首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A finishing trial and a metabolism trial were conducted to determine the effect of supplemental metabolizable Lys level on finishing calf performance and to estimate the metabolizable Lys requirement of finishing calves. The finishing trial included 60 individually fed crossbred beef steer calves (237 kg; SD = 20 kg) supplemented with either incremental amounts of rumen-protected Lys and Met, or Met alone. Addition of Lys and Met improved gains and efficiencies (quadratic; P < .02) during the first 56 d. There was no response to supplemental Met alone, suggesting that supplemental Lys rather than Met was responsible for the improvement in performance. Using nonlinear analyses to compare gain relative to supplemental Lys intake, maximum gain was determined to be 2.10 kg/d, or .27 kg/d above the zero Lys control, at a supplemental Lys intake of 2.56 g/d. Steers supplemented with 3 and 4 g of Lys had a weight advantage over the control steers of 16 kg at 56 d and 32 kg at the end of the 161-d trial. However, there were no statistical responses to Lys or Met during any periods after 56 d. During a separate metabolism trial, four steers fed the control finishing diet were slaughtered, and abomasal contents were collected for amino acid analyses. The predicted (Level 1 NRC, 1996) metabolizable protein flow to the abomasum for the control diet was 715 g/d, and the predicted Lys flow was 37.9 g/d. A supplemental Lys intake of 2.56 g/d would increase the Lys flow to 40.5 g/d. Feedlot diets low in ruminal escape protein may be deficient in metabolizable Lys, especially early in the feeding period. The metabolizable Lys requirement of steer calves gaining 2.10 kg/d is estimated to be 40.5 g/d.  相似文献   

2.
The objective of two experiments was to correlate plasma levels of urea N (PUN) and the percentage of urine N in the form of urea (UUN) to weight gain in response to different dietary protein regimens for growing Angus steers. In Exp. 1, 60 steers (302 kg BW) were assigned to various levels of dietary N (control plus supplemental N to provide from 100 to 400 g more crude protein daily) within two sources of supplemental N (soybean meal [SBM] or a mixture of two parts corn gluten meal:one part blood meal [CGM:BM]). In Exp. 2, 27 steers (229 kg BW) were fed two levels of SBM, and half of the steers received growth-promoting implants. Steers were housed in groups of 12 and fed individually for 84 d in both experiments. Corn silage was fed at a restricted rate to minimize orts. Jugular blood and urine samples were collected during the experiments. In Exp. 1, maximal ADG of steers fed SBM (1.0 kg) was reached with 671 g/d total crude protein, or 531 g/d metabolizable protein. Maximal ADG of steers fed CGM:BM (0.91 kg) was reached with 589 g/d total crude protein, or 539 g/d metabolizable protein. The DMI was higher (P < 0.07) for steers fed SBM (6.37 kg/d) than for steers fed CGM:BM (6.14 kg/d). Increasing ruminal escape protein from 36% (SBM) to 65% (CGM:BM) of CP decreased (P < 0.05) endogenous production of urea, as evidenced by lower concentrations of urea in blood and lower UUN. In Exp. 2, increasing supplemental protein from 100 to 200 g/d increased (P < 0.05) ADG and PUN. Implants lowered (P < 0.05) UUN, particularly at the higher level of supplemental protein. Protein supplementation of growing steers can be managed to maintain acceptable ADG yet decrease excretion of urea in the urine.  相似文献   

3.
In situ and digestion studies were conducted to evaluate feather meal (FTH), blood meal (BM), and meat and bone meal (MBM) for escape protein content, amino acid composition of the escape protein, true protein digestibility, and digestibility of the individual amino acids. Following 12 h of ruminal incubation, escape protein values were 73.5, 92.4, and 60.8% of CP for FTH, BM, and MBM, respectively. Blood meal and MBM were poor sources of sulfur amino acids (SAA), whereas FTH was a good source. Most of the SAA of FTH, however, was Cys, with very little Met. True protein digestibilities were not different for the protein sources (P > .15), ranging from 86.7 to 94.0% of the CP. However, digestibilities of the individual amino acids were quite different. Two growth studies were conducted to evaluate FTH as a source of SAA for growing cattle. The first study used 120 steers (228 +/- 15 kg) supplemented with urea, MBM, MBM plus 1% FTH, or MBM plus 2% FTH. Additionally, incremental amounts of rumen-protected Met were added to treatments containing MBM. Supplementation of MBM increased (P < .05) ADG compared with the urea control. Addition of FTH to MBM resulted in a linear (P < .01) increase in ADG. However, addition of rumen-protected Met to MBM plus FTH treatments further improved gains. Although FTH is an effective source of SAA, Met probably was first-limiting. The second study used 90 steers (243 +/- 18 kg) supplemented with BM plus incremental amounts of SAA from either FTH or rumen-protected Met. Addition of SAA improved ADG compared with BM alone (P < .05). Rumen-protected Met as a source of SAA improved ADG compared with FTH (P < .05). The SAA from FTH promoted a gain response equal to 50% of the response obtained with rumen-protected Met. Formulation of ruminant diets for metabolizable amino acids must account for escape value and digestibility of each individual amino acid. Feather meal is an effective source of SAA; however, Cys supplies over five times the amount supplied by Met.  相似文献   

4.
Four trials were conducted to determine the effects of supplemental rumen-protected methionine (RPMet) and lysine (RPLys) on lamb N metabolism and steer feedlot performance. In trial 1, 20 Suffolk-sired, crossbred lambs (avg weight 32 kg) were fed diets containing no supplemental methionine (Met) and lysine (Lys), .03% RPMet, .05% RPLys or .03% RPMet + .05% RPLys. Lambs fed .03% RPMet + .05% RPLys had a 33% increase in N retention compared with lambs fed no supplemental Met and Lys. In trial 2, to verify the protection and availability of these amino acids, five Targhee lambs (avg weight 35 kg) were fed corn-soybran flake diets supplemented with urea and were assigned in a 5 X 5 Latin square to one of the following treatments: 1) control; 2) .03% RPMet + .05% RPLys offered in the diet; 3) .03% RPMet + .05% RPLys abomassally infused; 4) .03% non-protected Met + .05% non-protected Lys offered in the diet and 5) .03% Met + .05% Lys abomasally infused. Treatments 2, 3 and 5 decreased (P less than .05) urinary N (g/d) and increased N retention (P less than .05) compared with the control diet (treatment 1). Increases (P less than .05) in plasma Met and Lys concentrations indicated that the amino acids were protected and available for animals at the site of absorption. In trial 3, 40 crossbred Angus steers (avg weight 247 kg) were fed diets composed of 53% corn silage and 47% concentrate and supplemented with soybean meal to 11.3% crude protein. Steers that were fed diets containing .19% RPMet + .11% RPLys had greater daily gain (P less than .05) than those fed diets containing no supplemental amino acids, .11% RPMet + .01% RPLys, and .15% RPMet + .06% RPLys (1.39 vs 1.23, 1.22 and 1.20 kg/d, respectively). Similar improvements in feed conversion resulted and increases in plasma Met concentrations followed the same trend. In trial 4, 40 crossbred Angus steers (avg weight 368 kg) were fed corn grain-corn silage diets supplemented with urea. Treatments were: no supplemental amino acids; .05% RPMet + .01% RPLys; .10% RPMet + .04% RPLys; and .15% RPMet + .07% RPLys. No differences in steer performance resulted due to supplemental RPMet and RPLys (P greater than .05). The results of these trials suggest that the RPMet and RPLys used in this study are protected from ruminal degradation, are available post-ruminally and can improve lamb N balance and growing steer performance.  相似文献   

5.
Seven ruminally cannulated Holstein steers (194 +/- 16 kg) housed in metabolism crates were used in a 6 x 6 Latin square, with one additional steer, to study effects of ruminal ammonia load on methionine (Met) use. All steers received a diet based on soybean hulls (2.6 kg DM/d), ruminal infusions of 200 g/d of acetate, 200 g/d of propionate, and 50 g/d of butyrate, as well as abomasal infusion of 300 g/d of glucose to provide energy without increasing microbial protein supply, and abomasal infusions of a mixture (248 g/d) of all essential AA except Met. Treatments were arranged as a 3 x 2 factorial and included urea (0, 40, or 80 g/d) infused ruminally to supply metabolic ammonia loads and Met (2 or 5 g/d) infused abomasally. Supplementation with the greater amount of Met decreased (P < 0.05) urinary N excretion from 68.8 to 64.8 g/d and increased (P < 0.05) retained N from 22.0 to 27.5 g/d. Urea infusions linearly increased (P < 0.05) urinary N excretions, plasma urea concentrations, and urinary urea excretions, but retained N was not affected. The efficiency of deposition of supplemental Met, calculated by assuming that Met deposition is 2.0% of protein deposition (6.25 x retained N), ranged between 18 and 27% when steers received 0 or 80 g/d of urea, respectively. There were no (P > or = 0.40) effects of treatments on serum insulin or IGF-I concentrations. In our model, increasing ammonia load did not affect whole-body protein deposition in growing steers when Met was limiting.  相似文献   

6.
Seven Holstein steers (340 kg) fitted with ruminal, duodenal and ileal cannulae were used to measure the influence of supplemental N source on digestion of dietary crude protein (CP) and on ruminal rates of protein degradation. Diets used were corn-based (isonitrogenous, 12% CP on a dry matter basis, and isocaloric, 80% total digestible nutrients) with urea, soybean meal (SBM), linseed meal (LSM) or corn gluten meal (CGM) as supplemental N. Ruminal ammonia N concentrations were higher (P less than .05) in steers fed LSM than in those fed CGM, but did not differ from those in steers fed urea or SBM (11.7, 6.7, 9.1 and 9.2 mg/100 ml, respectively). Due to the high degradability of urea, ruminal digestion of dietary CP was greater (P less than .05) in steers fed urea than in those fed CGM, but intermediate in steers fed SBM and LSM (58.4, 48.8, 53.1 and 53.9%, respectively). Flow of bacterial nonammonia N to the duodenum was highest (P less than .05) in steers fed SBM or LSM, intermediate (P less than .05) for urea and lowest (P less than .05) for CGM (86.8, 86.1, 76.3 and 65.9 g/d, respectively). Efficiency of bacterial protein synthesis was lowest in steers fed CGM and differed (P less than .05) from SBM (15.6 vs 21.8 g N/kg organic matter truly digested, respectively). Rate of ruminal digestion for SBM-CP differed (P less than .05) from that of CGM-CP but not from that of LSM-CP (17.70, 5.20 and 10.13%/h, respectively). The slow rate of ruminal degradability of CGM resulted in increased amounts of dietary protein reaching the intestinal tract but lower amounts of bacterial protein, thus intestinal protein supply was not appreciably altered.  相似文献   

7.
To evaluate the effects of balancing total diet degradable intake protein with dietary total digestible nutrients (TDN), we conducted two studies during 2 yr with 100 (302 +/- 8 kg initial BW) mixed-breed yearling steers and 12 ruminally cannulated steers (526 +/- 28 kg). Steers individually received one of four supplements 5 d/wk while grazing dormant native tallgrass prairie. Supplements included: 1) corn and soybean meal, balanced for total diet degradable intake protein in relation to total diet TDN (CRSBM), 2) corn and soybean hulls, equal in supplemental TDN to CRSBM (CORN), 3) soybean meal, equal in supplemental degradable intake protein to CRSBM (SBM), or 4) a cottonseed hull-based control supplement (CONT). At each feeding (5 d/wk), steers consumed 13.6, 13.6, or 4.2 g of dry matter/kg of body weight, or 178 g of DM, respectively, of supplement. Steers fed CRSBM had greater (P < 0.01) average daily gain than cattle fed CORN or SBM. Feeding soybean meal (CRSBM, SBM) resulted in improved (P < 0.01) efficiency of supplement. Grazing time, intensity, and harvesting efficiency were reduced (P < 0.05) by corn supplementation (CRSBM and CORN), whereas the number of grazing bouts per day was increased (P < 0.08). Intake and digestibility of forage organic matter were reduced (P < 0.01) for steers supplemented with corn (CORN and CRSBM) vs cattle not fed corn (SBM and CONT). Total diet digestibility (P < 0.12) and digestible organic matter intake (P < 0.01) were greater for CRSBM-fed steers than for cattle fed either CORN or SBM. Steers fed CRSBM had greater (P < 0.01) fecal nitrogen and serum insulin than cattle fed CORN or SBM. Corn-fed cattle had lesser (P < 0.01) fecal pH and ADF concentrations than steers not consuming grain. Cattle fed supplements with soybean meal (CRSBM and SBM) had greater (P < 0.01) serum urea nitrogen than steers fed supplements without soybean meal (CORN, CONT). Supplemented steers grazing dormant tallgrass prairie had a greater rate of gain, with the greatest response in animal performance occurring when grain supplements were balanced for total diet degradable intake protein in relation to total diet TDN. These results lead us to suggest that grain-supplemented cattle grazing dormant tallgrass prairie require a balance of total diet degradable intake protein in relation to total diet TDN to optimize animal performance.  相似文献   

8.
We evaluated the effects of different supplemental energy sources on Met use in growing steers. Ruminally cannulated Holstein steers were used in two 6 x 6 Latin squares, and data were pooled for analyses. In Exp. 1, steers (148 kg) were fed 2.3 kg of DM/d of a diet based on soybean hulls. Treatments (2 x 3 factorial) were abomasal infusion of 0 or 3 g of l-Met/d, and supplementation with no energy or with glucose (360 g/d) or fat (150 g/d) continuously infused into the abomasum. In Exp. 2, steers (190 kg) received 2.6 kg of dietary DM/d and were provided (2 x 3 factorial) with 0 or 3 g of l-Met/d, and with no supplemental energy or with acetate (385 g/d) or propionate (270 g/ d) continuously infused into the rumen. In both experiments, the energy sources supplied 1.3 Mcal of GE/d, and all steers received basal infusions of 400 g of acetate/d into the rumen and a mixture (125 g/d) of all essential AA except Met into the abomasum. Nitrogen balance (18.8 vs. 23.5 g/d; P < 0.01) and whole-body protein synthesis (2.1 vs. 2.3 kg/d; P < 0.07) were increased by Met supplementation, indicating that protein deposition was limited by Met. Supplemental energy reduced (P < 0.01) urinary N excretion and increased (P < 0.01) N retention without differences among energy sources. Increases in N retention in response to Met were numerically greater when energy was supplemented. Efficiency of supplemental Met use was 11% when no energy was supplemented but averaged 21% when 1.3 Mcal of GE/d was provided. Whole-body protein synthesis and degradation were not affected by energy supplementation. Serum insulin concentrations were increased by glucose and propionate supplementation. Serum IGF-I concentrations were increased by supplementation with Met or glucogenic sources of energy. In growing steers, N retention was increased by energy supplementation even though protein deposition was limited by Met, suggesting that energy supplementation improves the efficiency of AA use. These responses were independent of the source of energy.  相似文献   

9.
Metabolic demand for sulfur-containing AA increases during inflammation in nonruminants. Therefore, Met supplementation may alleviate the negative effects of infection on N balance. Effects of gram-negative bacterial lipopolysaccharide (LPS) and supplemental dietary Met on N balance, serum hormones and haptoglobin, and plasma urea-N and AA were evaluated in 20 Angus-cross steers (BW = 262 +/- 6.3 kg). Treatments (2 x 2 factorial) were infusion of no LPS (-LPS) or a prolonged low dose of LPS (+LPS) and dietary supplementation of no (-MET) or 14 g/d (+MET) of rumen-protected Met (providing 7.9 g/d of dl-Met). Steers were adapted to a roughage-based diet (DMI = 1.4% of BW daily) and supplemental Met for 14 d, and were then infused (1 mL/min via intravenous catheter) with LPS on d 1 (2 microg/kg of BW) and 3 (1 microg/kg of BW) of a 5-d collection period. Blood was collected on d 1, before LPS infusion, and at 2, 4, 6, 8, 10, 12, and 24 h after LPS challenge. Diet samples, feed refusals, feces, and urine were collected daily for 5 d. Rectal temperature and serum concentrations of cortisol, prolactin, tumor necrosis factor-alpha, and haptoglobin increased, whereas thyroxine and triiodothyronine decreased for +LPS vs. -LPS steers (LPS x h; P < 0.01). Plasma urea-N was greater for +LPS than -LPS steers (LPS; P = 0.03), and serum IGF-1 was not affected (P > or = 0.26) by LPS or Met. Plasma concentrations of Thr, Lys, Leu, Ile, Phe, Trp, Asn, Glu, and Orn decreased, plasma Ala increased, and Gly and Ser initially increased, then declined in +LPS vs. -LPS steers (LPS x h; P < or = 0.04). Plasma Met was greater for +MET than -MET steers before LPS infusion, but declined in +MET steers after LPS infusion (LPS x Met x h; P < 0.01). By design, DMI was not different, but DM digested was less (P = 0.04) for +LPS than -LPS steers. Infusion of LPS did not affect (P > or = 0.24) N intake, fecal N excretion, or N digested, but resulted in greater (P < 0.01) urinary N excretion and less (P < 0.01) N retention. The absence of an LPS x Met interaction (P = 0.26) for N retention indicates that supplemental Met does not improve the N utilization of growing beef steers exposed to a gram-negative bacterial endotoxin. Decreases in plasma concentrations of several essential AA in +LPS steers suggest that metabolic demand for these AA likely increased in steers exposed to endotoxin.  相似文献   

10.
Hydrolyzed feather meal as a protein source for growing calves   总被引:1,自引:0,他引:1  
Growth, digestion and in situ studies were conducted to determine the protein value of hydrolyzed feather meal (Fth) for growing ruminants. Dacron bags containing blood meal (BM), Fth, corn gluten meal (CGM) and soybean meal (SBM) were suspended in the rumen of two steers for 12 h to estimate escape protein. The escape protein value for Fth, 69.1%, was less than that for BM (82.8%) and CGM (80.4%; P less than .05) but greater than that for SBM (26.6%; P less than .05). Apparent protein digestion by lambs was similar (P greater than .10) for isonitrogenous diets containing urea (U), BM, Fth, CGM and SBM. Amino acid contents of the protein sources before vs after a 12-h ruminal in situ digestion were similar (P greater than .10). In a growth study, a basal diet of 80% ensiled corncobs and 20% alfalfa was fed to 60 individually fed crossbred steers (215 kg BW). Steers were supplemented with U, BM, Fth, 1/2 BM:1/2 Fth, 1/2 BM:1/2 CGM and 1/3 BM:1/3 Fth:1/3 CGM (protein basis). Protein sources were fed at 30, 45 and 60% of the supplemental N with urea supplying the remainder. Protein efficiency was calculated using the slope ratio technique. Protein efficiency was similar (P greater than .10) for BM- and Fth-supplemented calves. Protein efficiencies were similar (P greater than .10) for BM:CGM, BM:Fth and BM:Fth:CGM combinations. These data indicate the Fth is a digestible high escape protein source that is useful in diets for growing ruminants.  相似文献   

11.
In 2 experiments, 6 ruminally cannulated Holstein steers (205 +/- 23 and 161 +/- 14 kg initial BW in Exp. 1 and 2, respectively) housed in metabolism crates were used in 6 x 6 Latin squares to study the effects of excess AA supply on Met (Exp. 1) and Leu (Exp. 2) use. All steers received a diet based on soybean hulls (DMI = 2.66 and 2.45 kg/d in Exp. 1 and 2, respectively); ruminal infusions of 200 g of acetate/d, 200 g of propionate/d, and 50 g of butyrate/d, as well as abomasal infusion of 300 g of glucose/d to provide energy without increasing the microbial protein supply; and abomasal infusions of a mixture of all essential AA except Met (Exp. 1) or Leu (Exp. 2). Periods were 6 d, with 2-d adaptations and 4 d to collect N balance data. All treatments were abomasally infused. In Exp. 1, treatments were arranged as a 2 x 3 factorial, with 2 amounts of l-Met (0 or 4 g/d) and 3 AA supplements (no additional AA, control; 100 g/d of nonessential AA + 100 g/d of essential AA, NEAA + EAA; and 200 g/d of essential AA, EAA). Supplemental Met increased (P < 0.01) retained N and decreased (P < 0.01) urinary N and urinary urea N. Retained N increased (P < 0.01) with NEAA + EAA only when 4 g/d of Met was provided, but it increased (P < 0.01) with EAA with or without supplemental Met. Both AA treatments increased (P < 0.01) plasma urea and serum insulin. Plasma glucose decreased (P = 0.03) with supplemental Met. In Exp. 2, treatments were arranged as a 2 x 3 factorial with 2 amounts of L-Leu (0 or 4 g/d) and 3 AA supplements (control, NEAA + EAA, and EAA). Supplemental Leu increased (P < 0.01) retained N and decreased (P < 0.01) urinary N and urinary urea N. Both AA treatments increased (P < 0.01) retained N, and they also increased (P < 0.01) urinary N, urinary urea N, and plasma urea. Serum insulin increased (P = 0.06) with supplemental Leu and tended (P = 0.10) to increase with both AA treatments. Supplementation with excess AA improved Met and Leu use for protein deposition by growing cattle.  相似文献   

12.
Sixty medium-framed Hereford steers averaging 243 kg were used in an experiment including a growing period (28 wk) and a finishing period ending when the animals had approximately 4 to 10 mm of fat thickness (Canadian grade A1). Steers were assigned randomly to a 2 x 3 factorial arrangement of treatments for 28 wk (growing period). From the end of the growing period until slaughter, all steers received the same diet to study the residual effect of treatments fed during growth. Treatments during the growing phase consisted of two types of forage conservation (silage or hay) and three levels of protein supplement (0, 200 g of fish meal plus 43 g of urea, or 400 g of fish meal). There was an interaction (P less than .05) between forage conservation and protein supplementation for BW gain during the growing phase; the greatest gain was by steers fed silage and 400 g of fish meal (.87 kg/d). There was no difference in BW gain among animals fed the hay diets, which averaged .75 kg/d. Body weight gain during the finishing phase, and for the overall experiment, was affected only by forage conservation; greater gains were made by steers fed silage during the growth phase. Protein supplementation did not affect performance in either the finishing phase or overall. Carcass composition did not differ among treatments, and time spent on the finishing phase tended to be less (P less than .08) for steers fed silage plus 400 g of fish meal during the growth phase.  相似文献   

13.
A study was conducted to evaluate Met requirements of late-gestation beef cows consuming low quality forages on the premise that inadequate supply of metabolizable AA may limit protein accretion during pregnancy. Five ruminally cannulated, multiparous late-gestation beef cows (490 +/- 27 kg), of predominantly Angus (> or =75%) with Hereford and Simmental breeding, were used in a 5 x 5 Latin square experiment to evaluate the effects of postruminal dl-Met supplementation on N retention, serum metabolites, and plasma AA concentrations during the third trimester of pregnancy. The basal diet was fed individually, and weights of refusals were recorded for N intake determination. Treatments consisted of no urea, urea (0.053 +/- 0.002 g/kg of BW daily), urea + 5 g of Met/d, urea + 10 g of Met/d, and urea + 15 g of Met/d. Cows were adapted to the experimental diet 30 d before the beginning of the study, with periods lasting for 14 d; 4 d to allow for clearance of the previous treatment effects, 4 d for adaptation to the treatments, and 6 d for total fecal and urine collection. Blood samples were collected every 4 h on d 13 of each period for analysis of serum metabolites and plasma AA. Inclusion of urea increased DM and OM intakes (urea vs. no urea; P = 0.05), but no further improvement in intake was observed with inclusion of Met. Serum urea concentrations increased with inclusion of urea (P = 0.03) and responded quadratically (P = 0.06) when Met was added, with the lowest concentration observed in the urea + 5 g of Met/d treatment. More N was retained with the inclusion of urea (P = 0.04), and N retention increased linearly (P = 0.07) with inclusion of Met. Plasma Met concentration increased linearly (P < 0.01) with inclusion of Met. These data suggest that Met was a limiting AA and that supplementation of a combination of urea and 5 g/d of rumen-protected Met to low quality, forage diets will improve N retention and promote protein accretion during late pregnancy.  相似文献   

14.
选择56头利木赞F_1杂交公牛,研究赖氨酸添加水平对肉牛生长性能及血液生化指标的影响。试验动物随机分为4组,每组14头,分别饲喂添加不同梯度的过瘤胃赖氨酸(0、5、10 15 g/d和15 g/d)日粮。结果表明:日粮中赖氨酸添加量对肉牛的采食量没有显著影响(P>0.05),对日增重(P=0.036)和饲料转化率(P=0.030)具有二次曲线影响,其中赖氨酸的添加量为10 g/d时,肉牛日增重最大,饲料转化率最高。随着赖氨酸添加量的增加,血液尿素氮(P=0.014)和胰岛素(P=0.022)呈二次曲线变化,但对其他血液生化指标没有影响。本试验结果表明,对于以玉米和玉米青贮为基础日粮的肉牛来说,10 g/d为过瘤胃赖氨酸的最适添加量。  相似文献   

15.
Four experiments were conducted to evaluate three crude protein (CP) sources (urea, U; soybean meal, SBM; corn gluten meal, CGM) in diets based on corn silage (high energy) or grass hay (low energy). In Exp. 1 and 2, growing steers were fed all combinations of energy and protein source at 10.5 or 12% CP. Steers fed high energy diets or 12% CP had improved (P less than .05) daily gains and feed:gain over 84 d. Protein source had no effect (P greater than .05) on performance except that steers fed U consumed more (P less than .05) feed than those fed CGM. Steers were fed experimental diets to a common weight and switched to an 85% concentrate diet for finishing. During finishing, steers fed low energy diets in the growing period consumed more (P less than .05) feed and had increased (P less than .05) feed:gain compared with those fed high energy diets. Growing lambs were fed the same diets as steers. At 10.5% CP, lambs fed high energy diets had higher (P less than .05) digestibilities of dry matter (DM), organic matter (OM), nitrogen (N) and fiber components, and retained more (P less than .05) N. For lambs on 12% CP, high energy diets had higher (P less than .05) DM and OM digestibilities and lower (P less than .05) N digestibilities. At 12% CP, energy level had no effect (P greater than .05) on N retained. Protein source had no effect (P greater than .05) on N retention. There appeared to be no advantage in supplementing with ruminally undegradable proteins, i.e. CGM, in these experiments.  相似文献   

16.
Six steers (468 kg) with ruminal and duodenal cannulas were fed diets formulated for two levels of energy containing three crude protein (CP) sources in a 6 X 6 Latin square with a 2 X 3 factorial arrangement of treatments. Energy levels were 2.17 and 2.71 Mcal metabolizable energy (ME)/kg dry matter (DM) provided by hay-corn (H) and corn silage-corn (CS) diets, respectively. Soybean mean (SBM), corn gluten meal-urea (CGM) and urea (U) provided 33% of dietary CP in 12% CP diets. Apparent organic matter (OM) digested in the stomach was not affected (P greater than .05) by energy level or CP source, but OM truly digested in the stomach was greater (P less than .05) when steers were fed the CS compared with the H diet. Duodenal flow of non-NH3 N was greater (P less than .05) when steers were fed CS compared with H and when fed SBM or CGM compared with U. Efficiency of bacterial protein synthesis and duodenal bacterial N flow were increased (P less than .05) when steers were fed CS, but non-NH3, nonbacterial N flow to the duodenum was increased (P less than .05) when steers were fed H. When steers were fed CS rather than H, flows (g/d) of bacterial amino acids were greater (P less than .05), but flows of nonbacterial amino acids tended (P less than .08) to be less. Total amino acid flows were not affected (P greater than .05) by energy level. Duodenal flows of total amino acids tended (P less than .06) to be greater when steers were fed CGM compared with SBM or U, due mainly to an increased (P less than .05) flow of nonessential amino acids.  相似文献   

17.
Sixty Angus steers, averaging 274 kg, were used to evaluate the effects of Co source and concentration on performance, vitamin B12 status, and metabolic characteristics of steers. Treatments consisted of 0 (control, analyzed 0.04 mg Co/kg), 0.05, 0.10, and 1.0 mg of supplemental Co/kg of DM from CoCO3 or 0.05 and 0.10 mg of supplemental Co/kg of DM from Co propionate. Steers were individually fed a growing diet for 56 d followed by a high-concentrate finishing diet. Performance was not affected by Co supplementation during the growing phase. During the finishing phase, ADFI (DM basis) and ADG were higher (P < 0.05) for the entire finishing phase, and gain:feed was higher (P < 0.10) over the first 56 d for Co-supplemented steers. Steers supplemented with 0.10 mg Co/kg as Co propionate had higher (P < 0.05) ruminal propionate and lower (P < 0.05) acetate molar proportions than steers receiving 0.10 Co/kg as CoCO3 during the growing phase. Supplemental Co increased (P < 0.10) molar proportion of propionate during the finishing phase. Plasma vitamin B12 was higher (P < 0.05) in Co-supplemented steers by d 56 of the growing phase and remained higher (P < 0.10) throughout the study. Control steers had higher (P < 0.05) plasma methylmalonic acid on d 56 of the growing phase and on d 28, 56, and 112 of the finishing phase than steers receiving supplemental Co. Steers supplemented with Co had higher plasma glucose at d 56 (P < 0.01), 84 (P < 0.10), and 112 (P < 0.01) of the finishing phase. Steers supplemented with 0.10 mg Co/kg as Co propionate had higher plasma glucose than those receiving 0.10 mg Co/kg as CoCO3 at d 28 of the growing phase (P < 0.05) and d 28 of the finishing phase (P < 0.10). Final body weight and hot carcass weight were lower (P < 0.10) in steers receiving the control diet, whereas other carcass characteristics were not affected by dietary Co. Average daily gain and feed efficiency for the entire finishing phase did not differ among Co-supplemented steers. However, increasing supplemental Co above 0.05 mg/kg DM (total diet Co = 0.09 mg/kg) resulted in increased (P < 0.01) plasma (linear) and liver (quadratic) vitamin B12 concentrations and decreased (quadratic, P < 0.10) plasma methylmalonic acid concentrations toward the end of the finishing phase. These results suggest that finishing steers require approximately 0.15 mg Co/kg of DM. Vitamin B12 status was not affected by Co source; however, the two Co sources seemed to affect certain metabolites differently.  相似文献   

18.
An experiment was conducted to determine the effects of dietary Co concentration on performance, carcass traits, and plasma, liver, and ruminal metabolites of steers fed corn- or barley-based diets. Sixty steers, initially averaging 316 kg, were stratified by BW and assigned randomly to treatments in a 2 x 3 factorial arrangement, with factors being a corn- or barley-based diet and supplemental Co added at 0, 0.05, or 0.15 mg/kg of DM. Control corn-and barley-based diets analyzed 0.04 and 0.02 mg of Co/kg of DM, respectively. Steers were fed individually using electronic Ca-lan gate feeders. Cobalt supplementation increased (P < 0.05) DMI and ADG over the total study. From d 85 to finish, Co supplementation increased (P < 0.05) ADG by steers fed corn- but not barley-based diets. The G:F was increased (P < 0.05) by Co supplementation during the first 84 d but not over the entire finishing period. Average daily gain and G:F were greater (P < 0.05) for corn- vs. barley-fed steers. Supplemental Co increased vitamin B12 in plasma and liver (P < 0.05), and plasma vitamin B12 was greater (P < 0.05) in steers fed corn-vs. barley-based diets. Cobalt supplementation increased (P < 0.05) ruminal fluid vitamin B12 on d 84 in steers fed corn- but not barley-based diets. Folate was greater in plasma (P < 0.01) and liver (P < 0.05) of steers fed Co-supplemented diets. Increasing supplemental Co from 0.05 to 0.15 mg of Co/kg of DM increased (P < 0.05) liver folate in steers fed barley- but not corn-based diets. Supplemental Co decreased (P < 0.01) plasma methylmalonic acid concentration in steers. Increasing supplemental Co from 0.05 to 0.15 mg/kg of DM decreased plasma and ruminal succinate concentrations, and steers fed barley-based diets had greater (P < 0.05) plasma and ruminal succinate relative to those fed corn-based diets. Addition of supplemental Co to the basal diets increased (P < 0.01) plasma glucose concentrations of steers, and steers fed corn-based diets had greater plasma glucose than those fed barley-based diets. Steers supplemented with Co had greater ruminal propionate (P < 0.01) and lesser (P < 0.05) ruminal acetate and butyrate proportions than controls. Supplemental Co increased dressing percent (P < 0.10) and HCW (P < 0.01) at slaughter. These results indicate that feeding steers corn- or barley-based diets deficient in Co adversely affects performance and vitamin B12 status.  相似文献   

19.
Forty-five Angus steers (avg initial wt 330 kg) were individually fed for 112 d to assess the value of supplemental Zn and source on performance and carcass quality. Steers had ad libitum access to a control diet (81 ppm Zn) of 33% whole corn, 33% ground milo, 15% cottonseed hulls and 13% cottonseed meal, or this control diet with 360 mg Zn/d added from either zinc methionine or zinc oxide. Steers were slaughtered on d 114, and carcass composition was determined by specific gravity. Average daily gain and feed efficiency were not affected by dietary treatments. Steers fed zinc methionine had a higher (P less than .05) USDA quality grade than those fed the control and zinc oxide diets. Marbling score was higher (P less than .05) for steers fed zinc methionine than for those fed control and zinc oxide treatments (4.4 vs 4.0 and 4.0, respectively, where 3 = slight, 4 = small, 5 = modest). Steers fed zinc methionine tended to have more (P less than .10) external fat (13 mm) than steers fed the control diet (10 mm); steers supplemented with zinc oxide had intermediate amounts of external fat (11 mm). Steers fed zinc methionine had 10.5 and 12.8% more (P less than .05) kidney, pelvic and heart (KPH) fat than steers fed control or zinc oxide diets, respectively. The effects of zinc methionine on carcass quality grade and marbling score may be due to Zn and (or) methionine. Regardless of the mechanism, the difference represents a potential economic benefit to producers.  相似文献   

20.
Forty-eight Angus and Hereford x Angus steers were used to determine the effects of copper (Cu) on lipid and catecholamine metabolism. Steers were stratified by weight within breed and randomly assigned to treatments. Treatments consisted of 0 (control, no supplemental Cu), 10, or 40 mg of supplemental Cu (from Cu2(OH)3Cl)/kg DM. Steers were fed a corn silage-soybean meal-based growing diet for 42 d. Animals were then switched to a high-concentrate finishing diet and remained on the same dietary treatments. On d 70, indwelling jugular catheters were nonsurgically inserted into five steers per treatment. Blood samples were obtained from steers after a 24-h period of feed withdrawal, 1 h after feeding, and after i.v. administration of norepinephrine and were subsequently analyzed for nonesterified fatty acid (NEFA) and catecholamine concentrations. Average daily gain over the finishing period was higher (P < 0.06) in steers receiving supplemental Cu. Serum total cholesterol concentrations were reduced (P < 0.05) on d 84 and 112 in steers supplemented with Cu. Serum norepinephrine (P < 0.14) and NEFA concentrations following feed withdrawal tended (P < 0.12) to be higher in Cu-supplemented steers. Postfeeding norepinephrine concentrations tended to be higher (P < 0.14) in Cu-supplemented steers. Nonesterifled fatty acid concentrations were lower (P < 0.10) in Cu-supplemented steers after norepinephrine administration. Backfat depth was decreased (P < 0.10) and longissimus muscle polyunsaturated fatty acid percentages were increased (P < 0.10) in steers receiving supplemental Cu. These results indicate that Cu addition to a finishing diet containing 5 mg Cu/kg DM alters lipid metabolism. The reduction in backfat depth may be due to copper altering catecholamine metabolism in steers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号