首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Heat stress has become an increasingly important factor in limiting wheat yields. In northern China, high temperature (>30 °C) during the grain filling is one of the major constraints in increasing wheat productivity. We used two winter wheat (Triticum aestivum L.) cultivars with different sensitivities to heat stress (Jimai 22 ‘JM22’, low sensitivity and Xinmai 26 ‘XM26’, high sensitivity) to study the various aspects of photosynthetic characteristics during the grain filling stage under heat stress. The results showed that photosynthesis rates (Pn) in flag leaves of XM26 decreased faster than in JM22 under heat stress during the grain‐filling stage. Pn decreased more rapidly under heat stress than without stress, by up to 69.9% and 59.3%, respectively, at 10 days following heat stress (10 DAS). This decline of Pn was not caused by heat‐induced stomatal limitation, but rather by a decline in Rubisco activity and a functional drop in photosystem II (PSII). After heat stress, the grain yield of JM22 decreased by 6.41%, but XM26 decreased by 11.43%, when compared with their respective controls. Heat stress also caused an alteration of mesophyll cell ultrastructure. Injury caused by heat stress to organelles in XM26 was more severe than JM22. Moreover, the JM22 cultivar showed some self‐repair capacity following heat stress injury. These results indicate that declines in photosynthetic performance caused by heat stress were cultivar‐dependent. Compared with XM26, the JM22 cultivar had superior heat stability in terms of PSII function and carboxylation activity, both of which are susceptible to heat stress.  相似文献   

2.
潘晓华  王永锐 《作物学报》1998,24(6):821-827
两系杂交稻N31SS/P40水培稻株不同库/源比值株剑叶光合速率在灌浆结实前期去叶处理明显高于对照,去1/2花则降低光合速率;灌浆中,后期处理间差异较小。改变库/源比后1-7去,去叶处理剑叶的RuNBP羧化酶活性,光合磷酸化和Hill反庆活性,蔗糖磷酸合成酶活性,叶片中无机磷含量,被同化碳在醇溶部分分配比例及光合同化物从剑叶输出的速率均明显高于对照,而叶片中蔗糖和淀粉含量低于对照。  相似文献   

3.
When wheat (Triticum aestivum L.) is grown under heat-stress conditions during grain filling, preanthesis stored total non-structural carbohydrates (TNC) and nitrogen (N) could serve as alternative source of assimilates. This study was performed to evaluate wheat genotypes for their ability to accumulate and remobilize TNC and N stored in their stem to support grain filling under heat stress. Eighteen genotypes were used for N remobilization study while nine of them were used for TNC remobilization study. They were grown in pots and placed in a vinyl house with the maximum temperature kept below 30 °C. Five days after anthesis (5DAA), half of the pots were taken to phytotrons where temperature was gradually increased and the maximum was set at 38 °C. Grain yield and grain weight decreased by about 35 % under heat stress. Significant differences were found among genotypes in percentage reduction in grain yield, grain weight, grain filling duration and harvest index because of heat stress. The N and TNC concentrations of the stem at 5DAA were significantly different among genotypes. Heat stress significantly reduced the N remobilization efficiency of most of genotypes. However, heat stress significantly increased TNC remobilization efficiency and significant variation were observed among genotypes. N remobilization efficiency across treatments significantly correlated with grain yield, grain weight, harvest index and grain filling duration. TNC at 5DAA negatively correlated with N at 5DAA and harvest index, but the TNC remobilization efficiency under heat stress positively correlated with mainstem grain yield, grain weight and harvest index. The rate of chlorophyll loss from flag leaf positively correlated with N and TNC remobilization efficiencies under heat stress suggesting a link between leaf senescence and remobilization efficiency. The results indicate that heat stress negatively affected grain yield, its components and N remobilization while it increased TNC remobilization because of the increasing demand for resources.  相似文献   

4.
With the changing climatic scenario and increasing global mean temperature, heat stress became a major limiting factor for today's agriculture. To identify the underlying mechanism associated with heat tolerance in peanut, two experiments (field and growth chamber) were conducted with four genotypes (ICGS 44, GG 7, AK 159 and DRG 1) having differential high temperature stress sensitivity. Field grown plants under three different temperature (D1, D2 and D3) regimes simulated three temperature treatment effects with a variability of 3–4/4–5°C in mean day/night temperature, respectively. In growth chamber, imposition of heat shock (10°C above ambient inside growth chamber) revealed not only rapid induction (within 0.5 hr) of HSPs, especially small HSPs (HSP 17, HSP 40) in tolerant genotypes, but also its sustenance for longer duration (2 hr), which might help them to have better physiological adaptation strategies under high temperature stress. This was evident from significant advancement in phenophases observed with increase in temperature by 15–18 days at physiological maturity, while pollen viability and membrane stability reduced below 50% and 41%, respectively in DRG 1 with increase in mean day/night temperature. Maintenance of higher photosynthesis and transpiration rate and stomatal conductance helped the tolerant genotype ICGS 44 to keep relatively cooler canopy and higher photosynthates, ensuring better physiological condition in this genotype under heat stress. Significant increase (~2.5‐fold) in inositol and hexoses (glucose and fructose) content and reduction (>50%) in sucrose content in leaf tissues indicated degradation of storage carbohydrates for improved osmotic adjustment especially in tolerant genotypes under elevated temperature.  相似文献   

5.
Increasing temperatures are adversely affecting various food crops, including legumes, and this issue requires attention. The growth of two cool-season food legumes, chickpea and lentil, is inhibited by high temperatures but their relative sensitivity to heat stress and the underlying reasons have not been investigated. Moreover, the high-temperature thresholds for these two legumes have not been well-characterised. In the present study, three chickpea (ICCVO7110, ICC5912 and ICCV92944) and two lentil (LL699 and LL931) genotypes, having nearly similar phenology with respect to flowering, were grown at 30/20°C (day/night; control) until the onset of flowering and subsequently exposed to varying high temperatures (35/25, 38/28, 40/30 and 42/32°C; day/night) in a controlled environment (growth chamber; 12 hr/12 hr; light intensity 750 µmol m−2 s−1; RH-70%) at 108 days after sowing for both the species. Phenology (podding, maturity) was accelerated in both the species; the days to podding declined more in lentil at 35/25 (2.8 days) and 38/28°C (11.3 days) than in chickpea (1.7 and 7.1 days, respectively). Heat stress decreased flowering–podding and podding–maturity intervals considerably in both the species. At higher temperatures, no podding was observed in lentil, while chickpea showed reduction of 14.9 and 16.1 days at 40/30 and 42/32°C, respectively. Maturity was accelerated on 15.3 and 12.5 days at 38/28°C, 33.6 and 34 days at 40/30°C and 45.6 and 47 days at 42/32°C, in chickpea and lentil, respectively. Consequently, biomass decreased considerably at 38/28°C in both the species to limit the yield-related traits. Lentil was significantly more sensitive to heat stress, with the damage—assessed as reduction in biomass, reproductive function-related traits (pollen viability, germination, pollen tube growth and stigma receptivity), leaf traits such as membrane injury, leaf water status, photochemical efficiency, chlorophyll concentration, carbon fixation and assimilation, and oxidative stress, appearing even at 35/25°C, compared with 38/28°C, in chickpea. The expression of enzymatic antioxidants such as superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and non-enzymatic antioxidants declined remarkably with heat stress, more so in lentil than in chickpea. Carbon fixation (assessed as Rubisco activity) and assimilation (assessed as sucrose concentration, sucrose synthase activity) were also reduced more in lentil than in chickpea, at all the stressful temperatures, resulting in more inhibition of plant biomass (shoot + roots), damage to reproductive function and severe reduction in pods and seeds. At 38/28°C, lentil showed 43% reduction in biomass, while it declined by 17.2% in chickpea at the same time, over the control temperature (30/20°C). At this temperature, lentil showed 53% and 46% reduction in pods and seed yield, compared to 13.4% and 22% decrease in chickpea at the same temperature. At 40/30°C, lentil did not produce any pods, while chickpea was able to produce few pods at this temperature. This study identified that lentil is considerably more sensitive to heat stress than chickpea, as a result of more damage to leaves (photosynthetic ability; oxidative injury) and reproductive components (pollen function, etc.) at 35/25°C and above, at controlled conditions.  相似文献   

6.
High temperature is a major environmental factor that limits wheat (Triticum aestivum L.) productivity. Climate models predict greater increases in night‐time temperature than in daytime temperature. The objective of this research was to compare the effects of high daytime and high night‐time temperatures during anthesis on physiological (chlorophyll fluorescence, chlorophyll concentration, leaf level photosynthesis, and membrane damage), biochemical (reactive oxygen species (ROS) concentration and antioxidant capacity in leaves), growth and yield traits of wheat genotypes. Winter wheat genotypes (Ventnor and Karl 92) were grown at optimum temperatures (25/15 °C, maximum/minimum) until the onset of anthesis. Thereafter, plants were exposed to high night‐time (HN, 25/24 °C), high daytime (HD, 35/15 °C), high daytime and night‐time (HDN, 35/24 °C) or optimum temperatures for 7 days. Compared with optimum temperature, HN, HD and HDN increased ROS concentration and membrane damage and decreased antioxidant capacity, photochemical efficiency, leaf level photosynthesis, seed set, grain number and grain yield per spike. Impact of HN and HD was similar on all traits. Greater impact on seed set, grain number and grain yield per spike was observed at HDN compared with HN and HD. These results suggest that HN and HD during anthesis cause damage of a similar magnitude to winter wheat.  相似文献   

7.
Causes of Sterility in Seed Set of Rice under Salinity Stress   总被引:7,自引:1,他引:7  
The effects of salinity at 50 mM NaCl on floral characteristics, yield components, and biochemical and physiological attributes of the sensitive rice variety IR‐28 were studied under controlled conditions to determine the causes of sterility in seed set under salinity stress. The results showed significant decreases in panicle weight, panicle length, primary branches/panicle, filled seeds/panicle, unfilled seeds/panicle, filled seeds/plant, unfilled seeds/plant, total seeds/panicle, total seed weight/panicle, 1000‐seed weight and total seed weight/plant. The sodium content in different leaves and floral parts increased significantly. In contrast, the potassium content was decreased significantly in leaves and floral parts. A reduction in chlorophyll a and b was also noted in different parts of the leaves. Inhibition of transpiration and photosynthesis was observed in flag leaves at the grain‐filling stage. Soluble carbohydrates in different leaves were reduced significantly in salinized plants but their content in different floral parts was increased, with the exception of primary and secondary branch spikelets. Under salinity stress, total protein concentration in flag, second and third leaves were higher than in control plants. The viability of rice pollen was reduced significantly in salinized plants. It was further observed that starch synthetase activity (α1–4‐glucan glucosyle transferases) in developing rice grains was inhibited very significantly under salinity stress. From these results, it is inferred that sterility and significant reductions in seed set in rice were not merely due to reduction or inhibition of different biochemical constituents and physiological functions, but were mainly due to limitation of soluble carbohydrate translocation in primary and secondary spikelets, accumulation of more sodium and less potassium in all the floral parts, and highly significant inhibition of specific activity of starch synthetase in developing rice grains, thus resulting in failure of seed set.  相似文献   

8.
Normalized difference vegetation index (NDVI), which is a measure of leaf greenness (chlorophyll content), is considered to be correlated with crop productivity. This study was conducted to examine genotypic variations for NDVI at different growth stages and its relationship to yield in winter wheat under terminal heat stress. Thirty winter wheat genotypes were evaluated at two locations in 2009–2010 and 2010–2011 in Uzbekistan. The NDVI was recorded at booting, heading, milk and dough stages. The wheat genotypes differed significantly for NDVI at each stage. Grain yield ranged from 3.9 to 6.1 t/ha. Wheat genotypes differed in per cent decline in NDVI from booting to dough stage. However, several high‐yielding genotypes maintained higher NDVI than low‐yielding genotypes when heat stress was evident. The findings suggest change in NDVI during heat stress could be a measure of tolerance. The positive correlation of NDVI with grain yield suggests that it could be used as an indirect selection criterion for identifying physiologically superior, high‐yielding wheat lines under terminal heat stress.  相似文献   

9.
The chickpea (Cicer arietinum L.) is usually grown under rainfed, rather than irrigated conditions, where drought accompanied by heat stress is a major growth constraint. The aim of this study was to select chickpea genotypes having resistance to drought/heat stress and to identify the most appropriate selection criteria for this. A total of 377 chickpea accessions were sown 2 months later than normal for the Antalya region (Turkey) to increase their exposure to the drought and high‐temperature conditions of a typical summer in this part of the world. Interspersed between every 10 test genotypes as benchmark genotypes, were plants of the two known genotypes ILC 3279 (drought‐susceptible) and ILC 8617 (drought‐susceptible), while ICC 4958 (known drought‐resistant) and ICCV 96029 (known very early, double‐podded) were also sown for confirmation. All plants were subsequently screened for drought and heat stress resistance. Soon after the two known susceptible genotypes had died, evaluations of the entire trial were made visually on a scale from ‘1’ (free from drought/heat damage) to ‘9’ (all plants died from drought/heat). Yield loss in many of the test genotypes and in the two known susceptible genotypes (ILC 3279 and ILC 8617) rose to 100 %. The desi chickpeas (smaller, dark seeds) were generally more drought‐ and heat‐resistant than the kabuli chickpeas (larger, pale seeds). Two desi chickpeas, ACC 316 and ACC 317, were selected for drought and heat (>40 °C) resistance under field conditions. Seed weight was the trait least affected by adverse environmental conditions and having the highest heritability, and it should be used in early breeding selections. When breeding drought‐ and heat‐resistant chickpeas, path and multivariate analyses showed that days to the first flowering and maturity to escape terminal drought and heat stresses should be evaluated ahead of many other phenological traits, and harvest index, biological yield and pods per plant for increased yield should also be considered.  相似文献   

10.
Two kinds of barley genotypes with various water‐stress tolerances, tolerant Cam/B1 and sensitive Maresi, were subjected to 10‐day soil‐drought stress in seedling and flag leaf developmental phases. After this time, both genotypes regardless of the growth stage showed a decrease in quantum yield of PSII photochemistry (ΦPSII) upon stress treatment; however, this effect was stronger in the sensitive plants than in the tolerant ones. The drought stress in the flag leaf stage was associated with an increase in superoxide dismutase (SOD) level in both genotypes, whereas in seedlings, this effect was observed only for Maresi. The activity of other enzymes (catalase and peroxidase) was changed only in small degree. An increase in proline levels and activities of Δ1‐pyrroline‐5‐carboxylate synthetase (P5CS) and ornithine delta‐aminotransferase (OAT) were observed independently of genotype and the phase of plant development, whereas the activity pyruvate dehydrogenase (PDH) decreased in tolerant genotype. Moreover, changes in the concentration of monocarbohydrates (glucose and fructose) and dicarbohydrates (saccharose, raffinose and maltose) were found: in seedlings, the amount of all soluble sugars increased, while in flag leaves decreased. The drought treatment resulted in a drop in starch level in the tolerant genotype, but in the sensitive one, the content of this substance increased in both developmental stages. EPR studies allowed the determination of the amount and character of organic radicals present in leaves. In control conditions, the content of these radical species was higher in the sensitive genotype than in tolerant one and decreased upon water stress, with the exception of flag leaves of the sensitive plant. Simulation procedure revealed four types of signals in the EPR spectra. One of them was attributed to a chlorophyll a cation and decreased upon drought. The second, ascribed to semiquinone radicals, reflected the redox balance disturbed by water deficit. The two remaining signals were connected with carbon‐centred radicals situated in the carbohydrate matrix. Their number was correlated with starch concentration.  相似文献   

11.
以水稻结实期的人工控温试验测定不同温度处理下水稻旗叶光合速率、叶绿素荧光参数的动态变化,并结合Western印迹与胶体金标记技术对叶肉细胞类囊体膜中D1蛋白的表达检测与活性定位,探讨了高温胁迫对D1蛋白存在形态与活性分布的影响,以及D1蛋白表达与叶片光合速率、PSII荧光参数的联系。结果表明,高温处理下叶片净光合速率下降、PSII潜在活性(Fv/Fo)和PSII光能转化效率(Fv/Fm)降低,且随着高温胁迫时间的持续和叶片功能的衰退,类囊体膜结构损伤越严重,光能转化效率越低;在D1蛋白的两类存在形态中,非磷酸化D1蛋白和磷酸化D1蛋白在高温胁迫下的表达量均有所下降,但前者下降更明显;高温处理下控制D1蛋白表达的叶绿体psbA基因在转录水平呈下调表达,使D1蛋白合成及周转过程受到抑制,进而类囊体膜PSII反应中心的功能受损与叶绿体光合效率下降,揭示高温胁迫对叶片PSII系统的伤害受D1蛋白磷酸化过程和psbA基因表达变化的共同作用,进而影响不同水稻品种在高温胁迫下的光合速率和耐热性。  相似文献   

12.
Tomato cultivars differ in their sensitivity to heat stress, and the sensitivity depends on the developmental stage of the plants. It is less known how heat stress affects tomato at the anthesis stage in terms of leaf physiology and fruit set and whether the ability of tomato to tolerate heat at different developmental stages is linked. To investigate photosynthetic gas exchange characteristics, carbohydrate content and fruit set during heat stress, a thermo‐tolerant cultivar (‘LA1994’) and a thermo‐sensitive cultivar (‘Aromata’) were studied at the seedling and anthesis stage. The photosynthetic parameters, maximum quantum efficiency of photosystem II (Fv/Fm), chlorophyll content, carbohydrate content and fruit set were determined in plants grown at 26/18 °C (control) and 36/28 °C (heat stress). The physiological responses including net photosynthetic rate (PN), chlorophyll content and Fv/Fm decreased in ‘Aromata’ at both developmental stages during heat stress, whereas they were unaltered in ‘LA1994’ during heat stress as compared to the respective control. This was accompanied by lower contents of glucose and fructose in mature leaves of ‘Aromata’ at the seedling stage under heat stress. In contrast, the glucose content increased while the fructose content was unaltered in mature leaves of ‘LA1994’ at the seedling stage under heat stress. High temperature induced a similar change in carbohydrate content in the young leaves of both cultivars at anthesis. The fructose and sucrose content were unaffected in the mature leaves of ‘Aromata’ but significantly increased in ‘LA1994’ under heat stress at anthesis. The heat stress treatment decreased pollen viability and inhibited fruit set due to flower wilting and abnormal abscission in ‘Aromata’, whereas fruit set was not inhibited in ‘LA1994’. A decrease in chlorophyll content, photosynthesis and carbohydrate content in the mature leaves of tomato could be related to fruit set failure at high temperature. The results show that physiological responses to heat stress at the seedling stage correspond with the responses at the anthesis stage, demonstrating that screening for heat stress sensitivity can be carried out in young plants.  相似文献   

13.
Increasing severity of high temperature worldwide presents an alarming threat to the humankind. As evident by massive yield losses in various food crops, the escalating adverse impacts of heat stress (HS) are putting the global food as well as nutritional security at great risk. Intrinsically, plants respond to high temperature stress by triggering a cascade of events and adapt by switching on numerous stress‐responsive genes. However, the complex and poorly understood mechanism of heat tolerance (HT), limited access to the precise phenotyping techniques, and above all, the substantial G × E effects offer major bottlenecks to the progress of breeding for improving HT. Therefore, focus should be given to assess the crop diversity, and targeting the adaptive/morpho‐physiological traits while making selections. Equally important is the rapid and precise introgression of the HT‐related gene(s)/QTLs to the heat‐susceptible cultivars to recover the genotypes with enhanced HT. Therefore, the progressive tailoring of the heat‐tolerant genotypes demands a rational integration of molecular breeding, functional genomics and transgenic technologies reinforced with the next‐generation phenomics facilities.  相似文献   

14.
The effect of fertilization on resistance and resilience of soil microbial activity against heat stress in the tropical soils is largely unknown. We investigated the impact of long‐term (36 years) application of chemical fertilizers and farmyard manure (FYM) on substrate‐induced respiration (SIR) and dehydrogenase activity (DHA) and their resistance and resilience against heat stress in a sandy clay loam soil (Typic Haplustept). Surface soils from five selected treatments (Control, N, NP, NPK, NPK + FYM) under maize (Zea mays) crop were assessed immediately after sampling (0 Day) and at 1, 14, 28 and 56 day(s) after heat stress (48 °C for 24 h). The heat stress significantly decreased soil respiration and dehydrogenase activity by 20–80 %. Recovery after stress was up to 100 % within 56 days. The combined application of NPK (balanced) and FYM was most effective in enhancing resistance and resilience (stability) of soil microbial activity against heat stress. Correlation between resistance of dehydrogenase activity and substrate‐induced respiration revealed a significant relationship (R2 = 0.85). However, after stress, this correlation was initially weak but subsequently improved with time (R2 = 0.38–57), indicating different time lags to restore the normalcy of these parameters.  相似文献   

15.
Brassica rapa L. is a genetically diverse parent species of the allotetraploid species, oilseed rape (B. napus) and a potential source of drought tolerance for B. napus. We examined the effect of a 13‐day drought stress period during the early reproductive phase, relative to a well‐watered (WW) control, on subsequent growth and development in nine accessions of B. rapa and one accession of Brassica juncea selected for their wide morphological and genetic diversity. We measured leaf water potential, stomatal conductance, water use, and leaf and bud temperatures during the stress period and aboveground dry weight of total biomass at maturity. Dry weight of seeds and reproductive tissue were not useful measures of drought tolerance due to self‐incompatibility in B. rapa. The relative total biomass (used as the measure of drought tolerance in this study) of the 10 accessions exposed to drought stress ranged from 47 % to 117 % of the WW treatment and was negatively correlated with leaf‐to‐air and bud‐to‐air temperature difference when averaged across the 13‐day stress period. Two wild‐type (B. rapa ssp. sylvestris) accessions had higher relative total and non‐reproductive biomass at maturity and cooler leaves and buds than other types. We conclude that considerable genotypic variation for drought tolerance exists in B. rapa and cooler leaves and buds during a transient drought stress in the early reproductive phase may be a useful screening tool for drought tolerance.  相似文献   

16.
不同氮肥吸收利用效率水稻基因型叶片衰老特性   总被引:15,自引:1,他引:14  
选用氮肥利用高效型和低效型具有代表性的12个粳稻品种,研究225kghm-2施氮条件下其氮素吸收积累特性。与氮低效基因型相比,氮高效基因型水稻在拔节至抽穗、抽穗至成熟阶段的氮素吸收速率、氮素积累量和积累比例均具有明显优势,其中以抽穗至成熟阶段的优势尤为显著。该阶段水稻各器官逐渐衰老,植株各项生理功能逐渐衰退,为明了水稻衰老与植株中后期氮素吸收与积累、氮肥吸收利用效率的相互关系,相继研究了花后各基因型水稻的衰老特性。结果表明,齐穗后的不同时期,氮高效基因型水稻的超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性均显著高于氮低效基因型,而膜脂过氧化产物丙二醛(MDA)的含量却要显著低于氮低效基因型水稻。相关性分析表明,水稻的氮肥利用效率与齐穗后剑叶中的SOD、POD和CAT活性呈极显著正相关,而与其剑叶中的MDA含量呈极显著负相关。由此说明,与氮低效基因型相比,氮高效基因型水稻生育后期剑叶中用于清除活性氧自由基的SOD、POD、CAT活性较高,能有效阻止高浓度氧的积累和膜脂过氧化作用,降低MDA的含量,因而降低叶片的衰老进程,在维持较长光合功能期的同时能增强物质积累,促进植株对氮肥的吸收和利用。  相似文献   

17.
In rice, pre‐exposure to sublethal treatment followed by harsh lethal treatment is known to improve tolerance of different abiotic stresses at the vegetative stage within and across generations. Our major aim was to test the phenomenon of thermo‐tolerance at flowering across (trans)‐generations and within generation using rice cultivars contrasting for heat stress tolerance at flowering. To test trans‐generational response, plants were exposed to higher temperature at flowering stage and seeds obtained from previous generations were exposed to heat stress during flowering, which recorded significantly lower fertility when exposed to the same degree of stress in their subsequent generations. A pre‐acclimation to moderately high acclimating temperatures imposed over three different durations during the vegetative and initial reproductive stage showed positive response in the tolerant N22, particularly under severe heat stress (40 °C). This finding indicates the possibility of acquiring ameliorative thermo‐tolerant mechanisms at anthesis, restricted to tolerant genetic backgrounds to combat subsequent harsh conditions within the same generation. However, trans‐generational memory was ineffective in mitigating spikelet sterility losses in both tolerant and susceptible backgrounds. Rice is extremely sensitive to heat stress during flowering; hence, similar exercise across other crops of interest needs to be carried out before generalizing conclusions.  相似文献   

18.
Flooding is an abiotic stress that causes considerable reductions in crop growth and yield worldwide. Soybean (Glycine max [L.] Merr.) cultivars are generally sensitive to flooding stress. The objective of this study was to develop an effective flooding tolerance screening method in the field. A total of 40 soybean genotypes were evaluated for flooding tolerance at V5 and R1 growth stages. At each stage, genotypes were exposed to different durations of flooding stress (3, 6, 9, 12 and 15 days). Plant foliar damage score (FDS) and plant survival rate (PSR) were used as the indicators of flooding tolerance. Soybeans were more sensitive to flooding at R1 growth stage than V5 growth stage. Length of flooding duration accounted for the variance of FDS and PSR. Soybean genotypes exposed to a 3‐day flooding in either V5 or R1 growth stage, did not show obvious foliar damage, while genotypes exposed to a 12‐ or 15‐day flooding showed significant foliar damage and plant death. The optimum flooding duration to screen for flooding tolerance in the field was determined to be 9 and 6 days for V5 and R1 growth stages, respectively, as distinguishable responses to flooding allowed genotypes to be classified as either being flooding tolerant or flooding sensitive. High correlation between FDS and PSR (.99, p < .0001) was observed. Similarly, FDS and PSR were highly correlated with grain yield (.95 and .95, p < .0001). The field screening method for flooding tolerance developed in our study will be favourable for selection of soybean flooding‐tolerant germplasm.  相似文献   

19.
Increasing air temperature due to changing climate is projected to decrease the length of the growing season, hasten vegetative development and maturation, and ultimately affect yield of many C3 crops. Previous multilocation trials highlighted strong relationships between thermal trends in the interval “beginning of flowering‐end of grain filling” and grain yield, and protein content in durum wheat (Triticum turgidum subsp. durum (Desf.) Husn.). With the aim to confirm these relationships, nine durum wheat genotypes, including old (Capeiti 8, Senatore Cappelli and Trinakria) and modern (Amedeo, Arcangelo, Mongibello, Simeto, and Svevo) varieties and a Sicilian landrace (Russello) were grown at three different sites representing a climate gradient in Sicily, Italy. Moreover, the effect of post‐anthesis heat stress on these durum wheats was further investigated in two contrasting environments: open‐field (control—C) and greenhouse heat stress (HS). HS shortened the interval “beginning‐end of flowering” of 1.5 days across genotypes, and the “end of flowering‐beginning of grain filling” and maturation of 4.9 days, with a range of 1 day in Arcangelo to 11 days in Cappelli. Advances in main phenophases significantly decreased kernel weight (KW) and grain yield (GY), whereas grain protein content (PC) increased. As expected, a negative relationship was observed between GY and PC, while positive relationships were found for GY and grain‐filling duration (GFD), and GY and KW. Genotypes responded differently to heat stress, as evidenced by the net photosynthesis, transpiration rate, instantaneous water use efficiency and dry matter accumulation in kernels. Genotypes were ranked according to the heat susceptibility index (HSI): Amedeo, Arcangelo, Capeiti 8, Svevo and Trinakria resulted heat‐tolerant. These varieties were characterized by an early trigger of dry matter accumulation in kernels under HS (Amedeo, Arcangelo and Trinakria), or showed similar length of the GFD (Capeiti 8) between environments. The multilocation trial confirmed a negative relationship between maximum temperatures and grain yield, and a positive relationship between minimum temperatures and protein content during grain–filling periods. Research focusing on agronomic strategies, phenology and breeding for tolerance to heat stress is of strategic importance to cope with the detrimental effect of global warming in semi‐arid climates.  相似文献   

20.
Quinoa (Chenopodium quinoa Willd.) has gained considerable attention worldwide during the past decade due to its nutritional and health benefits. However, its susceptibility to high temperatures has been reported as a serious obstacle to its global production. The objective of this study was to evaluate quinoa growth and pollen morphology in response to high temperatures. Pollen morphology and viability, plant growth and seed set, and several physiological parameters were measured at anthesis in two genotypes of quinoa subjected to day/night temperatures of 22/16°C as a control treatment and 40/24°C as the heat stress treatment. Our results showed that heat stress reduced the pollen viability between 30% and 70%. Although no visible morphological differences were observed on the surface of the pollen between the heat‐stressed and non‐heat‐stressed treatments, the pollen wall (intine and extine) thickness increased due to heat stress. High temperature did not affect seed yield, seed size and leaf greenness. On the other hand, high temperature improved the rate of photosynthesis. We found that quinoa has a high plasticity in response to high temperature, though pollen viability and pollen wall structure were affected by high temperatures in anthesis stage. This study is also the first report of quinoa pollen being trinucleate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号