN or HL. Birth BW tended (P = 0.09) to be heavier for lambs from ewes fed CN and DDGS than from those fed HL prepartum, but there was no difference (P = 0.19) due to ewe gestation diet on lamb BW at weaning. At birth, lamb muscle, bone, organ, and fat measures were not affected (P > 0.13) by treatment. Ewe milk production and lamb preweaning ADG were also similar (P > 0.44) among treatments. Prepartum dam winter feed source did not have detrimental effects on pre- or postpartum ewe performance, but altered prepartum maternal nutrient supply during gestation, which affected birth weight but not preweaning growth or mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号