首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
An apical-membrane chloride channel in human tracheal epithelium   总被引:11,自引:0,他引:11  
M J Welsh 《Science (New York, N.Y.)》1986,232(4758):1648-1650
The mechanism of chloride transport by airway epithelia has been of substantial interest because airway and sweat gland-duct epithelia are chloride-impermeable in cystic fibrosis. The decreased chloride permeability prevents normal secretion by the airway epithelium, thereby interfering with mucociliary clearance and contributing to the morbidity and mortality of the disease. Because chloride secretion depends on and is regulated by chloride conductance in the apical cell membrane, the patch-clamp technique was used to directly examine single-channel currents in primary cultures of human tracheal epithelium. The cells contained an anion-selective channel that was not strongly voltage-gated or regulated by calcium in cell-free patches. The channel was also blocked by analogs of carboxylic acid that decrease apical chloride conductance in intact epithelia. When attached to the cell, the channel was activated by isoproterenol, although the channel was also observed to open spontaneously. However, in some cases, the channel was only observed after the patch was excised from the cell. These results suggest that this channel is responsible for the apical chloride conductance in airway epithelia.  相似文献   

2.
In many epithelial cells the chloride conductance of the apical membrane increases during the stimulation of electrolyte secretion. Single-channel recordings from human airway epithelial cells showed that beta-adrenergic stimulation evoked apical membrane chloride channel activity, but this response was absent in cells from patients with cystic fibrosis (CF). However, when membrane patches were excised from CF cells into media containing sufficient free calcium (approximately 180 nanomolar), chloride channels were activated. The chloride channels of CF cells were similar to those of normal cells as judged by their current-voltage relations, ion selectivity, and kinetic behavior. These findings demonstrate the presence of chloride channels in the apical membranes of CF airway cells. Their regulation by calcium appears to be intact, but cyclic adenosine monophosphate (cAMP)-dependent control of their activity is defective.  相似文献   

3.
The patch-clamp technique was used to examine the effects of atrial natriuretic peptide (ANP) and its second messenger guanosine 3',5'-monophosphate (cGMP) on an amiloride-sensitive cation channel in the apical membrane of renal inner medullary collecting duct cells. Both ANP (10(-11) M) and dibutyryl guanosine 3',5'-monophosphate (10(-4) M) inhibited the channel in cell-attached patches, and cGMP (10(-5) M) inhibited the channel in inside-out patches. The inner medullary collecting duct is the first tissue in which ANP, via its second messenger cGMP, has been shown to regulate single ion channels. The results suggest that the natriuretic action of ANP is related in part to cGMP-mediated inhibition of electrogenic Na+ absorption by the inner medullary collecting duct.  相似文献   

4.
The binding of antigen or monoclonal antibody to the T cell receptor for antigen or the closely associated CD3 complex causes increases in the concentration of intracellular ionized calcium and subsequent cell proliferation. By measuring second messenger production in primary cultures of human immunodeficiency virus (HIV-1)--infected T cells stimulated with monoclonal antibodies specific for either CD3 or CD2, a specific impairment of membrane signaling was revealed. The HIV-1--infected T cells were unable to mobilize Ca2+ after stimulation with anti-CD3, whereas CD2-induced calcium mobilization remained intact. Furthermore, the HIV-1--infected cells proliferated poorly after CD3 stimulation, although the cells retained normal DNA synthesis in response to interleukin-2 stimulation. These results show that the signals initiated by CD2 and CD3 can be regulated independently within the same T cell; uncoupling of signal transduction after antigen-specific stimulation provides a biochemical mechanism to explain, in part, the profound immunodeficiency of patients with HIV-1 infection.  相似文献   

5.
Calcium salts are strong taste stimuli in vertebrate animals. However, the chemosensory transduction mechanisms for calcium are not known. In taste buds of Necturus maculosus (mud puppy), calcium evokes depolarizing receptor potentials by acting extracellularly on the apical ends of taste cells to block a resting potassium conductance. Therefore, divalent cations elicit receptor potentials in taste cells by modulating a potassium conductance rather than by permeating the cell membrane, the mechanism utilized by monovalent cations such as sodium and potassium ions.  相似文献   

6.
In response to the floral stimulus, Xanthium buds synthesize relatively more messenger RNA than do vegetative buds. This is demonstrated by fractionation, on methylated albumin-kieselguhr columns, of a mixture of nucleic acids from vegetative and induced buds, one being labeled with uridine-H(3) and the other with uridine-2-C(14). While floral induction stimulates a small increase in messenger RNA synthesis as revealed by labeling intact plants, this difference can be magnified by labeling excised buds in solution. From experiments with excised buds from Xanthium plants, it is concluded that buds from photoperiodically induced plants contain more messenger RNA than buds from noninduced ones do.  相似文献   

7.
Voltage-dependent outward current measured in the dark is reduced after illumination. This reduction can be blocked by tetraethylammonium and is associated with a decrease in total membrane conductance. The voltage dependence of the current reduced by light is the same as that of the delayed rectifier. These results indicate that light modulates the delayed rectifier. This modulation serves to maintain a stable voltage response to constant illumination.  相似文献   

8.
The T cell lymphokine, interleukin-2 (IL-2), plays a pivotal role in an immune response by stimulating antigen-activated B lymphocytes to progress through the cell cycle and to differentiate into antibody-secreting cells. An IL-2 inducible B lymphoma line, in which the growth and differentiation responses are uncoupled, provides a model system for dissecting the signaling mechanisms operating in each response. This system was used to show that both signals are initiated by IL-2 binding to a single, unifunctional receptor complex. Moreover, both signals are transduced by a pathway that does not involve any known second messenger system and that can be blocked by a second T cell lymphokine, interleukin 4. These findings suggest that the pleiotrophic effects of IL-2 are determined by different translations of the signal in the nucleus.  相似文献   

9.
Synaptic activation of an electrogenic sodium pump   总被引:5,自引:0,他引:5  
An identified molluscan interneuron mediates different cholinergic synaptic actions by increasing the conductance of its follower cells to different ions. We have now found that this interneuron also mediates a new class of synaptic actions which does not involve a conductance change but the activation of an electrogenic sodium pump. This synaptic action results in a prolonged inhibitory synaptic potential which is dependent on metabolism and is selectively blocked by cooling and ouabain. In cells which have this synaptic potential, part of the resting membrane potential is also maintained by an electrogenic sodium pump. The same transmitter, acetylcholine, can independently stimulate both a chloride ion conductance and a sodium pump mechanism in the same follower cell by acting on two different postsynaptic receptors.  相似文献   

10.
Information processing in the vertebrate retina occurs in two separate channels known as ON and OFF channels. When intracellular electrophysiological recordings were obtained from the perfused retina-eyecup preparation of the mud-puppy (Necturus maculosus), the addition of 2-amino-4-phosphonobutyric acid to the bathing medium blocked all responses in the ON channel but left intact the OFF responses including OFF ganglion cell discharge. 2-Amino-4-phosphonobutyric acid blocks the light response of the ON bipolar cell by mimicking the endogenous photoreceptor transmitter.  相似文献   

11.
Angiotensin II (AII) stimulates rapid increases in the concentration of cytosolic calcium in follicular oocytes from Xenopus laevis. This calcium response was not present in denuded oocytes, indicating that it is mediated by AII receptors on the adherent follicular cells. The endogenous AII receptors differed in their binding properties from mammalian AII receptors expressed on the oocyte surface after injection of rat adrenal messenger RNA. Also, the calcium responses to activation of the amphibian AII receptor, but not the expressed mammalian AII receptor, were blocked reversibly by octanol and intracellular acidification, treatments that inhibit cell coupling through gap junctions. In addition, AII increased the rate of progesterone-induced maturation. Thus, an AII-induced calcium-mobilizing signal is transferred from follicle cells to the oocyte through gap junctions and may play a physiological role in oocyte maturation.  相似文献   

12.
Kaposi's sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) is the causative agent of Kaposi's sarcoma and other lymphoproliferative syndromes often associated with HIV/AIDS. Functional complementary DNA selection for a receptor mediating KSHV cell fusion identified xCT, the 12-transmembrane light chain of the human cystine/glutamate exchange transporter system x-c. Expression of recombinant xCT rendered otherwise not susceptible target cells permissive for both KSHV cell fusion and virion entry. Antibodies against xCT blocked KSHV fusion and entry with naturally permissive target cells. KSHV target cell permissiveness correlated closely with endogenous expression of xCT messenger RNA and protein in diverse human and nonhuman cell types.  相似文献   

13.
Arachidonic acid, as well as fatty acids that are not substrates for cyclooxygenase and lipoxygenase enzymes, activated a specific type of potassium channel in freshly dissociated smooth muscle cells. Activation occurred in excised membrane patches in the absence of calcium and all nucleotides. Therefore signal transduction pathways that require such soluble factors, including the NADPH-dependent cytochrome P450 pathway, do not mediate the response. Thus, fatty acids directly activate potassium channels and so may constitute a class of signal molecules that regulate ion channels.  相似文献   

14.
Although ion channels have been detected in mitochondria, scientists have not been able to record ion transport in mitochondria of intact cells. A variation of the patch clamp technique was used to record ion channel activity from intracellular organelles in the presynaptic terminal of the squid. Electron microscopy indicated that mitochondria are numerous in this terminal and are the only organelles compatible with the tips of the pipettes. Before synaptic stimulation, channel activity was infrequent and its conductance was small, although large conductances ( approximately 0.5 to 2.5 nanosiemens) could be detected occasionally. During a train of action potentials, the conductance of the mitochondrial membrane increased up to 60-fold. The conductance increased after a delay of several hundred milliseconds and continued to increase after stimulation had stopped. Recovery occurred over tens of seconds.  相似文献   

15.
Apical membrane chloride channels control chloride secretion by airway epithelial cells. Defective regulation of these channels is a prominent characteristic of cystic fibrosis. In normal intact cells, activation of protein kinase C (PKC) by phorbol ester either stimulated or inhibited chloride secretion, depending on the physiological status of the cell. In cell-free membrane patches, PKC also had a dual effect: at a high calcium concentration, PKC inactivated chloride channels; at a low calcium concentration, PKC activated chloride channels. In cystic fibrosis cells, PKC-dependent channel inactivation was normal, but activation was defective. Thus it appears that PKC phosphorylates and regulates two different sites on the channel or on an associated membrane protein, one of which is defective in cystic fibrosis.  相似文献   

16.
A spatial-temporal model of cell activation   总被引:22,自引:0,他引:22  
A spatial-temporal model of calcium messenger function is proposed to account for sustained cellular responses to sustained stimuli, as well as for the persistent enhancement of cell responsiveness after removal of a stimulus, that is, cellular memory. According to this model, spatial separation of calcium function contributes to temporal separation of distinct phases of the cellular response. At different cellular sites, within successive temporal domains, the calcium messenger is generated by different mechanisms and has distinct molecular targets. In particular, prolonged cell activation is brought about by the interaction of calcium with another spatially confined messenger, diacylglycerol, to cause the association of protein kinase C with the plasma membrane. Activity of the membrane-associated protein kinase C is controlled by the rate of calcium cycling across the plasma membrane. In some instances, a single stimulus induces both protein kinase C activation and calcium cycling and thus causes prolonged activation; but in others, a close temporal association of distinct stimuli brings about cell activation via interaction of these intracellular messengers. Persistent enhancement of cell responsiveness after removal of stimuli is suggested to be due to the continued association, or anchoring, of protein kinase C to the membrane.  相似文献   

17.
In heart, glycolysis may be a preferential source of adenosine triphosphate (ATP) for membrane functions. In this study the patch-clamp technique was used to study potassium channels sensitive to intracellular ATP levels in permeabilized ventricular myocytes. Activation of these K+ channels has been implicated in marked cellular K+ loss leading to electrophysiological abnormalities and arrhythmias during myocardial ischemia. The results showed that glycolysis was more effective than oxidative phosphorylation in preventing ATP-sensitive K+ channels from opening. Experiments in excised inside-out patches suggested that key glycolytic enzymes located in the membrane or adjacent cytoskeleton near the channels may account for their preference for glycolytic ATP.  相似文献   

18.
The Frizzled-2 receptor (Rfz2) from rat binds Wnt proteins and can signal by activating calcium release from intracellular stores. We show that wild-type Rfz2 and a chimeric receptor consisting of the extracellular and transmembrane portions of the beta2-adrenergic receptor with cytoplasmic domains of Rfz2 also signaled through modulation of cyclic guanosine 3',5'-monophosphate (cGMP). Activation of either receptor led to a decline in the intracellular concentration of cGMP, a process that was inhibited in cells treated with pertussis toxin, reduced by suppression of the expression of the heterotrimeric GTP-binding protein (G protein) transducin, and suppressed through inhibition of cGMP-specific phosphodiesterase (PDE) activity. Moreover, PDE inhibitors blocked Rfz2-induced calcium transients in zebrafish embryos. Thus, Frizzled-2 appears to couple to PDEs and calcium transients through G proteins.  相似文献   

19.
Induction of interleukin 2 messenger RNA inhibited by cyclosporin A   总被引:48,自引:0,他引:48  
Cyclosporin A blocked production of the lymphokine interleukin 2 by activated T lymphocytes. In a human and a murine cell line this inhibition reflected an absence of interleukin 2 messenger RNA. Under conditions in which these cells are normally stimulated to secrete high levels of interleukin 2, they failed to do so in the presence of cyclosporin A. In both cell lines this failure was accompanied by an absence of interleukin 2 messenger accumulation.  相似文献   

20.
The primary circadian pacemaker, in the suprachiasmatic nucleus (SCN) of the mammalian brain, is photoentrained by light signals from the eyes through the retinohypothalamic tract. Retinal rod and cone cells are not required for photoentrainment. Recent evidence suggests that the entraining photoreceptors are retinal ganglion cells (RGCs) that project to the SCN. The visual pigment for this photoreceptor may be melanopsin, an opsin-like protein whose coding messenger RNA is found in a subset of mammalian RGCs. By cloning rat melanopsin and generating specific antibodies, we show that melanopsin is present in cell bodies, dendrites, and proximal axonal segments of a subset of rat RGCs. In mice heterozygous for tau-lacZ targeted to the melanopsin gene locus, beta-galactosidase-positive RGC axons projected to the SCN and other brain nuclei involved in circadian photoentrainment or the pupillary light reflex. Rat RGCs that exhibited intrinsic photosensitivity invariably expressed melanopsin. Hence, melanopsin is most likely the visual pigment of phototransducing RGCs that set the circadian clock and initiate other non-image-forming visual functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号