首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three trickle irrigation schedules, two of which were scheduled according to soil water potential ( soil) (tensiometer method) and daily stem contraction (DSC) (dendrometer method) respectively and the other one was a schedule of restricted water supply, were applied to a mature peach orchard.The annual water application based on soil was greater than that based on DSC. However, tree growth, fruit size and leaf water potential (leaf) on the trees in the dendrometer scheduling plot did not differ from those in the tensiometer scheduling plot while the premature fruit drop and fruit bud initiation were greatly different. The restricted water supply treatment limited significantly both tree and fruit growth. In addition, the lower leaf was observed on the trees in this plot.Further study shows that use of the dendrometer method for scheduling irrigation satisfies the water needs of the plant and that the tensiometer method is less accurate.Abbreviations leaf leaf water potential - soil soil water potential - DSC daily stem contraction - LVDT linear variable displacement transducer - PET potential evapotranspiration  相似文献   

2.
Based on a simulation model reflecting physical and economic conditions typically found in rice irrigation systems in Asia, the irrigation performance implications of alternative water distribution rules for dry season irrigation are evaluated under varying degrees of water shortage. The rules examined reflect differing water distribution strategies designed either to maximize conveyance efficiency, economic efficiency, or equity; or to achieve a balance between efficiency and equity objectives. Irrigation performance is evaluated using several efficiency measures reflecting the physical, agronomic and economic productivity of water, and one measure of equity. Economic efficiency and equity among farmers within the portion of the irrigation system that is on in any given season are shown to be complementary, and not competing objectives. Economic efficiency and equity among all farmers within the command area of the irrigation system are largely complementary strategies at the lower levels of water shortage, but with increasing shortage, significant tradeoffs develop between these objectives. An operational rule for water distribution under a goal of maximizing economic efficiency is developed, and the data requirements for its implementation are shown to be modest. Under the model's assumed conditions of dry season rice production dependent solely on surface irrigation for water, the distribution strategy designed to maximize conveyance efficiency results in only modestly lower levels of economic efficiency and equity than could be achieved by the strategy designed to maximize economic efficiency.  相似文献   

3.
The use of drainage systems for supplementary irrigation is widespread in The Netherlands. One of the operating policies is to raise the surface water level during the growing season in order to reduce drainage (water conservation) or to create subsurface irrigation. This type of operation is based on practical experience, which can be far from optimal.To obtain better founded operational water management rules a total soil water/surface water model was built. In a case study the effects of using the drainage system in a dual-purpose manner on the arable crop production were simulated with the model. Also, the operational rules for managing this type of dual-purpose drainage systems were derived.The average annual simulated increase in crop transpiration due to water conservation and water supply for subsurface irrigation are 6.0 and 5.4 mm.y–1, respectively. This is equivalent with 520 × 103 and 460 × 103 Dfl.y–1 for the pilot region (2 Dfl 1 US $). The corresponding investments and operational costs are 600 × 103 Dfl and 9 × 103 Dfl.y–1 for water conservation and 3200 × 103 Dfl and 128 × 103 Dfl.y–1 for subsurface irrigation. Hence, water conservation is economically very profitable, whereas subsurface irrigation is less attractive.Comparing the management according to the model with current practice in a water-board during 1983 and 1986 learned that benefits can increase with some 50 and 500 Dfl per ha per year, respectively.  相似文献   

4.
Results are presented of field research on water distribution in the command area, covering 18,200 ha, of a secondary irrigation canal in the Tungabhadra Left Bank Scheme, Karnataka State, India.The official objective of the Scheme and the resulting implications for the water distribution are discussed first. An explanation of the planning and operation of the water distribution follows.The results are based on analyses of the water flows taken from the D36 secondary canal and distributed along the canal to the pipe outlets (inlet structures to the tertiary units), and of the canal section rotation practised along the canal. The analyses concentrate on three dimensions of the water supply:The design flows, according to the official Scheme objectives and criteria;The targets, as set by the system operators before every season;The actual distribution procedures and flows, as observed during the operation.The analyses, supported by flow measurement data, illustrate that the water distribution is not based on consistent and clear criteria and procedures, but that it is the outcome of varying compromises, decided upon pragmatically by the field staff, to bridge the gap between the farmers' demands and the upstream constraints to water availability. This paper explains the widespread phenomenon of head reaches taking too much water, leaving little or nothing for the tail end of the canal.  相似文献   

5.
The design of most canal systems requires that they be operated under rigid schedules, rather thanon-demand. Rigid schedule operation results in water wastage through spillage, or users taking their turn even when the water cannot be efficiently used. This paper develops a two step method for optimally designing a canal system so it can be operated effectively under user on-demand requests for water. The first step determines the cross-sectional dimensions of the canal to provide storage capabilities while minimizing costs, by solving an appropriate nonlinear optimization problem. In the second step a hydraulic simulation model finds a near-optimal storage capacity based on construction and right-of-way costs, penalties due to operational water losses, water over supplied to users and supply shortages. The performance is evaluated by a quality index that is defined as the ratio of volume of satisfied demands to total volume of water requested. Results of regression equations from hundreds of computer sensitivity analyses relating variables are summarized in tables.  相似文献   

6.
In spite of several attempts at integrated operation planning, multiple reservoirs in Japan have been operated by trial and error without any formal rules. Subjects of integrated operation are not only showing optimal usage of daily storage levels as an operational policy but also providing a countermeasure for droughts.Objectives of this study are to make a formal operation rule of multiple reservoirs for irrigation using the theory of Required Storage for Drought Curve (RSDC) Method and to propose operational policy for multiple reservoirs as large water supply systems. The Iwaki river basin, on which there are four reservoirs for irrigation parallel with each other, is considered to be a model river basin with a large water system for this case study.From results of simulations using historical data, comparing an individual operation rule with an integrated operation rule on several indices, effectiveness of the latter rule is recognized. Under integrated operation, water losses are minimized and excessive water conservation can be avoided over the whole area to benefit while target river discharge is maintained at key control points because water usage from all reservoirs is well balanced in relation to water availability.  相似文献   

7.
Summary Water application pattern, WAP, is one of the most important factors that determine the instantaneous and the cumulative application rates of moving irrigation machines. The mathematical background of a procedure to predict and design the WAP of moving irrigation machines is introduced. It includes a mathematical analysis of the effect of pressure head, height and spacing between emitters on the WAP, and a nomograph that presents this analysis graphically and illustrates the design procedure of the application pattern of irrigation machines.Abbreviations P()a water application rate at a normalized radial distance from the emitter [m/s] - ka number of linear segments needed to represent the pattern - s/Ra normalized radial distance from the emitter - Ra wetted radius [m] - sa radial distance from the emitter [m] - n j n i/ha normalized water application rate at point - j, ha maximum water application rate [m/s] n j water application rate at point j [m/s] - j =m j/Ra normalized radial distance of point j from emitter - m ja radial distance of point - ja from emitter [m], CWAP - (x)a Cumulative Water Application Pattern: amount of water per unit area applied at a distance - xa from the travel path of the emitter [m3/m2] - xa distance from the travel path of the emitter [m] - T xa time of application at a distance - xa from the travel path of the emitter [s] - va velocity of propagation of the machine [m/s] - k 1a the outmost linear segment that its radial distance from the emitter - m k1a is smaller than the distance of the travel path from the emitter - x, T ja time at which the - j tha linear segment (ring) stops influencing the point located at a distance - xa from the emitter - 1, 2, 3a dimensionless numbers derived by dimensional analysis - ua water jet velocity [m/s] - ga gravity acceleration [m/s2] - da nozzle diameter [m], v kinematic viscosity [m2/s] - Ha emitters height [m] - , a regression analysis coefficients - Paa Pattern fit coefficient for water application - F(r)a normalized desired water application pattern [1/m] - f(r)a normalized actual water application pattern [1/m] - La common distance on which - F(r) and f(r)a are defined [m], SP spacing interval between emitters [m] - DSa dimensionless spacing interval between emitters - DSa variation of dimensionless spacing interval - Paa variation of Pa coefficient - Pa pressure head [kPa]  相似文献   

8.
Rapid field evaluation of drip and microspray distribution uniformity   总被引:5,自引:0,他引:5  
The Cal Poly ITRC irrigation evaluation programs have been widely used to assess the global distribution uniformity (DU) of drip and microsprayer irrigation systems. The field procedures and formulas used in the program are presented in this paper. The system DU is estimated by mathematically combining the component DU values. DU components include pressure differences, other causes (such as manufacturing variation, plugging, and wear), unequal drainage, and unequal application rates. Results are presented from evaluations by several entities, including Cal Poly ITRC. Cal Poly evaluations of 329 fields provided an average DUlq of 0.85 for drip and 0.80 for microspray. Approximately 45% of the non-uniformity was due to pressure differences, 52% was due to other causes, 1% due to unequal drainage, and 2% due to unequal application rates. The data show that with good design and management, it is possible to have high system DU values for at least a 20-year system life.  相似文献   

9.
In recent years, the traditional concept of an irrigation project has been changing. From just a physical structure for the storage, conveyance and distribution of water, it is now being regarded as a more complex system, including farmers' participation. This implies an improved management in all phases, from reservoir operation to farm management, and therefore the change from simple operation and maintenance to operation, maintenance and management.To face this new challenge, existing projects must be modernized. The Sorraia Irrigation Project is one of those projects. In this paper major problems are identified and it is showed how research (namely through modelling) can be oriented towards an improved management, regarding the conveyance and distribution systems as well as the on-farm systems.Finally it becomes evident that beyond the technical problems to be solved, the involvement and participation of farmers must be improved at all levels of management. Hence, there is also a need for implementing programs on education, training and extension.  相似文献   

10.
Summary Application of soil and plant water status measurements requires some model of the soil-plant-atmosphere system because the measurements made refer to only part of the complex whole. Measurements need to be made to check on the validity of the model and to facilitate adjustment. Since models are only a small imitation of reality they need to be continually checked if application of the results are to be useful. The temptation to use models without checking should be discouraged — modelers should keep one foot in the field.  相似文献   

11.
The kingdom of Urartu existed in Eastern Anatolia from about 850 B.C. to 600 B.C. Historical references and archaeological evidence indicate the considerable artistic and technical skill of the Urartian people. The supply of the kingdoms capital Tupa/Rusahinili with drinking and irrigation water is an outstanding example of a well-planned and excellently built historical inter-basin water management project. The system has been in operation for more than 2000 years and still serves, at least partly, its original purpose.  相似文献   

12.
This study was conducted on Gugera Branch of Lower Chenab Canal, Punjab, Pakistan. Sample distributaries off taking from Gugera Branch were selected for the study. The existing conditions of water distribution among the distributaries were studied. Field data were collected during the whole of 1988. Field observations suggested that the variability at the head of distributaries is much greater than the variability in the Gugera Branch under existing operational practices. The distribution of water among the distributaries is rarely in accordance with design criteria. Some channels get priority over other channels. The annual closure period varied from 17 to 41 days for different channels. The discharge at the head of distributaries remained lower than the standard operational range for 69 to 183 days in a year. The data suggested that a regulating gate at the head of the distributary can reduce discharge variation up to 2.4 times compared with a Karrees System (wooden stop logs used for water regulation). The data indicated that the adjustments in the head gate of a distributary on daily basis can substantially improve discharge conditions at the head of distributary. Rotational schedules are not being followed as per design and need to be improved. Most of the existing head discharge relationships of discharge measuring structures are not reliable. A frequent calibration of these structures is recommended.  相似文献   

13.
Summary Barley plants (Hordeum distichum, L., cv. Zita) grown in a sandy soil in pots were adjusted during a pretreatment period of 5 days to three levels of soil water osmotic potential by percolating 61 of a nutrient solution with additional 0, 22.3 and 44.6 mM KCl. A drying cycle was then started and the plants were harvested when the soil water matric potential had decreased to –1.4 MPa, respectively 6, 7 and 8 days later.No significant differences in dry matter yields, transpiration coefficients and wilting percentages were found between treatments.During the drying cycle leaf water potential ( l ) decreased concomitantly with decrease in soil water potential ( s ) with almost constant and similar differences ( l s ) for all treatments despite differences in levels of potentials. The concomitant decrease in leaf osmotic potential () was due partly to dehydration (58%) and partly to increase in leaf solute content (42%) independent of treatment. The part of total osmotic solutes due to K decreased relatively during the drying cycle.Close relationships were found between and l as functions of relative water content (RWC). Identical curves for the two levels of salt treatment agree with similar concentrations of K, Cl, and ash found for salt treated plants indicating that maximum uptake of macro nutrients may have been reached.During the main part of the drying cycle the turgor potential as function of RWC was higher and decreased less steeply with decreasing RWC in the salt treated than in the non-salt treated plants.In the beginning of the drying cycle additions of KCI lowered the transpiration rates of the salt treated plants resulting in a slower desiccation of the soil and hence an increased growth period. A delay in uptake from a limited soil water supply may be advantageous during intermittent periods of drought.  相似文献   

14.
Summary The influence of water stress at various growth stages on yield and yield structure of spring wheat (Triticum aestivum, L., cv. Sappo) was investigated using lysimeters in the field, automatically protected from rain by a mobile glass roof. Each drought treatment consisted of a single period without irrigation. Irrigation was resumed when all available soil water (100 mm between field capacity and permanent wilting to a depth of 100 cm) had been used. The drought periods were defined as beginning when relative evapotranspiration decreased below one and ending at reirrigation. The first drought occurred during tillering and jointing and the final one during grain formation.  相似文献   

15.
Summary Experiments were conducted in lysimeters (1985) and field plots (1986) to evaluate changes in soil moisture and salinity status following irrigations with different blends of a saline water, SW (ECiw = 6.4 dS/m) and non-saline water, NSW (0.3 dS/m) and their effects on the growth and yield of Mungbean (Vigna radiata L. Wilczek). Normalised to the yield of the treatment receiving NSW (100%), relative seed yields (RY) declined to 73, 11 and 3%, respectively, for the treatments receiving SWNSW blends of 12 (2.5 dS/m), 21 (4.7 dS/m) and SW as such. RY increased to 64 and 74% when NSW was substituted for presowing irrigation and 21 SWNSW blend and SW, respectively were used for postsowing irrigations. Due to moderating effect of rainfall (9.8 cm) during the growing season of 1986, valus of RY obtained with 12 and 21 SWNSW blends were 81 and 42% and increased to 96 and 82% when these waters were applied after presowing irrigation with NSW. Irrigation at presowing with non-saline water leached the salts of shallow depths leading to better germination and initial growth. In addition, plants were able to extract greater amounts of water even from deeper soil layers. The RY of Mungbean was related to the weighted time averaged salinity of the 0–120 cm soil depth (ECe) by RY = 100-20.7 (ECe-1.8). The study indicated that applying NSW for presowing irrigation to Mungbean is more beneficial than using it after blending with saline water.  相似文献   

16.
Summary Harmonic analysis is used to derive the component waves of a given water distribution map. These components are then subjected to smoothing by root systems of various sizes, to obtain the effective variances and uniformity coefficients for these root systems. This approach helps to explain, for instance, why the effective uniformity by trickle irrigation is high, while the detailed actual distribution is very nonuniform; why the actual uniformity of under-canopy sprinkling of orchards need not be very high; or why it is usually better to have the rows of field crops parallel to the shorter spacing of the sprinklers. It is observed that ordinary distribution maps contain little variance in the shorter wave-lengths, thus suggesting a reduction in the number of collectors necessary for pattern determination. Another conclusion based on the same observation is that when plants spacing is half the sprinkler's spacing, a spatial shift between the crop and the irrigation system may markedly affect the effective uniformity.  相似文献   

17.
The legal-administrative setting for the use of waterresources in Mendoza Province is founded on differentlegal rules. This includes the National Constitution,the Argentine Civil Code, National Laws, theConstitution of the Provincial State, the GeneralWater Law, (legal) administrative regulations of theGeneral Department of Irrigation.The current water law is based on the roman law, onthe Arab irrigation water rights which were brought toArgentina by the Spaniards and on the practices of theoriginal American pre-Colombian intermediate law.The latter is marked by a strong regional sense. Assuch, the water law is strongly influenced by theregions elements of nature and attempts to offersolutions to problems.The legal rules are discussed from a behavioral andorganizational perspective. Examples from the LowerTunuyan System are given to illustrate the day-to-dayeffects on irrigation water management.  相似文献   

18.
Summary Seed-cotton yield, yield components and vegetative growth were determined under different irrigation frequencies and wetting depths with a self-propelled moving-irrigation-system (MSIS) in 1986 and 1987. Irrigation timing was determined in both years by pre-irrigation, mid-day plant water potential (w). The amount of water to be applied was determined by measuring the soil moisture deficit. In 1987, the effect of a change from one irrigation frequency and wetting depth to another at mid-flowering was also examined. Linear responses of relative seed-cotton yield to the amount of evapotranspiration (ET) were found for both years with similar slopes but different intercepts. Significant positive regressions were obtained between pre-irrigation plant w and relative seed-cotton yield, and vegetative growth during the linear growth stage. Seed-cotton yield was affected by both wetting depth and pre-irrigation plant w. The deeper the irrigation the higher was the seed-cotton yield for each pre-irrigation plant w. Irrigation frequencies which maintained plant w above -1.5 MPa during vegetative growth, flowering and boll-filling resulted in maximum production. The boll filling stage appeared to be a very sensitive one, as boll weight was found to be the main yield component responding to irrigation treatments. At a wetting depth of 120 cm, higher seed-cotton yields were obtained than at a more shallow wetting. Different irrigation managements resulted in different turgor potentials (t) mainly during mid-day. Both leaf water vapour conductance and net assimilation rate were sensitive to leaf w.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagon, Israel, No. 2903-E, 1990 series. Research was supported by the U.S.-Israel Binational Agric. Res. and Develop. Fund.  相似文献   

19.
Studies of the performance assessment of irrigation schemes have gained momentum since the late 1980s due to the common perspective that the resources (land and water) in irrigation schemes are not being managed appropriately. In this paper irrigation water management is considered as one of the activities of the irrigation scheme. Three phases of irrigation water management namely planning, operation and evaluation are identified. A framework for the performance assessment of irrigation water management in heterogeneous irrigation schemes is proposed in this paper, based on earlier studies made in this direction. The paper presents two types of allocative measures (productivity and equity) and five types of scheduling measures (adequacy, reliability, flexibility, sustainability and efficiency), together with the methodologies for estimating these for the scheme as a whole during different phases of irrigation water management.  相似文献   

20.
The findings of a study of factors influencing the uptake of pressurised irrigation technologies by smallholders in developing countries are presented. The paper reviews the physical and technical characteristics that determine their suitability for use by smallholders. It also identifies a range of pre-conditions relating to water availability, institutional support and economic opportunity that must be satisfied before smallholders will adopt even low-technology pressurised irrigation systems.The review demonstrates that where physical, economic and institutional conditions are right some forms of pressurised modern irrigation technology permit smallholder irrigation of high value crops where surface irrigation would be inappropriate. However, the paper warns against the danger of wide-scale promotion of such technologies without considering the issues of institutional and technical support. Where pressurised systems are promoted to increase water use efficiency it is essential that they be well designed, installed and operated for savings to be realised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号