首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four bread wheat genotypes differing in salt tolerance were selected to evaluate ion distribution and growth responses with increasing salinity. Salinity was applied when the leaf 4 was fully expanded. Sodium (Na+), potassium (K+) concentrations and K+/Na+ ratio in different tissues including root, leaf‐3 blade, flag leaf sheath and flag leaf blade at three salinity levels (0, 100 and 200 mm NaCl), and also the effects of salinity on growth rate, shoot biomass and grain yield were evaluated. Salt‐tolerant genotypes (Karchia‐65 and Roshan) showed higher growth rate, grain yield and shoot biomass than salt‐sensitive ones (Qods and Shiraz). Growth rate was reduced severely in the first period (1–10 days) after salt commencements. It seems after 20 days, the major effect of salinity on shoot biomass and grain yield was due to the osmotic effect of salt, not due to Na+‐specific effects within the plant. Grain yield loss in salt‐tolerant genotypes was due to the decline in grain size, but the grain yield loss in salt‐sensitive ones was due to decline in grain number. Salt‐tolerant genotypes sequestered higher amounts of Na+ concentration in root and flag leaf sheath and maintained lower Na+ concentration with higher K+/Na+ ratios in flag leaf blade. This ion partitioning may be contributing to the improved salt tolerance of genotypes.  相似文献   

2.
Salinity is one of the major limitations to wheat production worldwide. This study was designed to evaluate the level of genetic variation among 150 internationally derived wheat genotypes for salinity tolerance at germination, seedling and adult plant stages, with the aim of identifying new genetic resources with desirable adaptation characteristics for breeding programmes and further genetic studies. In all the growth stages, genotype and salt treatment effects were observed. Salt stress caused 33 %, 51 % and 82 % reductions in germination vigor, seedling shoot dry matter and seed grain yield, respectively. The rate of root and shoot water loss due to salt stress exhibited significant negative correlation with shoot K+, but not with shoot Na+ and shoot K+/Na+ ratio. The genotypes showed a wide spectrum of response to salt stress across the growth stages; however, four genotypes, Altay2000, 14IWWYTIR‐19 and UZ‐11CWA‐8 (tolerant) and Bobur (sensitive), exhibited consistent responses to salinity across the three growth stages. The tolerant genotypes possessed better ability to maintain stable osmotic potential, low Na+ accumulation, higher shoot K+ concentrations, higher rates of PSII activity, maximal photochemical efficiency and lower non‐photochemical quenching (NPQ), resulting in the significantly higher dry matter production observed under salt stress. The identified genotypes could be used as parents in breeding for new varieties with improved salt tolerance as well as in further genetic studies to uncover the genetic mechanisms governing salt stress response in wheat.  相似文献   

3.
A pot experiment was conducted in a climate‐controlled greenhouse to investigate the growth, physiology and yield of potato in response to salinity stress under biochar amendment. It was hypothesized that addition of biochar may improve plant growth and yield by mitigating the negative effect of salinity through its high sorption ability. From tuber bulking to harvesting, the plants were exposed to three saline irrigations, that is 0, 25 and 50 mm NaCl solutions, respectively, and two levels of biochar (0 % and 5 % W/W) treatments. An adsorption study was also conducted to study the Na+ adsorption capability of biochar. Results indicated that biochar was capable to ameliorate salinity stress by adsorbing Na+. Increasing salinity level resulted in significant reductions of shoot biomass, root length and volume, tuber yield, photosynthetic rate (An), stomatal conductance (gs), midday leaf water potential, but increased abscisic acid (ABA) concentration in both leaf and xylem sap. At each salinity level, incorporation of biochar increased shoot biomass, root length and volume, tuber yield, An, gs, midday leaf water potential, and decreased ABA concentration in the leaf and xylem sap as compared with the respective non‐biochar control. Decreased Na+, Na+/K+ ratio and increased K+ content in xylem with biochar amendment also indicated its ameliorative effects on potato plants in response to salinity stress. The results suggested that incorporation of biochar might be a promising approach for enhancing crop productivity in salt‐affected soils.  相似文献   

4.
In a pot experiment the responses of two alfalfa cultivars differing in salt tolerance were evaluated in terms of root nitrogen remobilization rates (RNRR) and their relationship with the ionic status of the plants. A split‐plot design with factorial treatments in three replications was used. Three levels of salinity stress with electrical conductivities (ECs) of 1.2, 7 and 12 ds m?1 were established in irrigation water by using tap water with and without NaCl. The average data taken from plant materials at three defoliations were used for statistical analysis. Each time, plant materials were harvested at the 10 % flowering stage and then 10 days later. From the results observed, it was found that alfalfa shoot growth is highly dependent on RNRR under salinity stress. However, the total N reserves within the roots do not appear to be a limiting factor. The high positive correlation coefficient between shoot K+/Na+ and RNRR (r = 0.77; P = 0.01) indicates that lower demands for N because of diminished metabolic activities within the shoot sink may have reduced the rates of root N utilization. Unlike in some other species, the shoot K+ concentration and contents of alfalfa plants were significantly reduced by increasing salt stress. However, a relatively suitable K+/Na+ ratio of 7.1 is maintained in the shoots at the second level of salinity, as lowering the rates of salt induced an increase in Na+ uptake (Na exclusion). The salt tolerance recognized in the Bami cultivar may be attributed to the 339 % increase in its selectivity rates of K+ over Na+ in ion transport from the soil to the shoots, as the shoot Na+ content did not increase with increasing salt levels.  相似文献   

5.
Screening sorghum genotypes for salinity tolerant biomass production   总被引:1,自引:0,他引:1  
Genetic improvement of salt tolerance is of high importance due to the extent and the constant increase in salt affected areas. Sorghum [Sorghum bicolor (L.) Moench] has been considered relatively more salt tolerant than maize and has the potential as a grain and fodder crop for salt affected areas. One hundred sorghum genotypes were screened for salinity tolerance in pots containing Alfisol and initially irrigated with a 250-mM NaCl solution in a randomized block design with three replications. Subsequently 46 selected genotypes were assessed in a second trial to confirm their responses to salinity. Substantial variation in shoot biomass ratio was identified among the genotypes. The performance of genotypes was consistent across experiments. Seven salinity tolerant and ten salinity sensitive genotypes are reported. Relative shoot lengths of seedlings were genetically correlated to the shoot biomass ratios at all stages of sampling though the relationships were not close enough to use the trait as a selection criterion. In general, the whole-plant tolerance to salinity resulted in reduced shoot Na+ concentration. The K+/Na+ and Ca2+/Na+ ratios were also positively related to tolerance but with a lesser r 2. Therefore, it is concluded that genotypic diversity exists for salt tolerance biomass production and that Na+ exclusion from the shoot may be a major mechanism involved in that tolerance.  相似文献   

6.
High germination percentage with vigorous early growth is preferred for harvesting good wheat stand under saline soils. Therefore, an attempt for rapid screening of wheat genotypes for salt tolerance was made in this study. Eleven wheat genotypes including salt tolerant check Kiran-95were subjected to salinity (120 and 160 mMNaCl) along with non-saline control. Results showed a gradual decrease in seed germination and restricted seedling growth in tested wheat genotypes in response to increasing NaCl concentration in nutrient solution. Among the genotypes, NIA-AS-14-6 and NIA-AS-14-7 exhibited more sensitivity towards the salt stress at the germination stage but NIA-AS-14-6 performed quite satisfactorily later on at the seedling stage. Wheat genotypes NIA-AS-14-2, NIA-AS-14-4, NIA-AS-14-5, NIA-AS-14-10, and Kiran-95 showed better performance in term of root-shoot length, plant biomasses (fresh and dry), K+:Na+ ratio with least Na+ content, and high accumulation of K+ at higher levels of NaCl stress. On the basis of overall results, the categorization of genotypes was carried out as sensitive, moderately tolerant, and tolerant. Wheat genotypes NIA-AS-14-2, NIA-AS-14-4, NIA-AS-14-5, NIA-AS-14-10, and Kiran-95 grouped as tolerant, moderately salt tolerant group comprised of NIA-AS-14-1, NIA-AS-14-3, NIA-AS-14-6, and NIA-AS-14-8, whereas, NIA-AS-14-7 and NIA-AS-14-9 were found sensitive to salt stress. Principal component analysis revealed that components I and II contributed 70 and 16.5%, respectively. All growth parameters are associated with each other except RDW. In addition to growth traits, low Na+ and improved K+ content with better K+:Na+ ratio may be used for screening of salt tolerance in wheat as potential physiological criteria.  相似文献   

7.
8.
Maize (Zea mays L.) is susceptible to salinity but shows genotypic variation for salt tolerance. How maize genotypes with contrasting root morphological traits respond to salt stress remains unclear. This study assessed genotypic variation in salinity tolerance of 20 maize genotypes with contrasting root systems exposed to NaCl for 10 days (0, 50 mM or 100 mM NaCl, added in four increments every other day from 14 days after transplanting, DAT) in a semi-hydroponic phenotyping system in a temperature-controlled greenhouse. Considerable variation was observed for each of the 12 measured shoot and root traits among the 20 genotypes under NaCl treatments. Salt stress significantly decreased biomass production by up to 54% in shoots and 37% in roots compared with the non-saline control. The 20 genotypes were classified as salt-tolerant (8 genotypes), moderately tolerant (5) and salt-sensitive (7) genotypes based on the mean shoot dry weight ratio (the ratio of shoot dry weight at 100 mM NaCl and non-saline control) ± one standard error. The more salt-tolerant genotypes (such as Jindan52) had less reductions in growth, and lower shoot Na+ contents and higher shoot K+/Na+ ratios under salt stress. The declared salt tolerance was positively correlated with shoot height, shoot dry weight and primary root depth, and negatively correlated with shoot Na+ content at 100 mM NaCl. Primary root depth is critical for identifying salt responsiveness in maize plants and could be suggested as a selection criterion for screening salt tolerance of maize during early growth. The selected salt-tolerant genotypes have potentials for cultivation in saline soils and for developing high-yielding salt-tolerant maize hybrids in future breeding programmes.  相似文献   

9.
New strategies to enhance growth and productivity of food crops in saline soils represent important research priorities. This study has investigated the role of certain priming techniques to induce salt tolerance of bread wheat. Wheat grains were soaked in 0.2 mm sodium nitroprusside as nitric oxide donor (redox priming), diluted sea water (halopriming) and the combination of both (redox halopriming). Grains were also soaked in distilled water (hydropriming); in addition, untreated grains were taken as control. Our results indicated that priming treatments significantly improved all growth traits and increased leaf pigments concentration as compared to the control. Priming treatments markedly enhanced membrane stability index, proline, total soluble sugars and K+ concentration with simultaneous decrease in the concentration of Na+ and malondialdehyde (MDA). Furthermore, yield and yield‐related traits such as plant height, spike length, total number of tillers, 1000‐grain weight, straw and grain yield considerably affected by priming treatments. Moreover, the grain yield of both genotypes was positively affected by redox halopriming treatment. However, the extent of enhancement was more prominent in Gemmiza‐9 (salt sensitive) than that in Sakha‐93 (salt‐tolerant). Overall, this study clearly indicated that redox halopriming treatment is a promising and handy technique to induce salinity tolerance of wheat genotypes.  相似文献   

10.
Summary Embryogenic calli isolated from immature embryos of four wheat cultivars were subjected to three in vitro selection methods for salt tolerance. The effect of NaCl on the selected and unselected cell lines has been investigated. The results indicated that the relative growth rate of callus decreased as the concentration of NaCl increased in both callus lines. The selected callus line gave a higher growth weight in the presence of NaCl in the medium and was highly significant as compared with unselected callus line across medium protocols in all wheat cultivars. The dry weight of both kinds of callus lines of all wheat cultivars increased markedly with increasing NaCl concentration in most cases. The Na+ and Cl- contents of both callus lines were increased with increasing salinity levels while K+ content was decreased. The selected callus line of each cultivar at the same salinity level produced significant amounts of Na+, K+ and Cl- higher than the unselected callus line in most salinity levels. However, the unselected callus lines of the cultivars Giza-157 and Sakha-90 at the same salinity level produced significant amounts of K+ higher than the selected callus line in most salinity levels. The proline content of both kinds of callus lines for all wheat cultivars was increased with increasing salinity level. However, the selected callus line gave a significantly higher proline content than the unselected callus line in all wheat cultivars at the same Salinity level. Results from the in vitro selection for NaCl tolerance showed that the stepwise method of increasing NaCl in the medium was more effective for plant regeneration than other methods.  相似文献   

11.
The complexity and polygenic nature of the salt tolerance trait in plants needs to develop a multiple indicator in the screening process. The mentioned issue led us to carry out an experiment to identify tolerant genotypes through multiple parameters in Andrographis paniculata. For this purpose, the 40-days seedlings were grown in different salinity levels (control, 4, 8, 12 and 16?dS?m?1) on Hoagland??s medium. The results indicated that salinity had a significant effect on the morphological, physiological and biochemical traits. All measured morphological traits, and chlorophyll, K+ and Ca2+ content were significantly decreased with increasing salinity levels, while proline and Na+ content increased. The present exploration revealed that, salt tolerance index (STI), using the multiple regression model, demonstrated a more stable trend than the single variable assay (total dry weight). Furthermore, STI based on multiple regression analysis gives an accurate definition of salt-tolerant individuals. Under salt stress, tolerant accessions had high STI and produced higher proline, K+ and Ca2+, and lower Na+ content than sensitive accessions. Cluster analysis based on related traits to STI, indicated high similarity in each group. These outcomes can be utilized to evaluate the salt tolerance threshold in the species and may have a great advantage over conventional methods. Probably, our upshots can be applied in the next breeding programs to develop salt-tolerant varieties.  相似文献   

12.
Drought stress is a major limiting factor for crop production in the arid and semi‐arid regions. Here, we screened eighty barley (Hordeum vulgare L.) genotypes collected from different geographical locations contrasting in drought stress tolerance and quantified a range of physiological and agronomical indices in glasshouse trails. The experiment was conducted in large soil tanks subjected to drought treatment of eighty barley genotypes at three‐leaf stage and gradually brought to severe drought by withholding irrigation for 30 days under glasshouse conditions. Also, root length of the same genotypes was measured from stress‐affected plants growing hydroponically. Drought tolerance was scored 30 days after the drought stress commenced based on the degree of the leaf wilting, fresh and dry biomass and relative water content. These characteristics were related to stomatal conductance, stomatal density, residual transpiration and leaf sap Na, K, Cl contents measured in control (irrigated) plants. Responses to drought stress differed significantly among the genotypes. The overall drought tolerance was significantly correlated with relative water content, stomatal conductance and leaf Na+ and K+ contents. No significant correlations between drought tolerance and root length of 6‐day‐old seedling, stomatal density, residual transpiration and leaf sap Cl? content were found. Taking together, these results suggest that drought‐tolerant genotypes have lower stomatal conductance, and lower water content, Na+, K+ and Cl? contents in their tissue under control conditions than the drought‐sensitive ones. These traits make them more resilient to the forthcoming drought stress.  相似文献   

13.
Talinum paniculatum is an important leafy vegetable and medicinal plant, used in many parts of South America, Africa and Asia. Its adaptation to abiotic stress has received little attention and therefore worthy of interest, especially as environmental conditions are rendering arable lands increasingly unfavourable for agriculture. Therefore, this study was undertaken to examine the influence of salt stress on the vegetative growth of the plant by subjecting seedlings to 0, 25, 50, 100, 200 and 300 mm NaCl stress for 10 days. The dry weight, ion concentrations, relative water content, oxidative damage, proline, osmotic potential and some antioxidants were determined. The plants were found to retain Na+ mainly in the root, with less affected leaf K+ concentration, and consequently very low shoot Na+/K+ ratios (<0.2) under all the stress treatments. The proline content significantly increased under the 100–300 mm treatments (18‐ to 244‐fold), with a corresponding significant reduction in osmotic potential and hence high osmotic adjustment. The antioxidant enzyme activities and non‐enzyme antioxidants showed significant increase only under the highest salinity. Taken together, these results suggest that shoot Na+ exclusion is characteristic of this plant and is mainly responsible for its adaptation to low salinity.  相似文献   

14.
Forty-five accessions of sunflower collected from different countries were screened for salinity tolerance after 2 weeks growth in sand culture salinized with 150 meq l?1 of NaCl2+ CaCl2 (1:1 ratio equivalent wt. basis) in half strength Hoagland's nutrient solution. The results for plant biomass of 45 accessions show that there was considerable variation in salinity tolerance. In a further greenhouse experiment, the salinity tolerance of three tolerant (HO-1, Predovik, Euroflor) and two sensitive (SMH-24, 9UO-985) lines (selected on the basis of their performance in the seedling experiment) was assessed at the adult stage to evaluate the consistency of salinity tolerance at different growth stages. All three salt tolerant accessions produced significantly greater plant biomass, seed yield and seed oil content than the salt sensitive accessions. The tolerant accessions accumulated less Cl? and more K+ in the leaves under saline conditions compared with the salt sensitive accessions. The salt tolerant accessions also maintained relatively high leaf K:Na ratio and K+ versus Na+ selectivity. Although statistically nonsignificant, all three tolerant accessions had greater soluble carbohydrates, soluble proteins, total free amino acids and proline in the leaves than the sensitive accessions. A field trial conducted in a salt-affected field confirmed the greenhouse results of the selected accessions. This study shows that salinity tolerance of sunflower does not vary with stage of plant cycle, so selection for increased salt tolerance can be carried out at the initial growth stage. Secondly, it is found that there is great variation of salt tolerance in sunflower. Low uptake of Cl?, high uptake of K+, and maintenance of high K:Na ratios and K+ versus Na+ selectivity in the leaves and possibly the accumulation of organic osmotica such as soluble carbohydrates, soluble proteins, proline and free amino acids seem to be the important components of salt tolerance in sunflower.  相似文献   

15.
Crop tolerance to salinity is of high importance due to the extent and the constant increase in salt-affected areas in arid and semi-arid regions. Pearl millet (Pennistum glaucum), generally considered as fairly tolerant to salinity, could be an alternative crop option for salt affected areas. To explore the genotypic variability of vegetative-stage salinity tolerance, 100 pearl millet lines from ICRISAT breeding programs were first screened in a pot culture containing Alfisol with 250 mM NaCl solution as basal application. Subsequently, 31 lines including many parents of commercial hybrids, selected from the first trial were re-tested for confirmation of the initial salinity responses. Substantial variation for salinity tolerance was found on the basis of shoot biomass ratio (shoot biomass under salinity/ non-saline control) and 22 lines with a wide range of tolerance varying from highly tolerant to sensitive entries were identified. The performance of the genotypes was largely consistent across experiments. In a separate seed germination and seedling growth study, the seed germination was found to be adversely affected (more than 70% decrease) in more than half of the genotypes with 250 mM concentration of NaCl. The root growth ratio (root growth under salinity/control) as well as shoot growth ratio was measured at 6 DAS and this did not reflect the whole plant performance at 39 DAS. In general, the whole plant salinity tolerance was associated with reduced shoot N content, increased K+ and Na+ contents. The K+/Na+ and Ca++/Na+ ratios were also positively related to the tolerance but not as closely as the Na+ content. Therefore, it is concluded that a large scope exists for improving salt tolerance in pearl millet and that shoot Na+ concentration could be considered as a potential non-destructive selection criterion for vegetative-stage screening. The usefulness of this criterion for salinity response with respect to grain and stover yield remains to be investigated.  相似文献   

16.
Salinity is a major abiotic stress that limits rice production across rice areas as high‐yielding modern rice varieties are generally sensitive to salt stress. The study was conducted to deduce heritability and combining ability estimates of rice for various morphological and physiological traits using a 7 × 7 full‐diallel‐cross analysis at seedling and reproductive stages. The salinity stress treatment was 12 dS m?1 at the seedling stage and 8 dS m?1 at the reproductive stage. Diallel analysis revealed high for salinity tolerance scores and shoot height, moderate for shoot dry weight and root dry weight and low for Na+ and K+ concentrations and K+/Na+ ratio. The low‐to‐moderate narrow‐sense heritability for number of panicles, number of fertile spikelets, grain weight, spikelet fertility and K+/Na+ ratio suggests a large breeding population and delayed selection for tolerance until later generations. Significant maternal effects indicate that selection of the female parent is very important for desired trait development. The results of this study confirmed that salinity tolerance at the seedling and reproductive stages is regulated by a different set of genes that could be pyramided using different donors to enhance the level of tolerance.  相似文献   

17.
为探明滨海盐土对费菜生长发育的影响,掌握其盐碱土壤栽植下的耐盐特性,通过3、5、7、9、 11 g/kg等5个梯度的滨海盐土处理,对费菜生长指标及Na+、K+分布等进行研究。结果表明,随着盐分升高,株高、分枝、鲜重、干重均减小,≥7 g/kg盐分对费菜生长具有较大抑制,但盐分达到11 g/kg植株仍能继续生长;≥9 g/kg高盐分显著抑制地上干物质积累,对地下部生物量影响明显小于地上部。随着盐分升高,根、茎、叶中Na+的含量有升高的趋势,从部位含量看,茎>叶>根;随着盐分含量升高,叶中的K+含量逐渐减少,根、茎有升高趋势,从部位看,茎、叶是根的3倍;随着盐分浓度升高,根、茎、叶的Na+/K+比值具升高趋势,≤9 g/kg盐分胁迫下,根保持高Na+/K+比值,是茎、叶的近4倍。低于7 g/kg盐土对费菜影响不大,其耐盐性可能与宿根特性及茎叶结构有关。费菜集食用、园林于一体,由于其耐盐性强,可在滨海盐碱区种植应用。  相似文献   

18.
This study was carried out to determine the effects of salinity levels (control, 6, 12 and 18 dS m?1) on germination, seedling growth, some agronomic traits and proline accumulation in leaves of nine wheat varieties adapted to semi‐arid areas of Jordan. The tested wheat materials included eight durum wheat varieties (Haurani 27, Acsad 65, Om Rabbeeh, Sham 1, Safra Ma’an, Katma, Al‐Samra and F8) and one bread wheat variety (Diel Harthon). Final germination percentage, shoot and seminal root length, and all growth and yield parameters were significantly (P < 0.05) decreased by increasing salinity level. Proline content was significantly (P < 0.05) increased by increasing salinity. There were significant variety × salt interactions (P < 0.05) on final germination percentage, seminal root length, grain yield and yield‐related traits indicating that the varieties responded to salt differently. Sham 1 did not show any decrease in germination ability at the different salinity levels. Haurani 27, Acsad 65, Al‐Samra and Diel Harthon showed a nonsignificant reduction in germination potential at low and intermediate salt levels. Safra Ma’an and Al‐Samra showed the lowest reduction in seminal root length at low salt level and consequently exhibited the lowest stress susceptibility index ‘S’ values. Grain yield‐based stress susceptibility index ‘S’ indicated that Haurani 27, Acsad 65, Katma, Al‐Samra, F8 and Diel Jardoon were more salt tolerant than Om Rabbeeh, Sham 1 and Safra Ma’an. In conclusion, a similar salt tolerance was observed at different growth stages in Haurani 27, Acsad 65 and Al‐Samra. Consequently, these three varieties could be considered as salt tolerant and accordingly they are suitable for durum wheat improvement. Furthermore, Sham 1 had the highest ability to germinate at high salinity level indicating that it has a genetic potential for salt tolerance, at least at this stage of its life cycle.  相似文献   

19.
Wheat pre-breeding using wild progenitors   总被引:6,自引:1,他引:6  
J. J. Valkoun 《Euphytica》2001,119(1-2):17-23
To facilitate the use of wheat wild relatives in conventional breedingprograms, a wheat pre-breeding activity started at ICARDA in 1994/1995season. Preliminary results of gene introgression from wild diploidprogenitors, Triticum urartu, T. baeoticum, Aegilops speltoides andAe. tauschii and tetraploid T. dicoccoides are described. Crosseswith wild diploid Triticum spp. yielded high variation in plant andspike morphology. Synthetic hexaploids were produced from crosses of alocal durum wheat landrace `Haurani' with two Ae. tauschiiaccessions. Both Ae. tauschii accessions carry hybrid necrosis allelesthat gave necrotic plant phenotypes in crosses with some bread wheats.Backcross progenies with agronomical desirable traits, i.e. high spikeproductivity, short plant stature, earliness, drought tolerance and highproductive tillering, were identified in crosses of durum wheat with wild Triticum spp. and in a cross of one of the hexaploid synthetics with alocally adapted bread wheat cv. `Cham 6'. Resistance to yellow rust wasfound in durum wheat crosses with the three wild Triticum spp. andAe. speltoides and leaf rust resistance was identified in crosses withT. baeoticum and Ae. speltoides. The results show that wheatimmediate progenitors may be a valuable and readily accessible source ofnew genetic diversity for wheat improvement.  相似文献   

20.
Salinity reduces crop yield by limiting water uptake and causing ion‐specific stress. Soybean [Glycine max (L.) Merr.] is sensitive to soil salinity. However, there is variability among soybean genotypes and wild relatives for salt tolerance, suggesting that genetic improvement may be possible. The objective of this study was to identify differences in salt tolerance based on ion accumulation in leaves, stems and roots among accessions of four Glycine species. Four NaCl treatments, 0, 50, 75 and 100 mm , were imposed on G. max, G. soja, G. tomentella and G. argyrea accessions with different levels of salinity tolerance. Tolerant genotypes had less leaf scorch and a greater capacity to prevent Na+ and Cl? transport from soil solution to stems and leaves than sensitive genotypes. Magnitude of leaf injury per unit increase in leaf Na+ or Cl? concentrations was lower in tolerant than in susceptible accessions. Also, plant injury was associated more with Na+ rather than with Cl? concentration in leaves. Salt‐tolerant accessions had greater leaf chlorophyll‐meter readings than sensitive genotypes at all NaCl concentrations. Glycine argyrea and G. tomentella accessions possessed higher salt tolerance than G. soja and G. max genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号