首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 687 毫秒
1.
为了研究不同条件下土壤溶质的迁移规律,考虑到在产生地表径流之前存在地表积水的过程,开展了室内模拟降雨试验,通过对比分析不同试验条件下土壤中吸附性溶质总磷TP与溶解性溶质Cl-在地表径流和地下排水溶液中的浓度和流失速率过程,研究了土壤中TP和Cl-的迁移流失规律。试验结果表明:同时存在地表径流与地下排水时,Cl-的地表径流溶质质量分数C_s远小于地下排水溶质质量分数C_g(C_s=0.010%C_g=80.700%和C_s=0.010%C_g=47.580%),总磷TP的C_s均大于C_g(C_s=0.002%C_g=0.001%和C_s=0.014%C_g=0.006%),故吸附性溶质TP主要通过地表径流途径流失,而Cl-表现为以地下排水流失为主,且Cl-比TP在地表径流中的流失速率快。在降雨条件下,土壤初始含水率θ0越低(0.0410.25)、地下排水条件越差(地下排水口高度hd=23cm0cm)、地表积水深度hp越大(5cm2cm)等都将导致土壤溶质在地表径流和地下排水中流失质量分数之和(C_s+C_g)越小(0.023%0.105%、0.71%28.97%和47.592%80.71%),可提高土壤溶质的有效利用程度,该成果可为提高土壤溶质的有效利用率和减轻农业面源污染等方面提供理论支持。  相似文献   

2.
土壤中氮磷流失试验研究   总被引:3,自引:0,他引:3  
为了探讨农田土壤中氮磷对水环境的污染,开展室内模拟降雨试验,通过对比分析不同试验条件下氮磷在地表径流和地下排水溶液中的流失质量分数和流失速率,研究了土壤中氮磷的流失规律。结果表明,同时存在地表径流与地下排水时,地下排水流失的氮占氮流失总量的主要部分,而磷则主要通过地表径流途径流失。总体上来说,土壤中氮磷溶质从地下排水途径中流失比重大,故通过控制流失途径来减少流失时,需优先采取降低地下排水量的措施。当地下排水条件越差、地表最大积水深度越大时,氮磷的流失总量越少;土壤初始含水率越大,土壤中氮磷溶质在地表径流途径中的流失量越大。  相似文献   

3.
为了研究Cr(Ⅵ)在土壤不同初始pH和初始浓度条件下的吸附规律,以武汉东西湖蔬菜基地的土壤为试验材料进行土柱的动态吸附试验,调节初始溶液的pH和浓度,制备6种不同性质的土样进行动态吸附试验,选用Origin软件来拟合溶质的穿透曲线;并选用惰性离子Cl-进行示踪试验求取弥散系数,结合 CXTFTI 软件中的化学非平衡模型--两点模型进行数值模拟,求取Cr(Ⅵ)在该土壤中的溶质运移参数,从而对在土壤中Cr(Ⅵ)的吸附过程进行分析及预测.研究结果表明:Cr(Ⅵ)的吸附对pH值非常敏感, 通入溶液的初始pH值越低,穿透时间以及达到吸附饱和的时间越早;而初始浓度也会对Cr(Ⅵ)的吸附有一定影响,通入溶液的初始浓度越高,穿透时间以及达到吸附饱和的时间越早.利用两点模型求取的Cr(Ⅵ)在该土壤中的溶质运移参数能很好的解释土柱试验的结果,Cr(Ⅵ)在该土壤的的吸附过程中大约 60%都是瞬时完成的,40%是受到速率限制作用,满足一阶动力学方程.  相似文献   

4.
目前对红壤坡地氮素流失的试验研究主要集中在人工土槽装置中监测径流和壤中流氮素,缺乏在野外自然坡情况下氮素在径流-壤中流及土壤中迁移转化过程的整体研究。为了探究天然红壤坡地氮素在地表径流-土壤水系统中的迁移转化规律,在江西水土保持生态科技园开展了3次坡地人工降雨氮素流失试验,对不同坡面及土壤初始条件下人工降雨过程中地表径流、壤中流及土壤水分状况与氮素(硝态氮和铵态氮)浓度进行了监测和分析。结果表明,初始坡面粗糙截流能力强,能减少地表径流产流量,但会导致硝态氮大量渗入土壤,造成硝态氮随土壤水的下移。自然坡地土壤中的大孔隙和土壤空间变异性是导致壤中流的主要原因,壤中流硝态氮浓度显著高于地表径流硝态氮浓度,导致壤中流硝态氮流失占比较高,第一次试验中硝态氮壤中流流失占比超过50%。相比较而言,壤中流与地表径流铵态氮浓度均较小,与铵态氮在土壤中较强的吸附能力有关。历次试验中,土壤硝态氮和铵态氮沿顺坡方向空间变异性较大,随时间变化无一致性规律,除受到坡面水力特征影响外,还受到土壤温度的影响。  相似文献   

5.
为进一步研究Cr(Ⅵ)在碱性土壤中的吸附解吸规律,选用武汉东西湖区蔬菜基地的土壤进行土柱的吸附解吸动态试验。通过试验发现,通入溶液的流速越快,穿透时间以及达到吸附饱和的时间就越早,而初始溶液浓度的增加也会适当缩短整个吸附饱和的过程。吸附率随流速的下降而增加,在相同初始浓度的条件下,较低的流速具备更高的吸附效率。而初始浓度及流速对解吸过程的影响并不明显,Cr(Ⅵ)在碱性土壤解吸过程中伴有明显的拖尾现象。吸附穿透曲线均可以利用Thomas模型和Yoon-Nelson模型来进行计算分析,利用Thomas模型求得饱和吸附量q0以及吸附速率常数kth;利用Yoon-Nelson模型得到流出液浓度达到初始浓度50%的时间τ,从而对Cr(Ⅵ)在该碱性土壤中的吸附过程进行预测分析,为减少土壤重金属污染提供理论参考。  相似文献   

6.
王辉  平李娜  沈紫燕  龚恩磊 《农业机械学报》2014,45(12):165-170,223
以非吸附性溴离子和吸附性磷元素为示踪剂,通过改变针头式降雨器的雨滴降落高度获取不同雨滴动能,并推算其相应的雨滴能量流(Rain droplet energy flux,DE),研究雨滴动能对红壤坡面溶质迁移特征的影响。试验结果表明,初始产流时间、地表土壤含水率、土壤水分入渗深度等均随着DE增大而线性减小;径流总量(Total runoff,TR)与DE呈幂函数递增关系;产沙量(Sediment yield,SY)与DE可用对数函数描述。在不同雨滴动能条件下,径流溴离子浓度随产流时间呈幂函数衰减,土壤溴离子淋溶深度随着雨滴动能增大而减少;径流溶解态磷浓度随产流时间呈线性增大趋势,径流全磷(Total phosphorus,TP)流失总量与DE的关系可用指数函数描述,且径流全磷流失量与径流总量及产沙量高度相关;雨滴动能越大导致表层土壤磷素含量越低。  相似文献   

7.
不同土壤中Cr(Ⅵ)在质量浓度小于25 mg/kg时,对3种作物种子的发芽率均无显著性影响。在壤土和砂壤土条件下,Cr(Ⅵ)质量浓度小于2 mg/kg时,对试验种子发芽的根伸长及鲜质量均无显著性影响,粘土条件下,Cr(Ⅵ)质量浓度小于1 mg/kg时对种子的根伸长及鲜质量的影响也不显著,但随着质量浓度的增高转变为越来越强烈的抑制作用。经相关分析可知,土壤Cr(Ⅵ)质量浓度与作物种子的根伸长抑制率呈极显著正相关。由回归方程计算得到抑制率达到25%的EC25值,通过比较得出Cr(Ⅵ)在粘土中的抑制作用最强,在壤土和砂壤土中相差不大。  相似文献   

8.
为了研究旱涝急转条件下红壤坡地地表径流、壤中流及其养分流失规律,通过径流小区试验,分析对比在旱涝急转条件下,裸露(CK)、百喜草全园敷盖(T1)和百喜草全园覆盖(T2)措施下红壤坡地地表径流和壤中流产流及总氮、总磷流失特征。结果表明,旱涝急转条件下,地表径流产流过程随着雨强的变化而变化,壤中流产流开始后径流过程与地表径流相似;地表径流和30cm壤中流养分流失呈现先增大后减小最终趋于稳定的趋势,60cm壤中流和105cm壤中流养分质量浓度相对稳定;T2处理对于减少径流养分流失的效果最好,地表径流和壤中流径流量分别为CK的32.89%和45.05%,径流中养分质量浓度也明显降低。  相似文献   

9.
降雨条件下,土壤溶质随径流的产生发生迁移。利用室内实验,研究缓坡饱和土壤溶质流失的时间规律、溶质浓度在垂直入渗和坡面径流两个方向上的变化规律。结果表明:在径流过程中,溶质流失速度变小,流失量减少并趋于稳定,幂函数比指数更适合描述这类变化;垂直方向上,土壤溶质向下层渗透扩散受深度的影响,随深度的增加溶质浓度先增后减并趋于稳定,此规律适合用对数描述;在坡面表层,土壤溶质随径流的迁移规律清晰,土壤溶质浓度远处高于近处,多阶多项式模型更适合描述浓度变化;随土层深度增加,溶质浓度变化有明显分界线,在分界线及以下溶质浓度变化规律性较差,总体呈降低趋势。  相似文献   

10.
径流冲刷条件下坡地养分随地表径流迁移数学模型   总被引:1,自引:0,他引:1  
径流冲刷是土壤养分随地表径流流失的重要影响因素之一。为了模拟径流冲刷作用对土壤养分流失的影响,依据饱和土壤条件下有效混合深度概念,建立了径流冲刷条件下坡面土壤养分向地表径流传递的有效混合深度模型。利用试验数据对模型径流养分质量浓度变化过程的效果进行了检验,结果显示不完全混合模型在模拟径流养分质量浓度随放水时间的变化方面效果较好,决定系数均在0.9以上。通过不完全混合模型计算径流养分累计流失量,与实测数据差异很小,当养分为硝态氮时,计算值与实测值之间的相对误差分别为6.6%(柠条)和5.9%(大豆),当养分为水溶性磷时,相对误差分别为1.1%(柠条)和2.3%(大豆),说明模型的模拟精度较高。在选择模型时,应根据计算精度和参数获取方便性等情况综合确定。  相似文献   

11.
Long-term hydrologic simulations are presented predicting the effects of drainage water management on subsurface drainage, surface runoff and crop production in Iowa's subsurface drained landscapes. The deterministic hydrologic model, DRAINMOD was used to simulate Webster (fine-loamy, mixed, superactive, mesic) soil in a Continuous Corn rotation (WEBS_CC) with different drain depths from 0.75 to 1.20 m and drain spacing from 10 to 50 m in a combination of free and controlled drainage over a weather record of 60 (1945-2004) years. Shallow drainage is defined as drains installed at a drain depth of 0.75 m, and controlled drainage with a drain depth of 1.20 m restricts flow at the drain outlet to maintain a water table at 0.60 m below surface level during the winter (November-March) and summer (June-August) months. These drainage design and management modifications were evaluated against conventional drainage system installed at a drain depth of 1.20 m with free drainage at the drain outlet. The simulation results indicate the potential of a tradeoff between subsurface drainage and surface runoff as a pathway to remove excess water from the system. While a reduction of subsurface drainage may occur through the use of shallow and controlled drainage, these practices may increase surface runoff in Iowa's subsurface drained landscapes. The simulations also indicate that shallow and controlled drainage might increase the excess water stress on crop production, and thereby result in slightly lower relative yields. Field experiments are needed to examine the pathways of water movement, total water balance, and crop production under shallow and controlled drainage in Iowa's subsurface drained landscapes.  相似文献   

12.
陈晓东  寇传和 《节水灌溉》2006,(4):32-33,36
稻田排水是南方地区氮磷损失和面源污染的主要途径。农田氮磷通过降雨击溅侵蚀、排水沟坡面和沟底冲刷进入地表径流。控制排水可减少地面排水量和排水中氮磷浓度,尤其是降低径流中氮磷浓度,从而减少稻田氮磷损失。土壤颗粒沉淀、硝化、反硝化反应以及作物吸收是排水中氮磷浓度降低的主要原因。通过控制涝水在稻田和排水沟中的滞留时间,增加排水沟口溢流堰高度,降低径流水力坡度和抉沙能力是控制排水的主要手段。最后提出了稻田控制排水需要进一步研究的问题。  相似文献   

13.
在地下水位较高、地表易于形成积水的中国南方地区,通过农田排水措施可以及时排除多余地表积水,快速降低地下水位,以达到排涝降渍、协同调控的目的.文中基于室内砂槽试验,揭示暗管排水、明沟排水、不同反滤体高度的反滤体排水及改进暗管排水等措施的地下排水规律及效果.结果表明:将暗管周围土体置换为高渗透性土体介质的改进暗管排水可明显提高排水流量,当土体置换高度达2 cm时(对应于田间条件40 cm),其排水流量均高于相同埋深条件下的其他排水措施,达暗管排水的1.59~1.66倍;改进暗排在地表积水消失时仍保持较大的排水流量,可达相同埋深暗管流量的2倍以上,在积水层消失后,能迅速降低农田土壤水的渍害胁迫,将地下水位降低至暗管埋设高度;各种排水措施,在地表积水即将消失时,出现了流量与水头变化幅度较大的现象.相对于各种地下排水措施,改进暗管排水在除涝降渍中存在明显优势.研究结果可为涝渍灾害易发地区高效除涝降渍减灾工程设计和建设提供参考.  相似文献   

14.
【目的】研究不同的田间管理措施对不同粒径土壤胶体迁移的影响。【方法】通过微区试验,设置不同耕作措施(平作、垄作、平作+完整秸秆覆盖、垄作+完整秸秆覆盖、平作+粉碎秸秆覆盖、垄作+粉碎秸秆覆盖),并在平作条件下设置不同紫色土土层厚度(20、40、60、80、100、120 cm)处理,研究不同措施对地表径流和壤中流中产流量、不同粒径范围(0.45~2、0.22~0.45μm、<0.22μm)胶体出流浓度和流出量的影响。【结果】①秸秆还田覆盖处理能够显著减少地表径流的产流量,但是会增加壤中流的产流量,特别是完整秸秆还田覆盖;平作条件下,壤中流产流量会随着土壤深度的增加而减少。②垄作或垄作+秸秆覆盖处理与平作处理相比能够显著降低地表径流和壤中流中大粒径范围胶体的出流质量浓度和流出量,而且对壤中流中<0.22μm粒径的胶体出流质量浓度和流出量降低程度也比较显著。③小粒径的胶体容易随地表径流迁移,而壤中流中粒径较大的胶体更加容易迁移,小粒径胶体颗粒随着紫色土土层厚度的增加出流质量浓度和流出量都会减少。【结论】对于不同耕作措施而言,垄作+粉碎秸秆覆盖处理对于减少地表径流和壤中流产流量,以及减少地表径流和壤中流中胶体的流出质量浓度和流出量都比较显著。对于不同紫色土土层厚度处理而言,土层深度越深胶体流出量越少,而且小粒径胶体比大粒径胶体更难从壤中流中流出。  相似文献   

15.
Modification of land cover systems is being studied in subsurface drained Iowa croplands due to their potential benefits in increasing soil water and nitrogen depletion thus reducing drainage and NO3-N loss in the spring period. The objective of this study was to evaluate the impacts of modified land covers on soil water dynamics. In each individual year, modified land covers including winter rye-corn (rC), winter rye-soybean (rS), kura clover as a living mulch for corn (kC), and perennial forage (PF), as well as conventional corn (C) and soybean (S), were grown in subsurface drained plots in north-central Iowa. Results showed that subsurface drainage was not reduced under modified land covers in comparison to conventional corn and soybean. Soil water storage (SWS) was significantly reduced by PF treatments during the whole growing seasons and by kC during May through July when compared to the cropping system with corn or soybean only (p < 0.05). Treatments of rC and rS typically maintained higher SWS than C and S, respectively, during the 3 years of this study. In the spring during a 10-15-day period when the rainfall was minimal, SWS in plots with rye, kura clover, and forage decreased at a significantly higher rate than the C and S plots which were bare. Estimated evapotranspiration (ET) during this period was significantly higher in rS, kC, and PF treatments than C and S. The results of this study suggested that significantly higher ET and similar drainage for modified land covers may increase water infiltration, which would be expected to reduce surface runoff thus to decrease stream flow. Because subsurface drainage reduction was not seen in this study, impact of modified land covers on NO3-N loss needs further investigation.  相似文献   

16.
Simulation of nitrate-N movement in southern Ontario,Canada with DRAINMOD-N   总被引:1,自引:0,他引:1  
DRAINMOD-N, a mathematical model to predict nitrate-N concentrations in surface runoff and drain outflows from subsurface-drained farmlands, has been tested against field data collected in southern Ontario. The data was collected in a corn field from 16 conventional drainage and subirrigation plots in Woodslee, Ontario, from 1992 to 1994. The model performance was evaluated by comparing the observed and simulated nitrate-N concentrations in surface runoff and drain outflows. A precise calculation of water-table depth is an essential prerequisite for a model to obtain a proper prediction of nitrate-N movement. For the simulation of water-table depth, the lowest root mean square error and the highest correlation coefficient of linear regression were 173 mm and 0.51 for the subirrigation plots; and 178 mm and 0.84 for the subsurface drainage plots. Therefore, the performance of DRAINMOD-N for soil hydrologic simulations was satisfactory and it could be used for assessing nitrogen fate and transport. For the simulation of nitrate-N losses in the subirrigation plots, the lowest root mean square error and the highest correlation coefficient of linear regression were 0.74 kg/ha and 0.98 for surface runoff; and 6.53 kg/ha and 0.91 for drain outflow. For the simulation in the subsurface drainage plots, the lowest root mean square error and the highest correlation coefficient of linear regression were 0.70 kg/ha and 0.96 for surface runoff; and 6.91 kg/ha and 0.92 for drain outflow. The results show that DRAINMOD-N can perform satisfactory simulation of soil hydrology and nitrate-N losses in surface runoff under various water-table management practices. The model can, therefore, be used to evaluate different water pollution scenarios and help in the development and testing of various pollution control strategies for fields in cold weather such as that in southern Canada.  相似文献   

17.
In Hawaii, pineapple is typically grown in raised beds covered with impervious plastic mulch. Field measurements of a commonly used herbicide (bromacil) mass beneath mulch-covered pineapple beds and inter-bed open areas revealed that open areas contained a mass of bromacil about 3.5 times greater than was originally applied, based on label instructions, to the entire field. The broadcast bromacil ended up in the inter-bed open areas through water runoff from the plastic mulch covering the pineapple beds. The objective of this study was to evaluate the impact of surficial management on water dynamics and bromacil concentration in the soil on a pineapple plantation using the one- (1D) and two-dimensional (2D) flow and transport models. Flow and transport processes were simulated in a 2D vertical cross-section perpendicular to the plant rows. The 1D simulation was limited to the open inter-bed areas. Several simulation scenarios were proposed to evaluate the effect of plastic mulch on bromacil transport in soil. In our simplified approach, the water and solute boundary fluxes for the non-covered areas were increased to simulate the water and solute contribution from the plastic mulch surface. The simulation results were compared with field observations of soil water potentials and resident bromacil concentration profiles. The field and laboratory-measured hydraulic and transport parameters were used for all simulation scenarios. Reasonably good agreement between the model-predicted and observed soil water potentials and bromacil concentration profiles was obtained. Biased 1D and 2D results were predicted when the water runoff from plastic mulch was neglected. The 1D approach to quantify bromacil transport beneath the inter-bed open areas seemed to be sufficient in case the water runoff from the mulch was taken into account.  相似文献   

18.
Phosphorus (P) is the limiting nutrient responsible for the development of algal blooms in freshwater bodies, adversely impacting the water quality of downstream lakes and rivers. Since agriculture is a major non-point source of P in southern Quebec, this study was carried out to investigate P transport under subsurface and naturally drained agricultural fields with two common soil types (clay loam and sandy loam). Monitoring stations were installed at four sites (A, B, C and D) in the Pike River watershed of southern Quebec. Sites A-B had subsurface drainage whereas sites C-D were naturally drained. In addition, sites A-C had clay loam soils whereas sites B-D had sandy loam soils. Analysis of data acquired over two hydrologic years (2004-2006) revealed that site A discharged 1.8 times more water than site B, 4 times more than site C and 3 times more than site D. The presence of subsurface drainage in sandy loam soils had a significant beneficial effect in minimizing surface runoff and total phosphorus (TP) losses from the field, but the contrary was observed in clay loam soils. This was attributed to the finding that P speciation as particulate phosphorus (PP) and dissolved phosphorus (DP) remained relatively independent of the hydrologic transport pathway, and was a strong function of soil texture. While 80% of TP occurred as PP at both clay loam sites, only 20% occurred as PP at both sandy loam sites. Moreover, P transport pathways in artificially drained soils were greatly influenced by the prevailing preferential and macropore flow conditions.  相似文献   

19.
The Indian Council of Agricultural research has given priority to control and manage salinity problems that have developed in north-west India. Multi-disciplinary taskforces have recommended installation of subsurface drainage for salinity control, based on design and management techniques developed by the Central Soil Salinity Research Institute (CSSRI), to rehabilitate lands with excess soil salinity. After small-scale studies, large-scale pilot projects were launched to install subsurface drainage in problem areas. One such attempt in was initiated in the north-west region of India where a large-scale drainage project was carried out with Dutch collaboration. We assessed the impact of investments in subsurface drainage in order to validate past funding on research of drainage in India. The important methods used for assessing the efficiency benefits of drainage investment were: to determine the impact of subsurface drainage in terms of net present value, internal rate of returns, consumers' surplus and producers' surplus; to assess the social welfare in terms of social equality and sustainability of the drainage system; and to examine the factors affecting the sustainability of the technology. The internal rate of return was computed to assess the efficiency parameter of subsurface drainage for salinity management. In order to measure the changes in inequality distribution of income, Gini concentration ratios were computed with and without installing sub surface drainage. The Radar Approach, a method based on a graphical display of differences between actual ideal performance, was used to quantify drainage sustainability in terms of optimizing gains and conserving, or improving the quality of soil and water resources. There were several farm-level benefits as a result of installing subsurface drainage: these included: (i) a substantial increase in farm income; (ii) cropping intensification and diversification toward high value crops; and (iii) generation employment. A high internal rate of return justified investment in subsurface drainage. Income inequalities across farms were reduced. The radar approach showed improvement in sustainability in terms of economic gains and resource conservation. Despite of these economic, social, and environmental benefits, the sustainability of subsurface drainage technology is questionable. The specific reasons include: (i) the nature of the technology; (ii) lukewarm collective action by the beneficiaries; (iii) conflicting objectives among beneficiaries; and (iv) growing numbers of free riders. To a large extent these were addressed in the study area by forming village committees. Without appropriate institutional arrangements, subsurface drainage may not yield the desired results, and in the long run may result in neglect of operation and maintenance needs and ultimately the abandonment of the technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号