首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
生态垫对油松生长及光合特性的影响   总被引:6,自引:2,他引:6       下载免费PDF全文
 为了研究生态垫覆盖对林木光合特性的影响,首次将生态垫应用于华北干旱油松造林地。在油松(78年)造林初期,用生态垫覆盖林地,经过2个生长季后对土壤水分及各项光合指标进行测定。结果表明:覆盖生态垫增加了表层0~20cm的土壤含水率0.04%~2.78%(相对增长率0.4%~92.2%);提高造林成活率5.1%;增加地径年生长量58.5%,促进了林木生长。覆盖可以提高叶片光饱和点下的光合速率10.6%~44.3%;增加光合速率日变化极大值30%;提高生长季Tr极大值45.8%、提高生长季Cond极大值36.0%,但对油松光补偿点及水分利用效率影响并不显著。  相似文献   

2.
可降解生态垫在河滩地造林中抑制杂草的效果   总被引:10,自引:1,他引:10       下载免费PDF全文
 为了检验可降解生态覆盖垫在河滩地造林中抑制杂草生长的效果,分3个处理(有生态覆盖垫、无生态覆盖垫、空旷地对照)对北京延庆县中德合作项目示范区的油松、刺槐、元宝枫、蒙古栎、侧柏和铺地柏等树种下的杂草盖度等级进行了调查。结果表明:可降解生态垫的杂草抑制率超过821%;杂草生长越旺盛的林地,可降解生态垫的杂草抑制率越高;大苗和冠幅较大的树种,可降解生态垫抑制杂草的效果更为明显。  相似文献   

3.
黄土高原沟壑区不同植被对土壤水分分布特征影响   总被引:2,自引:0,他引:2  
为探讨黄土高原不同植被类型下土壤水分分布特征,揭示其生态水文效应,以长武县王东沟小流域定位监测小区为研究对象,于2013年5月—2014年4月使用中子仪法对坡面4种植被覆盖类型(草地、沙棘、油松、沙棘油松混交林)下0—500cm深剖面上土壤水分进行了完整水文年的实际观测。结果表明:(1)草地平均土壤含水量显著高于沙棘、油松、沙棘油松混交林地(p0.05)。草地小区平均土壤水分含量随深度呈增加趋势,而沙棘、油松和沙棘油松混交林地表现为增加—减少—增加的倒"S"型;(2)500cm剖面上,草地和油松林地土壤水分变异系数小于沙棘和油松沙棘混交林地。4种植被覆盖类型下土壤水分都表现出春、冬积累和恢复,夏、秋消耗的季节性规律;(3)降雨量对0—200cm的土壤水分贮量具有明显影响,200—500cm土壤贮水量较为稳定,植被类型的不同增加了土壤储水量的差异。可见,草地土壤水分含量相对较高,变异性小;其他乔灌木植被类型土壤含水量相对较低,变异性大。降雨量的输入和温度的变更使土壤含水量的变化无论在剖面上还是随着时间进展具有一致性,而植被类型的影响则是在这种一致性基础上增大土壤含水量对降雨和温度的响应。  相似文献   

4.
不同降雨强度下北京山区典型林地土壤水分时空变化特征   总被引:6,自引:5,他引:1  
通过ECH2O土壤水分监测系统和EM50数据采集器对北京山区2种典型人工林地(栓皮栎林和油松林)土壤水分含量进行定位、长期观测、数据处理,分析不同降雨强度对不同林分类型土壤水分时空变化特征及差异性的影响。结果表明:(1)栓皮栎林地和油松林地日平均土壤储水量随降雨量显著变化,月平均土壤储水量随降雨量的增加呈上升趋势。(2)在垂直方向上,栓皮栎和油松林地0—40cm土层土壤储水量的增加率随雨强增加而降低,栓皮栎林地土壤储水量平均增加率(94.17%)大于油松(84.19%),而40—100cm土层土壤储水量的增加率随雨强增加均呈现增加趋势,且油松林地土壤储水量平均增加率(15.81%)大于栓皮栎林地(5.83%)。(3)栓皮栎与油松林地相同土层土壤储水量差异性显著(p0.05),同一林地不同土层土壤储水量也到达差异性显著(p0.05)。从栓皮栎和油松林地的土壤水分时空变化特征来看,2种林地土壤储水量分布不同。在造林树种选择时,可以考虑将油松和栓皮栎2个树种进行混交。研究结果将为北京山区植被建设和管理提供参考和理论依据。  相似文献   

5.
晋西黄土高原不同地类土壤抗冲性研究   总被引:3,自引:0,他引:3  
以晋西黄土高原不同林龄的油松林地为研究对象,以荒草地和农地为对照,以地表径流的泥沙含量为指标,采用野外实地放水冲刷法,对不同林龄油松林地的土壤抗冲性进行研究,分析坡度、林龄、枯落物、生物多样性指数对土壤抗冲性的影响.结果表明:(1)油松林地的土壤抗冲性大于荒草地和农地的土壤抗冲性;(2)坡度对油松林地的土壤抗冲性有较大影响,土壤抗冲性随着坡度的增加而减弱;(3)在一定坡度下,随着林龄的增加土壤抗冲性增强;(4)枯落物对油松林地的土壤抗冲性有显著影响,去除枯落物的油松林地土壤抗冲性明显小于有枯落物的油松林地,土壤抗冲性随着枯落物厚度的增加而增强;(5)生物多样性和土壤抗冲性关系密切,林地土壤抗冲性随多样性指数的增大而增强.  相似文献   

6.
[目的] 综合评价北京山区不同植被恢复类型土壤质量,并进一步确定影响土壤质量的关键因素,为该地区植被恢复与重建提供数据支撑。[方法] 以立地条件相近的侧柏纯林、油松纯林、侧柏油松混交林、侧柏针阔混交林、油松针阔混交林、落叶阔叶混交林和无林地(对照)为研究对象,测定14个土壤理化指标作为土壤质量评价的总数据集(TDS),采用主成分分析法(PCA)和Pearson相关性分析建立土壤质量最小数据集(MDS),利用线性(L)和非线性(NL)2种评分方法计算土壤质量指数(SQI)和一般线性模型(GLM)确定影响土壤质量的关键因素。[结果] 植被恢复后相较于无林地,土壤容重、砂粒含量下降,而有机质、全氮、全钾、速效氮、速效钾等土壤养分含量增加。筛选出的研究区土壤质量评价MDS指标为全氮、砂粒、全钾、pH、有效含水量。4种方法(SQI-LT、SQI-NLT、SQI-LM、SQI-NLM)下,不同植被恢复类型的SQI值排序均为落叶阔叶混交林>侧柏针阔混交林>油松纯林>油松针阔混交林>侧柏油松混交林>侧柏纯林>无林地,植被恢复后土壤质量显著提升。SQI-NLM的土壤质量评价方法在北京山区具有更好的适用性。相较于无林地,其他植被恢复类型的SQI-NLM分别提高64%,48%,45%,36%,33%,27%。GLM模型解释了土壤质量指数总变异的85.24%,植被类型对土壤质量指数的解释比例最大(45.09%)。[结论] 选择适宜的植被恢复类型是改善区域土壤质量的关键。未来实施植被恢复时,树种选择上优先考虑阔叶树种。造林配置方式的选择应取决于树种而定,如侧柏纯林中引入本土阔叶树种形成侧柏针阔混交林或选择油松纯林是最佳造林模式。  相似文献   

7.
[目的]研究黄土高原区域油松造林中施用BGB微生物菌剂对油松造林成活率、树高、地径生长的影响,以及土壤养分与水分的变化,为BGB微生物菌剂在黄土丘陵地区的植被恢复应用提供理论依据和技术支持。[方法]在不同坡面处施用3种量的BGB微生物菌剂,观察不同量的处理对油松及土壤养分的影响。[结果]BGB微生物菌剂能够显著提高苗木的成活率,促进苗木树高、地径的增长;可以显著地提高土壤中各养分的含量,增加土壤含水量,且影响随着土壤深度的增加而减小,随坡度的降低而变大。其中对土壤中速效磷和有机质的影响最显著;BGB微生物菌剂能够明显改善土壤的含水量,并且在土壤20—40cm处作用较明显。[结论]BGB微生物菌剂对油松造林成活率、生长量与土壤养分有显著的影响。  相似文献   

8.
晋北风沙区人工林土壤水分及粒度特征   总被引:2,自引:0,他引:2  
以位于晋北风沙区右玉县贾家窑6种人工林地(11 a油松林、21 a油松林、23 a华北落叶松林、17 a油松+柠条混交林、柠条林和沙棘林)为研究对象,通过测定土壤含水量及粒度、计算粒度参数等分析比较不同林地土壤水分和粒度的变化及分布。结果表明:1)在0~100 cm深度,6种林地平均土壤含水量由大到小依次为:沙棘林11 a油松林柠条林17 a油松+柠条混交林23 a华北落叶松林21 a油松林;0~20 cm土层土壤含水量相对较低,较深土层土壤水分受植物蒸腾耗水、根系分布深度及密度等因素影响;2)6种林地的粒度组成以极细砂和粉粒为主。7个粒级中,柠条林和沙棘林粉粒占比最大,其他林地极细砂含量占比最大;3)在0~100 cm深度,6种林地土壤平均粒径大小依次为:23 a华北落叶松林11 a油松林21 a油松林17 a油松+柠条混交林沙棘林柠条林;4)沙棘林和柠条林有较强的水土保持能力,在晋北风沙区植被恢复过程中可以优先选择沙棘和柠条进行造林;5)研究区经过多年植被恢复,人工林耗水量增加。认为有必要根据土壤水分状况结合植被耗水特性和生长阶段开展人工林的科学管护,如适当调整植被盖度,加强林下草本和枯落物保护。  相似文献   

9.
晋西黄土区典型林地土壤水分变化特征   总被引:7,自引:6,他引:1  
选择晋西黄土区蔡家川流域5种典型林地(山杨×辽东栎天然次生林、人工油松×刺槐混交林、人工油松林、人工刺槐林、人工侧柏林)作为研究对象,在每块样地中心布设1个土壤水分观测点,采用TRIME-TDR土壤水分测定仪定位观测2016—2018年1—12月的土壤体积含水量,测定深度为200 cm,每20 cm为1个测层,每月分上、中、下旬进行土壤水分含量观测,分析不同林地类型土壤水分年内变化规律和土壤水分垂直变化规律。结果表明:(1)研究区不同林地土壤水分年内变化可以划分为稳定期(1—3月)、波动期(4—6月)、增长期(7—9月)和消耗期(10—12月)4个时期,5种林分类型的年平均土壤储水量按照从大到小的排序为天然次生林地(338.68 mm)>人工油松林地(319.74 mm)>人工侧柏林地(314.15 mm)>人工油松×刺槐混交林地(303.37 mm)>人工刺槐林地(292.03 mm),刺槐林地耗水量最大。(2)在雨季末,研究区5种林分类型林地土壤水分均得到了正向补充,且土壤水分的恢复能力大小排序为次生林地>针叶林地>混交林地>刺槐纯林。(3)研究区土壤水分垂直变化可划分为土壤水分含量速变层和土壤水分含量相对稳定层2个层次;随着土层深度增加,不同林地类型剖面平均含水量总体上先增大后减小。不同林地类型表层土壤水分含量为侧柏林地>次生林地>油松林地>油松×刺槐混交林地>刺槐林地;土壤水分的补充深度为天然林地>针叶林地>油松×刺槐混交林地>刺槐纯林。  相似文献   

10.
晋西黄土区不同土地利用类型对土壤水分的影响   总被引:2,自引:2,他引:0  
为明确不同土地利用类型对土壤水分的影响,采用土钻法在2019年和2020年4—10月定期对晋西黄土区人工油松林地、荒草地、农地0—10 m土层的含水量进行了观测研究。结果表明:(1)人工油松林地0—10 m土层的蓄水量为1 281.13 mm,荒草地为1 712.85 mm,农地为1 804.77 mm。油松林地较荒草地和农地多消耗431.72,523.64 mm的水分,且多消耗的土壤水分主要来源于深层土壤。(2)3个土地利用类型0—10 m土层含水量的垂直变化可以划分为土壤水分剧烈变化层、弱变化层和稳定变化层,各层的含水量随时间的变化也不尽相同。(3)油松林根系的直接吸水深度为5.4 m,影响深度可达10 m土层以下,农作物的吸水深度为4.2 m,影响深度可达8 m土层以下。对研究区内地势平坦、交通便利的地方可种植农作物,促进当地农业经济建设;而针对油松林地土壤含水量低的现象,可采取适当水分管理措施降低林地耗水。  相似文献   

11.
通过土壤水分常数的测定,研究龙庆峡荒滩生态治理区不同植被恢复模式样地的土壤水分特性。结果表明,刺槐林地土壤含水量均高于同期的新疆杨林。龙庆峡荒滩土壤发育时间短,受不同的植被类型影响较小,刺槐混交林地相对于新疆杨林地土壤水分状况较好。在不同的立地条件下,刺槐林地土壤含水量和刺槐混交林土壤水分常数总体趋势表现为全部客土区〉局部客土区〉一般区,说明客土造林有利于土壤保水。  相似文献   

12.
通过对黄土丘陵区油松、沙棘人工林自然组(含凋落物)和去凋组(不含凋落物)土壤呼吸、5cm土壤温度和含水量的监测,研究地表凋落物对土壤呼吸的影响。在两种林分内分别设置20m×20m样地,样地内随机设置5个观测点,于2015年6月到2016年5月使用LI-8100系统进行监测。结果表明:(1)自然组油松林和沙棘林土壤呼吸季节动态及日动态均表现为单峰型变化曲线,沙棘土壤呼吸年均值[2.10μmol/(m~2·s)]显著高于油松[1.56μmol/(m~2·s),p0.05];去除凋落物后,两种林分土壤呼吸与自然组具有相似的季节及日动态特征,但土壤呼吸年均值不存在显著性差异。(2)沙棘林自然组土壤呼吸年均值显著高于去凋组[1.58μmol/(m~2·s),p0.05],凋落物呼吸对土壤总呼吸的贡献率为15.81%;油松林自然组与去凋组土壤呼吸年均值差异不显著,凋落物呼吸对土壤总呼吸的贡献率仅为1.61%。(3)自然组和去凋组中油松、沙棘林土壤呼吸与温度均存在显著指数关系(p0.05),与含水量则存在显著线性负相关关系(p0.05);两组处理土壤温度和含水量对土壤呼吸的单独解释量均较低(0.05%~37.82%),土壤呼吸主要受到温度和含水量共同作用的影响(8.01%~66.44%)。地表凋落物显著提高了沙棘林土壤呼吸的Q10和土壤呼吸量,但仅显著提高了油松林的Q10,对土壤呼吸量并未显著增加。油松林作为黄土丘陵区水土保持及生态恢复的造林树种更有利于该地区林地碳汇功能的提升。  相似文献   

13.
晋西黄土区主要造林树种林地土壤水分生态条件分析   总被引:3,自引:0,他引:3  
黄土高原地区植被建设引起的土壤水分效应问题愈来受到关注,林地的水分生态条件分析成为构建结构稳定的森林植被的前提,以晋西黄土区主要造林树种刺槐、油松和侧柏的坡面林地为研究对象,通过林地土壤水分特征曲线测定及土壤水分动态变化监测,探讨其生长的水分生态条件,结果表明:本区人工林地的土壤持水力较高,土壤含水率随水势降低而递减的速度较慢;研究区主要造林树种中,刺槐及其混交林分的土壤水分利用范围最大,抗旱能力最强;无论丰水年或枯水年,坡面各林地土壤水分有效利用性大,土壤含水量在生长季都高于无效水临界值,林地土壤水分利用状况好,林分生长稳定。  相似文献   

14.
晋西黄土区刺槐和油松林地土壤水分动态变化   总被引:4,自引:0,他引:4  
以晋西黄土区蔡家川流域不同坡向的刺槐和油松林地为研究对象,在2005-2012年对刺槐和油松固定样地0 ~ 200 cm土层的土壤水分进行定位观测,采用有序样本最优分割法分析刺槐和油松林地土壤水分年内、年际变化规律,探讨降雨分配情况对年内、年际刺槐和油松林地土壤水分变化的影响.结果表明:1)研究区刺槐和油松林地土壤水分年内变化可分为平稳期、波动期、积累期和消退期4个时段,阳坡刺槐林地和油松林地土壤水分条件接近,阴坡刺槐林地土壤水分条件最好;2)在偏早年,油松林地土壤水分亏缺量比刺槐林地小,当偏旱年与正常年相间时,油松林地土壤水分恢复速度比刺槐林地快;3)年内降水分配均匀度与刺槐和油松林地土壤水分年内波动幅度成反比,刺槐和油松林地土壤含水量年际变化滞后于降雨的年际变化.建议在晋西黄土区阳坡种植油松,阴坡种植刺槐.  相似文献   

15.
晋西北生态环境脆弱,水土流失严重,为山西省植被恢复重点区域。人工林作为该区生态重建的重要举措而备受关注。本研究以晋西北主要造林树种油松林地土壤水分变化特征为切入点,通过开挖土壤剖面,定位试验,研究不同人工林林地土壤水分变化规律及入渗特征。结果表明:(1)林地土壤容重随深度增加而增大;(2)人工林建植时间越早,林地土壤储水量能力越大;(3)较低海拔地区的油松人工林林地土壤水分入渗能力较高,对于提高林地水分利用效率有利。  相似文献   

16.
不同砾石覆盖保持土壤水分有效性研究   总被引:1,自引:0,他引:1  
土壤水分状况是制约金沙江干热河谷地区植被恢复和造林的主要因素,改善土壤水分状况是实现该地区生态恢复重建和农业持续发展的必然途径。为给干热河谷的造林以及作物种植提供切实可行的方法,进行了不同砾石覆盖保持土壤水分有效性的试验研究,结果表明:在起始条件相同的情况下,同一小区不同深度的土壤含水量是不同的,含水量随着土层深度的增加而增大;不同砾石覆盖厚度条件下,土壤含水量与砾石覆盖厚度成正相关关系;在相同覆盖厚度情况下,砾石粒径越小,覆盖抑制土壤蒸发效果越好,土层含水量也就越高。  相似文献   

17.
<正> 油松(Pinus tabulaeformis Carr)为黄河流域中上游常见造林树种。据笔者研究,造林成活后,当土壤含水量降至3.91%~4.79%时,2年生苗始发生旱害停止生长,但未死亡。3年生幼林当土壤含水量降至3%时,发生旱害,降至2.3%以下时,开始死亡;新植幼树遇旱即大量死亡。黄河流域许多地区极易发生春旱,在一定程度上限制了油松人工林的发展。笔者50年代末到70年代中期在平凉太统林场工作期间,经多年生产实践,探索出了油松育苗及“三不离水保土防冻抗旱造林  相似文献   

18.
陕西吴起县退耕还林地不同植被水土保持效益分析   总被引:2,自引:0,他引:2  
在全国退耕还林工程示范县陕西省吴起县退耕还林地内设置了野外径流小区,在对其进行了土壤物理性质、入渗、抗冲实验及实测泥沙资料基础上,分析了退耕还林后不同植被类型的水土保持效益,结果显示:土壤入渗的初渗率、稳渗率、平均入渗率大小顺序为油松荒草地沙棘+油松b沙棘+油松a沙棘;土壤抗冲性能沙棘林地最强,沙棘+油松林地次之,油松林地最弱;土壤产沙量为油松林地最大,沙棘与沙棘+油松林地相对较少;地表径流量为油松林地荒草地沙棘+油松林地b沙棘+油松林地a沙棘林地;退耕还林后,土壤物理性质得到不同的改良。油松林地的土壤容重最高,土壤总孔隙度与土壤毛管孔隙度最低。因此,退耕还林可有效地防治水土流失,而不同植被类型中沙棘纯林的水土保持效益最为显著。  相似文献   

19.
煤炭开采对山西森林生态系统的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
 为揭示煤炭开采对山西森林生态系统的影响,为矿区植被恢复提供基础资料,以山西省大规模煤炭开采区、采空区和受煤炭开采影响表征比较明显的区域为调查范围,地带性的油松次生林为主要调查林分,结合以往的调查统计数据和遥感资料,与非开采区特征相近的森林生态系统对比分析。结果表明:全省因煤矿开采破坏林地133.68 km2;采煤区林地土壤的Hg、Cd含量是山西土壤平均含量的3.26倍和2.73倍;采煤区林地阴、阳坡土壤含水量比非采煤区分别降低18.0%和23.4%;采煤区油松的生物量和生产力比非采煤区平均下降15.08%和15.30%;采煤区油松群落的物种丰富度、多样性、水土保持和水源涵养功均呈下降态势。  相似文献   

20.
<正> (二)降水量、蒸发量、土壤含水量对造林成活率的影响 在干旱、半干旱地区造林,往往由于气候干燥,土壤水分亏缺,导致苗木死亡。在苗木成活期间,降水量的多少、蒸发量大小、土壤含水量的盈亏是影响造林成败的主要因素。经过试验,就降水量、蒸发量、药物与土壤含水量的关系及其对造林成活率的影响作如下分析。 1.降水量、蒸发量对造林成活率的影响  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号