首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of histone H3 lysine 27 methylation in X inactivation   总被引:1,自引:0,他引:1  
The Polycomb group (PcG) protein Eed is implicated in regulation of imprinted X-chromosome inactivation in extraembryonic cells but not of random X inactivation in embryonic cells. The Drosophila homolog of the Eed-Ezh2 PcG protein complex achieves gene silencing through methylation of histone H3 on lysine 27 (H3-K27), which suggests a role for H3-K27 methylation in imprinted X inactivation. Here we demonstrate that transient recruitment of the Eed-Ezh2 complex to the inactive X chromosome (Xi) occurs during initiation of X inactivation in both extraembryonic and embryonic cells and is accompanied by H3-K27 methylation. Recruitment of the complex and methylation on the Xi depend on Xist RNA but are independent of its silencing function. Together, our results suggest a role for Eed-Ezh2-mediated H3-K27 methylation during initiation of both imprinted and random X inactivation and demonstrate that H3-K27 methylation is not sufficient for silencing of the Xi.  相似文献   

2.
W Yuan  T Wu  H Fu  C Dai  H Wu  N Liu  X Li  M Xu  Z Zhang  T Niu  Z Han  J Chai  XJ Zhou  S Gao  B Zhu 《Science (New York, N.Y.)》2012,337(6097):971-975
  相似文献   

3.
4.
Arabidopsis thaliana accessions have adapted to growth in a wide range of climates. Variation in flowering and alignment of vernalization response with winter length are central to this adaptation. Vernalization involves the epigenetic silencing of the floral repressor FLC via a conserved Polycomb (PRC2) mechanism involving trimethylation of Lys(27) on histone H3 (H3K27me3). We found that variation for response to winter length maps to cis polymorphism within FLC. A rare combination of four polymorphisms localized around the nucleation region of a PHD-Polycomb complex determines a need for longer cold. Chromatin immunoprecipitation experiments indicate that these polymorphisms influence the accumulation of H3K27me3 in Arabidopsis accession Lov-1, both at the nucleation site and over the gene body. Quantitative modulation of chromatin silencing through cis variation may be a general mechanism contributing to evolutionary change.  相似文献   

5.
E2F-6 contributes to gene silencing in a manner independent of retinoblastoma protein family members. To better elucidate the molecular mechanism of repression by E2F-6, we have purified the factor from cultured cells. E2F-6 is found in a multimeric protein complex that contains Mga and Max, and thus the complex can bind not only to the E2F-binding site but also to Myc- and Brachyury-binding sites. Moreover, the complex contains chromatin modifiers such as a novel histone methyltransferase that modifies lysine 9 of histone H3, HP1gamma, and Polycomb group (PcG) proteins. The E2F-6 complex preferentially occupies target promoters in G0 cells rather than in G1 cells. These data suggest that these chromatin modifiers contribute to silencing of E2F- and Myc-responsive genes in quiescent cells.  相似文献   

6.
Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome   总被引:2,自引:0,他引:2  
To equalize X-chromosome dosages between the sexes, the female mammal inactivates one of her two X chromosomes. X-chromosome inactivation (XCI) is initiated by expression of Xist, a 17-kb noncoding RNA (ncRNA) that accumulates on the X in cis. Because interacting factors have not been isolated, the mechanism by which Xist induces silencing remains unknown. We discovered a 1.6-kilobase ncRNA (RepA) within Xist and identified the Polycomb complex, PRC2, as its direct target. PRC2 is initially recruited to the X by RepA RNA, with Ezh2 serving as the RNA binding subunit. The antisense Tsix RNA inhibits this interaction. RepA depletion abolishes full-length Xist induction and trimethylation on lysine 27 of histone H3 of the X. Likewise, PRC2 deficiency compromises Xist up-regulation. Therefore, RepA, together with PRC2, is required for the initiation and spread of XCI. We conclude that a ncRNA cofactor recruits Polycomb complexes to their target locus.  相似文献   

7.
8.
The Arabidopsis gene DDM1 is required to maintain DNA methylation levels and is responsible for transposon and transgene silencing. However, rather than encoding a DNA methyltransferase, DDM1 has similarity to the SWI/SNF family of adenosine triphosphate-dependent chromatin remodeling genes, suggesting an indirect role in DNA methylation. Here we show that DDM1 is also required to maintain histone H3 methylation patterns. In wild-type heterochromatin, transposons and silent genes are associated with histone H3 methylated at lysine 9, whereas known genes are preferentially associated with methylated lysine 4. In ddm1 heterochromatin, DNA methylation is lost, and methylation of lysine 9 is largely replaced by methylation of lysine 4. Because DNA methylation has recently been shown to depend on histone H3 lysine 9 methylation, our results suggest that transposon methylation may be guided by histone H3 methylation in plant genomes. This would account for the epigenetic inheritance of hypomethylated DNA once histone H3 methylation patterns are altered.  相似文献   

9.
Differential cytosine methylation of repeats and genes is important for coordination of genome stability and proper gene expression. Through genetic screen of mutants showing ectopic cytosine methylation in a genic region, we identified a jmjC-domain gene, IBM1 (increase in bonsai methylation 1), in Arabidopsis thaliana. In addition to the ectopic cytosine methylation, the ibm1 mutations induced a variety of developmental phenotypes, which depend on methylation of histone H3 at lysine 9. Paradoxically, the developmental phenotypes of the ibm1 were enhanced by the mutation in the chromatin-remodeling gene DDM1 (decrease in DNA methylation 1), which is necessary for keeping methylation and silencing of repeated heterochromatin loci. Our results demonstrate the importance of chromatin remodeling and histone modifications in the differential epigenetic control of repeats and genes.  相似文献   

10.
11.
12.
Biological responses to histone methylation critically depend on the faithful readout and transduction of the methyl-lysine signal by "effector" proteins, yet our understanding of methyl-lysine recognition has so far been limited to the study of histone binding by chromodomain and WD40-repeat proteins. The double tudor domain of JMJD2A, a Jmjc domain-containing histone demethylase, binds methylated histone H3-K4 and H4-K20. We found that the double tudor domain has an interdigitated structure, and the unusual fold is required for its ability to bind methylated histone tails. The cocrystal structure of the JMJD2A double tudor domain with a trimethylated H3-K4 peptide reveals that the trimethyl-K4 is bound in a cage of three aromatic residues, two of which are from the tudor-2 motif, whereas the binding specificity is determined by side-chain interactions involving amino acids from the tudor-1 motif. Our study provides mechanistic insights into recognition of methylated histone tails by tudor domains and reveals the structural intricacy of methyl-lysine recognition by two closely spaced effector domains.  相似文献   

13.
Acetylation of histone H3 lysine 56 (H3-K56) occurs in S phase, and cells lacking H3-K56 acetylation are sensitive to DNA-damaging agents. However, the histone acetyltransferase (HAT) that catalyzes global H3-K56 acetylation has not been found. Here we show that regulation of Ty1 transposition gene product 109 (Rtt109) is an H3-K56 HAT. Cells lacking Rtt109 or expressing rtt109 mutants with alterations at a conserved aspartate residue lose H3-K56 acetylation and exhibit increased sensitivity toward genotoxic agents, as well as elevated levels of spontaneous chromosome breaks. Thus, Rtt109, which shares no sequence homology with any other known HATs, is a unique HAT that acetylates H3-K56.  相似文献   

14.
Enhancer of Zeste homolog 2 (EZH2) is a methyltransferase that plays an important role in many biological processes through its ability to trimethylate lysine 27 in histone H3. Here, we show that Akt phosphorylates EZH2 at serine 21 and suppresses its methyltransferase activity by impeding EZH2 binding to histone H3, which results in a decrease of lysine 27 trimethylation and derepression of silenced genes. Our results imply that Akt regulates the methylation activity, through phosphorylation of EZH2, which may contribute to oncogenesis.  相似文献   

15.
董强 《安徽农业科学》2009,37(20):9380-9383
组蛋白翻译后修饰包括乙酰化、磷酸化、甲基化、泛素化和糖基化等。其中,组蛋白泛素化可能与基因的转录调控、异染色质的基因沉默、DNA修复等有关。笔者介绍了组蛋白H2B的泛素化机制及其意义。  相似文献   

16.
17.
18.
Genes normally resident in euchromatic domains are silenced when packaged into heterochromatin, as exemplified in Drosophila melanogaster by position effect variegation (PEV). Loss-of-function mutations resulting in suppression of PEV have identified critical components of heterochromatin, including proteins HP1, HP2, and histone H3 lysine 9 methyltransferase. Here, we demonstrate that this silencing is dependent on the RNA interference machinery, using tandem mini-white arrays and white transgenes in heterochromatin to show loss of silencing as a result of mutations in piwi, aubergine, or spindle-E (homeless), which encode RNAi components. These mutations result in reduction of H3 Lys9 methylation and delocalization of HP1 and HP2, most dramatically in spindle-E mutants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号