首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
New applications such as hybrid electric vehicles and power backup require rechargeable batteries that combine high energy density with high charge and discharge rate capability. Using ab initio computational modeling, we identified useful strategies to design higher rate battery electrodes and tested them on lithium nickel manganese oxide [Li(Ni(0.5)Mn(0.5))O2], a safe, inexpensive material that has been thought to have poor intrinsic rate capability. By modifying its crystal structure, we obtained unexpectedly high rate-capability, considerably better than lithium cobalt oxide (LiCoO2), the current battery electrode material of choice.  相似文献   

2.
A new class of electrode materials for high energy density, rechargeable batteries based on topochemical reactions of lithium and transition metal compounds is evolving. The physical and structural properties relevant to the ability of transition metal oxides with framework structures to topochemically incorporate lithium are discussed. Perovskite-related structures are particularly attractive hosts for lithium.  相似文献   

3.
Rechargeable, high energy density lithium batteries require an efficient lithium electrode. Earlier work with electrolytes based on propylene carbonate, methyl acetate, and tetrahydrofuran yielded poor lithium electrode cycling efficiencies because of electrolyte reduction by lithium. Solutions of lithium hexafluoroarsenate in 2-methyltetrahydrofuran are found to be remarkably stable toward lithium, resulting in cycling efficiencies that approach 98 percent. The ability of 2-methyltetrahydrofuran to resist reduction by lithium is thought to be based on the position of its lowest unfilled molecular orbital relative to that of tetrahydrofuran.  相似文献   

4.
High-resolution electron microscopy and lithium-7 nuclear magnetic resonance measurements were carried out for a disordered carbon material, prepared by heat treatment of polyphenylene, in which lithium was stored electrochemically. The nuclear magnetic resonance spectrum suggests the existence of Li(2) covalent molecules in the carbon material. This extra covalent site of lithium storage promises extraordinarily high energy density for secondary batteries.  相似文献   

5.
Ionically conducting polymers (polymer electrolytes) are under intensive investigation because they form the basis of all solid-state lithium batteries, fuel cells, and electrochromic display devices, as well as being highly novel electrolytes. Little is known about the structures of the many crystalline complexes that form between poly(ethylene oxide) and a wide range of salts. The crystal structure is reported of the archetypal polymer electrolyte poly(ethylene oxide)(3):LiCF(3)SO(3), which has been determined from powder x-ray diffraction data. The poly(ethylene oxide) (PEO) chain adopts a helical conformation parallel to the crystallographic b axis. The Li(+) cation is coordinated by five oxygen atoms-three ether oxygens and one from each of two adjacent CF(3)SO(3)(-) groups. Each CF(3)SO(3)(-) in turn bridges two Li(+) ions to form chains running parallel to and intertwined with the PEO chain. There are no interchain links between PEO chains, and the electrolyte can be regarded as an infinite columnar coordination complex.  相似文献   

6.
Although electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, charge and discharge faster than batteries, they are still limited by low energy densities and slow rate capabilities. We used a standard LightScribe DVD optical drive to do the direct laser reduction of graphite oxide films to graphene. The produced films are mechanically robust, show high electrical conductivity (1738 siemens per meter) and specific surface area (1520 square meters per gram), and can thus be used directly as EC electrodes without the need for binders or current collectors, as is the case for conventional ECs. Devices made with these electrodes exhibit ultrahigh energy density values in different electrolytes while maintaining the high power density and excellent cycle stability of ECs. Moreover, these ECs maintain excellent electrochemical attributes under high mechanical stress and thus hold promise for high-power, flexible electronics.  相似文献   

7.
We report the creation of a nanoscale electrochemical device inside a transmission electron microscope--consisting of a single tin dioxide (SnO(2)) nanowire anode, an ionic liquid electrolyte, and a bulk lithium cobalt dioxide (LiCoO(2)) cathode--and the in situ observation of the lithiation of the SnO(2) nanowire during electrochemical charging. Upon charging, a reaction front propagated progressively along the nanowire, causing the nanowire to swell, elongate, and spiral. The reaction front is a "Medusa zone" containing a high density of mobile dislocations, which are continuously nucleated and absorbed at the moving front. This dislocation cloud indicates large in-plane misfit stresses and is a structural precursor to electrochemically driven solid-state amorphization. Because lithiation-induced volume expansion, plasticity, and pulverization of electrode materials are the major mechanical effects that plague the performance and lifetime of high-capacity anodes in lithium-ion batteries, our observations provide important mechanistic insight for the design of advanced batteries.  相似文献   

8.
Negative-strand RNA viruses condense their genome into a helical nucleoprotein-RNA complex, the nucleocapsid, which is packed into virions and serves as a template for the RNA-dependent RNA polymerase complex. The crystal structure of a recombinant rabies virus nucleoprotein-RNA complex, organized in an undecameric ring, has been determined at 3.5 angstrom resolution. Polymerization of the nucleoprotein is achieved by domain exchange between protomers, with flexible hinges allowing nucleocapsid formation. The two core domains of the nucleoprotein clamp around the RNA at their interface and shield it from the environment. RNA sequestering by nucleoproteins is likely a common mechanism used by negative-strand RNA viruses to protect their genomes from the innate immune response directed against viral RNA in human host cells at certain stages of an infectious cycle.  相似文献   

9.
采用高温固相法,以环氧树脂为还原剂合成锂离子电池正极材料Li3V2(PO4)3.通过X射线衍射分析和扫描电子显微镜对样品的晶体结构和微观形貌进行表征,并用恒电流充放电和循环伏安实验研究材料的电化学性能.结果表明所制备的Li3V2(PO4)3为结晶完善的单斜结构,颗粒分布均匀且粒径较小,0.2 C时在3.0V~4.3V电压范围的首次放电比容量为126.9 mAh/g,30次循环后的比容量为126.0 mAh/g,容量保持率达到99.29%.  相似文献   

10.
Acyl chain compositions of the lipids of three strains of influenza virus show differences not anticipated from current theories of myxovirus assembly. Fatty acids of viruses with antigenically related envelope proteins show greater resemblance than those of an unrelated strain, which suggests that these proteins influence the composition of membrane lipids at the site of viral release.  相似文献   

11.
Human herpesviruses are large and structurally complex viruses that cause a variety of diseases. The three-dimensional structure of the herpesvirus capsid has been determined at 8.5 angstrom resolution by electron cryomicroscopy. More than 30 putative alpha helices were identified in the four proteins that make up the 0.2 billion-dalton shell. Some of these helices are located at domains that undergo conformational changes during capsid assembly and DNA packaging. The unique spatial arrangement of the heterotrimer at the local threefold positions accounts for the asymmetric interactions with adjacent capsid components and the unusual co-dependent folding of its subunits.  相似文献   

12.
Three-dimensional structure of the adenovirus major coat protein hexon   总被引:19,自引:0,他引:19  
The three-dimensional crystal structure of the adenovirus major coat protein is presented. Adenovirus type 2 hexon, at 967 residues, is now the longest polypeptide whose structure has been determined crystallographically. Taken with our model for hexon packing, which positions the 240 trimeric hexons in the capsid, the structure defines 60% of the protein within the 150 X 10(6) dalton virion. The assembly provides the first details of a DNA-containing animal virus that is 20 times larger than the spherical RNA viruses previously described. Unexpectedly, the hexon subunit contains two similar beta-barrels whose topology is identical to those of the spherical RNA viruses, but whose architectural role in adenovirus is very different. The hexon structure reveals several distinctive features related to its function as a stable protective coat, and shows that the type-specific immunological determinants are restricted to the virion surface.  相似文献   

13.
The identification of similarities in the material requirements for applications of interest and those of living organisms provides opportunities to use renewable natural resources to develop better materials and design better devices. In our work, we harness this strategy to build high-capacity silicon (Si) nanopowder-based lithium (Li)-ion batteries with improved performance characteristics. Si offers more than one order of magnitude higher capacity than graphite, but it exhibits dramatic volume changes during electrochemical alloying and de-alloying with Li, which typically leads to rapid anode degradation. We show that mixing Si nanopowder with alginate, a natural polysaccharide extracted from brown algae, yields a stable battery anode possessing reversible capacity eight times higher than that of the state-of-the-art graphitic anodes.  相似文献   

14.
基于太阳能的植保无人机续航提升方案   总被引:2,自引:0,他引:2  
在农业领域对无人机的任务需求中,续航问题无疑是目前植保无人机所面临的重要问题之一。由于电池生产技术的瓶颈,目前植保无人机的有效作业时间大都被限制在12 min左右难以突破。太阳作为一个取之不尽用之不竭的“无源”动力得到了特别的关注,因此设计了一种基于太阳能的植保无人机续航提升方案。在六旋翼无人机平台上对方案的可行性进行实验,结果表明,安装了太阳能续航模块后的无人机相比安装前,飞行续航时间平均提升了70 s。该方案基于多轴无人机飞行平台,在无人机工作时将太阳能转化为电能为锂电池续电,从而减少锂电池在飞行时的电量消耗,增加植保无人机的有效作业时间,在一定程度上缓解了当前植保无人机的续航问题,并能够向其他基于无人机平台的应用延伸。  相似文献   

15.
随着便携式用电器具的普及和电动汽车的发展,开发廉价、高性能、安全性锂离子电池成为锂离子电池工业发展的中心。层状锰系锂离子电池正极材料正符合此背景需要。本文选取LiNi0.5Mn0.5O2为研究对象,对其制备方法、合成条件进行了研究,并对正极材料LiNi0.5Mn0.5O2采用多种方法进行表征。具体采用了电感耦合高频等离子体发射光谱、X射线衍射、循环伏安测试手段。  相似文献   

16.
Predicting structure from the attributes of a material's building blocks remains a challenge and central goal for materials science. Isolating the role of building block shape for self-assembly provides insight into the ordering of molecules and the crystallization of colloids, nanoparticles, proteins, and viruses. We investigated 145 convex polyhedra whose assembly arises solely from their anisotropic shape. Our results demonstrate a remarkably high propensity for thermodynamic self-assembly and structural diversity. We show that from simple measures of particle shape and local order in the fluid, the assembly of a given shape into a liquid crystal, plastic crystal, or crystal can be predicted.  相似文献   

17.
Keyes RW 《Science (New York, N.Y.)》1977,195(4283):1230-1235
Although the limitations of the methods of lithography in use at a particular time are easily recognized and attract substantial attention, experience shows that technological ingenuity keeps pushing them to ever-smaller dimensions. There seems to be no fundamental reason to expect that lithographic limits will not continue to recede. The limits to the advance of miniaturization are to be found in the ability of materials to withstand high electric fields and in the ability of packaging technology to remove heat from active components and provide for power distribution, signal interconnection, and flexible mechanical assembly.  相似文献   

18.
We demonstrate the patterned assembly of integrated semiconductor devices onto planar, flexible, and curved substrates on the basis of capillary interactions involving liquid solder. The substrates presented patterned, solder-coated areas that acted both as receptors for the components of the device during its assembly and as electrical connections during its operation. The components were suspended in water and agitated gently. Minimization of the free energy of the solder-water interface provided the driving force for the assembly. One hundred and thirteen GaAlAs light-emitting diodes with a chip size of 280 micrometers were fabricated into a prototype cylindrical display. It was also possible to assemble 1500 silicon cubes, on an area of 5 square centimeters, in less than 3 minutes, with a defect rate of approximately 2%.  相似文献   

19.
The efficiency of many energy storage technologies, such as rechargeable metal-air batteries and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen evolution reaction (OER). We found that Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF) catalyzes the OER with intrinsic activity that is at least an order of magnitude higher than that of the state-of-the-art iridium oxide catalyst in alkaline media. The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an e(g) symmetry of surface transition metal cations in an oxide. The peak OER activity was predicted to be at an e(g) occupancy close to unity, with high covalency of transition metal-oxygen bonds.  相似文献   

20.
Three-dimensional structure of poliovirus at 2.9 A resolution   总被引:136,自引:0,他引:136  
The three-dimensional structure of poliovirus has been determined at 2.9 A resolution by x-ray crystallographic methods. Each of the three major capsid proteins (VP1, VP2, and VP3) contains a "core" consisting of an eight-stranded antiparallel beta barrel with two flanking helices. The arrangement of beta strands and helices is structurally similar and topologically identical to the folding pattern of the capsid proteins of several icosahedral plant viruses. In each of the major capsid proteins, the "connecting loops" and NH2- and COOH-terminal extensions are structurally dissimilar. The packing of the subunit "cores" to form the virion shell is reminiscent of the packing in the T = 3 plant viruses, but is significantly different in detail. Differences in the orientations of the subunits cause dissimilar contacts at protein-protein interfaces, and are also responsible for two major surface features of the poliovirion: prominent peaks at the fivefold and threefold axes of the particle. The positions and interactions of the NH2- and COOH-terminal strands of the capsid proteins have important implications for virion assembly. Several of the "connecting loops" and COOH-terminal strands form prominent radial projections which are the antigenic sites of the virion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号