首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
The behaviour and fate of trace metals, in particular lead and cadmium, when they contaminate the soil as atmospheric fall‐out are not well understood. To improve our understanding, we incorporated pure compounds of lead and cadmium into samples taken from surface horizons of three chemically contrasting soils and monitored the changes in their speciation by analysing the soil solution. In most instances the concentrations of trace metals in solution were maximal during the first few days after mixing the contaminants with the soil, and depended strongly on soil type. The exception was when the contaminant was added as sulphide particles. The initial speciation of metals also influenced their solubility, following a decreasing order which did not depend on the soil type:
Lead sulphide was progressively oxidized, but cadmium sulphide was hardly dissolved. When lead was added as sulphate, between 10 and 20% of lead particles dissolved, regardless of the soil type. For the other species, dissolution was enhanced at lower soil pH. Thermodynamic calculations with the WinHumic V program indicated that the solution was not saturated with respect to lead sulphate. We conclude that dissolution must be limited by the adsorption of inhibitors on reactive surfaces. The calculations also showed that precipitation of chloropyromorphite probably controls lead concentration in leachate from the acid organic soil. Finally, both soil type and initial speciation of contaminants control the behaviour of trace metals in soils for a time greater than a cropping season and must be considered for understanding their environmental impact.  相似文献   

2.
3.
Abstract

Three thermal power plants in Serbia, Croatia and Bosnia of the Western Balkan region were expected to be metal polluting sources, and this study was performed to investigate the bioavailability and chemical speciation of trace metals in soils and soil water extracts, respectively. Surface (0–15 cm) soil samples along with maize and grass samples were collected at a gradient from the pollution source. The chemical speciation of metals was conducted using the Windereme Humic Aqueous Model (WHAM)/Model VI for water, whereas the Diffusion Gradient in Thin Films (DGT) technique was used to estimate plant availability. The chemical speciation indicated that more than 99% of all four metals in soil water extracts were complexed to fulvic acid. This is connected to relatively high soil pH (> 6.5) and high contents of soil organic matter in these soils. The accumulation of trace metals by DGT was not correlated to plant uptake. This is connected to the very low partitioning of free ions in solution, but also to the low variation in metal solubility and metal concentration in plant tissue between sites. In spite of active thermal power plants located in the areas, hardly any differences in concentration of soil metals between sites were seen and the partition of metals in soil waters was insignificant. The latter indicates that these soils have a large metal-retaining capacity. The only significant soil chemical variable affecting the variation in metal solubility was the soil pH. In a time with large infrastructure and industrial expansion in these areas, this investigation indicates the importance of protecting these high-quality soils from industrial use and degradation. High industrial activity has so far had insignificant effect on soil quality with respect to bioavailability of trace metals in these soils.  相似文献   

4.
Calcite and gypsum are salts of major ions characterized by poor solubility compared with other salts that may precipitate in soils. Knowledge of calcite and gypsum solubility products in water‐saturated soil samples substantially contributes to a better assessment of processes involved in soil salinity. The new SALSOLCHEMIS code for chemical equilibrium assessment was parameterized with published analytical data for aqueous synthetic calcite and gypsum‐saturated solutions. Once parameterized, SALSOLCHEMIS was applied to calculations of the ionic activity products of calcium carbonate and calcium sulphate in 133 water‐saturated soil samples from an irrigated salt‐affected agricultural area in a semi‐arid Mediterranean climate. During parameterization, sufficiently constant values for the ionic activity products of calcium carbonate and calcium sulphate were obtained only when the following were used in SALSOLCHEMIS: (i) the equations of Sposito & Traina for the free ion activity coefficient calculation, (ii) the assumption of the non‐existence of the Ca (HCO 3)+ and CaCO3o ion pairs and (iii) a paradigm of total ion activity coefficients. The value of 4.62 can be assumed to be a reliable gypsum solubility product (pKs) in simple aqueous and soil solutions, while a value of 8.43 can only be assumed as a reliable calcite solubility product (pKs) in simple aqueous solutions. The saturated pastes and saturation extracts were found to be calcite over‐saturated, with the former significantly being less so (p IAP = 8.29) than the latter (p IAP = 8.22). The calcite over‐saturation of saturated pastes increased with the soil organic matter content. Nevertheless, the inhibition of calcite precipitation is caused by the soluble organic matter from a dissolved organic carbon threshold value that lies between 7 and 12 mm . The hypothesis of thermodynamic equilibrium is more adequate for the saturated pastes than for the saturation extracts.  相似文献   

5.
Accurate control of groundwater pH is of critical importance for in situ biological treatment of chlorinated solvents. This study evaluated a novel approach for buffering subsurface pH that relies on the use of silicate minerals as a long-term source of alkalinity. A screening methodology based on thermodynamic considerations and numerical simulations was developed to rank silicate minerals according to their buffering efficiency. A geochemical model including the main microbial processes driving groundwater acidification and silicate mineral dissolution was developed. Kinetic and thermodynamic data for silicate minerals dissolution were compiled. Results indicated that eight minerals (nepheline, fayalite, glaucophane, lizardite, grossular, almandine, cordierite, and andradite) could potentially be used as buffering agents for the case considered. A sensitivity analysis was conducted to identify the dominant model parameters and processes. This showed that accurate characterization of mineral kinetic rate constants and solubility are crucial for reliable prediction of the acid-neutralizing capacity. In addition, the model can be used as a design tool to estimate the amount of mineral (total mass and specific surface area) required in field applications.  相似文献   

6.
Essential nutrients such as trace metal ions, amino acids, and sugars are transported in the phloem from leaves to other parts of the plant. The major chelating agents in phloem include nicotianamine, histidine, cysteine, glutamic acid, and citrate. A computer model for the speciation of metal ions in phloem has been used to assess the degree to which the widely used herbicide glyphosate binds to Fe(3+), Fe(2+), Cu(2+), Zn(2+), Mn(2+), Ca(2+), and Mg(2+) in this fluid over the pH range of 8 to 6.5. The calculations show that glyphosate is largely unable to compete effectively with the biological chelating agents in phloem. At a typical phloem pH of 8, 1.5 mM glyphosate binds 8.4% of the total Fe(3+), 3.4% of the total Mn(2+), and 2.3% of the total Mg(2+) but has almost no effect on the speciation of Ca(2+), Cu(2+), Zn(2+), and Fe(2+). As the pH decreases to 6.5, there are some major shifts of the metal ions among the biological chelators, but only modest increases in glyphosate binding to 6% for Fe(2+) and 2% for Zn(2+). The calculations also indicate that over 90% of the glyphosate in phloem is not bound to any metal ion and that none of the metal-glyphosate complexes exceed their solubility limits.  相似文献   

7.
Background, Aims and Scope   The rapid increase of wastewater worldwide and the consequently urgently needed treatment measures towards disposal purposes has led to an expansion of alternative treatment methods. Besides conventional and cost intensive systems, domestic wastewater treatment by overland flow process represents an effective and low-cost alternative. However, in addition to beneficial elements in wastewaters, there is a release of other elements of the Periodic Table into the environment, which can be considered as potentially toxic. This requires a reliable chemical characterization of the wastewater element composition as well as the soils onto which it will be applied. This paper aims at presenting the chemical fingerprint methodology to characterize concentrations of a large set of elements in a tropical ferralsol in order to provide information concerning chemical modifications after long-term application of wastewater by overland flow process. The results are also used to estimate environmental implications according to guiding values for soils in São Paulo State.Methods   The wastewater treatment in Populina has been operating for 18 years. Composite soil samples were taken in a treated plot and a control plot. Wastewater was chemically characterized by using AAS. Total C and total N of soil samples were determined by Delta Plus Mass Spectrometer. The remaining elements (32) were analyzed using ICP-OES. Grain size analysis was carried out after oxidation by H2O2, and soil dispersion with NaOH and Na4P2O7 treatments. pH was measured in water. Quality control of all measurements was verified by corresponding reference materials. Fingerprint graphs were generated by standardizing the values of the control plot and by graphically displaying positive/negative percentage deviations of the element values at the treated plot from values of the control site. Results and Discussion   Chemical analyses of the wastewater used showed high BOD, COD, TOC and N values, while the majority of metals were below the detection limit that is attributed to the limitations in the instrumental techniques (AAS) utilized. The comparison of the two selected sites revealed substantial changes of the element contents associated with long-term application of domestic wastewater. Fingerprint graphs of the treated field indicated higher values for the vast majority of macro and micro-nutrients (C, N, P, K, Ca, Mg, Mo, Zn, Cu), as well as for other elements, e.g. Ba, Sr, Na, Li, or La. Enrichments of ecotoxic elements (e.g. As or Pb) occurred in the surface horizon despite the low contents of those elements in the wastewater. Other elements analyzed, i.e. Ag, Be, Bi, Cd, Sb, Sn, W or Sc, that are partially considered to be toxic, did not show considerable differences. Due to limitations in the analytical techniques applied, these results do not imply that there is no existence or no release of elements from wastewater at trace or ultra-trace levels. It is expected that more sophisticated techniques will be available in the future. Typical soil elements (Ti, Al, Fe, V, Zr) show higher values at the control site suggesting higher contents of mineralogical components. The highly positive deviation of C-contents linked with higher values of many other elements in the treated soil suggest element enrichments associated with organic matter. Concerning environmental implications, the comparison with guiding values for an enhanced monitoring showed partly an excess of acceptable metal concentration levels. Proposed intervention values were not exceeded, except for with Ba. Comparisons with phytotoxic element concentrations in soils indicate critical values for As, Cu and Cr. Conclusion   Using multi-element analysis, the study represents a first approach to access wastewater application by overland flow on the basis of a rather large range of chemical elements in Brazil. The comparison of the two selected areas revealed distinctly higher values for the majority of elements in the treated plot. The study also highlighted the importance of organic matter for element retention. The environmental implications of domestic wastewater application to soil surfaces can be grave. Since also toxic elements are enriched in these treated soils, the areas can partly be classified as polluted, and require long-term monitoring and detailed investigations.Recommendation and Outlook   The analytical data obtained may only allow for some conclusions concerning long-term feasibility and geochemical preconditions of wastewater irrigation. Therefore, not only the total concentrations of metals are of interest, but also element speciation must be analyzed in order to predict, for instance, how long the ion uptake capacity of the soil will last. Aside from the analytical procedures used in speciation, theoretical chemical (thermodynamic) concepts such as the principles of Pourbaix diagrams should also be used to predict solubility, immobilization and bioavailability of different element species.  相似文献   

8.
按照生态地球化学土壤样品元素形态分析方法,将土壤无机砷分成水溶态、离子交换态、碳酸盐态、腐植酸结合态、铁锰氧化物结合态、强有机结合态和残渣态。通过对吉林西部36个表层土壤样品的测试,分析了土壤不同形态砷的分布和不同形态砷与土壤性质的关系。研究表明,洮南市不同形态砷的分布为:残渣态(65.30%)〉腐植酸结合态(17.39%)〉铁锰氧化物结合态(10.70%)〉碳酸盐态(2.23%)〉水溶态(2.17%)〉强有机结合态(1.17%)〉离子交换态(1.04%)。通榆县不同形态砷的分布为:残渣态(56.66%)〉腐植酸结合态(23.82%)〉铁锰氧化物结合态(11.08%)〉碳酸盐态(2.81%)〉水溶态(2.18%)〉离子交换态(1.98%)〉强有机结合态(1.46%)。残渣态砷是吉林西部土壤砷的主要形态。土壤水溶态砷和铁锰氧化物结合态砷与土壤pH值皆呈极显著正相关;残渣态砷与土壤有机质皆呈极显著负相关,而与土壤阳离子交换量呈极显著正相关。离子交换态砷、碳酸盐态砷、铁锰氧化物结合态砷和强有机结合态砷与土壤矿质元素的关系不大,而水溶态砷、腐植酸结合态砷和残渣态砷与土壤矿质元素的关系密切。  相似文献   

9.
Analytical partitioning of four trace metals in estuarine sediments collected from eight sites in South Mosquito Lagoon near Kennedy Space Center, in terms of four different categories was accomplished using four different extraction techniques. The concentrations of the four trace metals, Zn, Mn, Cd, and Cu, released in interstitial water extract, 1 N ammonium acetate extract, conc. HCl extract and fusion extract of sediments as well as their concentrations in water samples collected from the same location were determined using flame atomic absorption technique. From the analytical results the percentages of total amount of each metal distributed among four different categories, interstitial water phase, acetate extractable, acid extractable and detrital crystalline material, were determined. Our results suggest that analytical partitioning of trace metals in estuarine sediments may be used to study the mechanism of incorporation of trace metals with sediments from natural waters. A correlation between the seasonal variation in the concentration of acetate extractable trace metals in the sediment and similar variation in their concentration in water was observed. A mechanism for the release of trace metals from estuarine sediments to natural water is also suggested.  相似文献   

10.
Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculatedspecies distributions are used to estimate a mercury-fulvicacid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC,modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present inEverglades' surface water, mercury-sulfide complexes shoulddominate dissolved inorganic mercury solution speciation. Inthe absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominateEverglades' dissolved inorganic mercury speciation.  相似文献   

11.
The fallout radionuclides 210Pb and 137Cs are widely used to date environmental records contained in lake sediments. Since the radionuclide records are themselves the outcome of the transformation of atmospheric fallout by mediating transport processes from the catchment, through the water column and post-depositional migration via pore waters, reliable models of these processes are crucial to accurate dating. The large quantities of data on 210Pb and 137Cs in lake sediments accumulated through their widespread dating applications may be used to study transport models. Their advantages as tracers of transport processes include widespread dispersal through the environment, relatively simple and well known input functions, and ease of measurement. One of the principle factors controlling the transport of any species through the water column is its distribution between aqueous and particulate phases. The relatively solubility of 137Cs in the water column is demonstrated by the reduced 137Cs/210Pb inventory ratios in sediments compared to values expected from direct fallout. Using sediment records from a wide range of Cumbrian lakes, calculations based on simple models indicate that the particulate fraction of weapons fallout 137Cs in the water column ranged from 5-22%, and was proportional to the square root of the sedimentation rate (determined by 210Pb). The KD value for weapons 137Cs in the water column is estimated to be in the range 1-2×105 L kg-1. This is comparable with KD values for Chernobyl 137Cs in these lakes (Smith et al. in press) obtained from direct measurements in the water column.  相似文献   

12.

Purpose

The critical shear stress of cohesive and mixed cohesive/non-cohesive sediments is affected by multiple interacting physical, chemical and biological parameters. There are various mathematical approaches in the scientific literature for computing critical shear stress. However, processes that influence sediment stability are still not fully understood, and available formulas differ considerably. These discrepancies in the literature arise from random system behaviour (natural variability of the sediments), different definitions of the critical shear stress, different measurement techniques and different model frameworks (scope of the parameters, undisturbed versus artificial sediment samples). While analytical approaches fail to address the involved uncertainties, fuzzy logic-based models integrate uncertainty and imprecision.

Materials and methods

With this in mind, a data-driven neuro-fuzzy model (ANFIS) was used to determine the critical shear stress based on sediment characteristics such as wet bulk density and grain size distribution. In order to select model predictors systematically, an automated stepwise regression algorithm was applied. The database for this analysis consisted of 447 measurements of the critical shear stress originating from 64 undisturbed sediment samples.

Results and discussion

The study identified clay content as the primarily controlling variable for erosion resistance. Depending on the characteristics of the sampling location, the bulk density was also selected as a model predictor. In comparison to analytical models that are available in the scientific literature, the fuzzy model achieved higher correlation coefficients between measured and predicted data.

Conclusions

The neuro-fuzzy-model includes uncertainties of input variables and their interactions directly. Thus, it provides a reliable method for the prediction of erosion thresholds of cohesive/non-cohesive mixtures. It was also shown that this approach requires fewer measured variables as well as fewer assumptions than the models it was compared to.
  相似文献   

13.
Ground waters in geothermal regions contain arsenic concentrations that exceed the recommended drinking water standards. In addition, when these regions have agricultural activities, the waters also contain high levels of nitrates and phosphates. These contaminants can be removed from the water with the use of filters containing zero valent iron (ZVI). The objective of this study was to model the removal of arsenate (As(V)) and arsenite (As(III)) by ZVI and to model the effect of competing ions (phosphate and nitrate) on arsenate removal. Arsenic immobilization by ZVI columns was simulated by the HM-1D chemical transport and speciation model and an one-dimensional analytical solution model. Laboratory column studies were conducted in order to obtain representative experimental data for simulation with both models. Arsenic speciation and the presence of competing ions greatly affect arsenic removal by ZVI. Most arsenic is precipitated/co-precipitated on ZVI and on the corrosion products formed on ZVI. The simulations suggested that As(V) process parameters are higher than the As(III) parameters and that they are affected by the presence of nitrates and phosphates in the system. Such models can be used to design treatment units by incorporating the impact of nitrates and phosphates in the removal of arsenic by ZVI as well as the impact of temperature on the process.  相似文献   

14.
Indicator species models may be a cost-effective approach to estimating species richness across large areas. Obtaining reliable distributional data for indicator species (and therefore reliable estimates of species richness) often requires longitudinal data, that is, surveys for indicator species repeated for several years or time steps. Maximum information must be extracted from such data. We used genetic algorithms and a Bayesian approach to compare the influence of presence/absence data and reporting rate data (the proportion of survey years in which a species was present) on models of species richness based on indicator species. Using data on birds and butterflies from the Great Basin (Nevada, USA), we evaluated models of species richness for one taxonomic group based on indicator species drawn from the same taxonomic group and from a different group. We also evaluated models of combined species richness of both taxonomic groups based on indicator species drawn from either group. We identified suites of species whose occurrence patterns explained as much as 70% of deviance in species richness of a different taxonomic group. Validation tests revealed strong correlations between observed and predicted species richness, with 83-100% of the observed values falling within the 95% credible intervals of the predictions. Whether reporting rate data improved the explanatory and predictive ability of cross-taxonomic models depended on the taxonomic group of the indicator species. The discrepancy in predictive ability was smaller for same-taxon models. Our methods provide a manager with the means to maximize the information obtained from longitudinal survey data.  相似文献   

15.
干燥是含湿物料与有限介质两个独立物系,在限定的工艺条件下,自发进行能量传递和转换的过程。它隶属热力学范畴,而又不同于一般的热力过程,在物系边界存在诸多错综复杂的随机因素交互作用,使得基于热力学熵参数无法对实际过程的能效进行实时的定量评价。基于传递定律建立扩散模型,得不到传递系数严格意义的数学解,存在微积分结果偏离实际较远的情况;基于反应工程原理建立干燥动力学模型,存在指前因子,活化能,机理函数等待定的物理量,实际应用存在很大的局限性。如何从理论上完整地解析出实际过程,得到其分析解是热力学应用技术基础科学研究领域自古以来的重大理论难题。近十几年,笔者从非均相系热力学基础和干燥?分析入手,以干燥?传递和转换时的自由能消耗为统一尺度,以水分活度为一切干燥物系的共同属性,揭示了干燥物系固有特征函数及其理论解,丰富了热力学应用技术基础理论。该文从干燥物系解析理论发展的历史现状,阐释揭示物料干燥理论过程、评价工艺装备能效的解析理论与方法并指明其应用与发展的技术途径,为揭示物系传递机理、评价工艺装备系统能效、实现干燥过程自适应控制和制订科学的工艺能效评价标准提供参考。  相似文献   

16.
Donald L. Sparks 《Geoderma》2001,100(3-4):303-319
Contributions in the field of soil chemistry have immensely benefited humankind, including enhanced agricultural production and the quality of our environment. This review focuses on research breakthroughs since the mid-1970s and delineates frontiers in soil chemistry for the upcoming decade. However, early contributions in ion exchange, sorption phenomena, and soil acidity are highlighted. Beginning in the 1970s, soil chemistry paradigms shifted from the chemistry of plant nutrient reactions/processes in soils to studies on environmental soil chemistry. The latter included research on: acid rain effects on soils and waters; trace metal/metalloid, environmentally important plant nutrient, radionuclide, and organic chemical reaction mechanisms and retention; speciation of soil contaminants using chemical extraction and molecular scale analytical techniques; facilitated colloid transport of metals and organic chemicals; humic substance structure; kinetics of soil chemical processes; redox transformations of contaminants in soils; modeling of soil chemical reactions; and soil remediation. Frontiers in soil chemistry over the next decade will undoubtedly involve the use of advanced in situ technologies in combination with interdisciplinary research efforts to unlock important information on: speciation of contaminants in soils; cycling of trace elements and nutrients and impacts on global climate change; development of models to accurately predict the rate, fate, and transport of contaminants in the subsurface environment; elucidation of mechanisms for microbial transformations of contaminants; unraveling the precise structure of soil organic matter; and enhanced understanding of rhizosphere chemistry. In summary, the future of soil chemistry is bright for the 21st century.  相似文献   

17.
A useful method to evaluate the effectiveness of soil‐erosion models is to compare the models' soil‐loss and runoff calculations with measured data from experimental plots subjected to artificial rainfall. This study was conducted to develop a set of statistics to compare the performance of the soil‐erosion models EUROSEM, WEPP, and MEDRUSH. Rainfall (six rainfall intensities, two replicates), runoff, and soil‐loss data from artificial plots at two locations in Hungary were used to assess the accuracy of the different models. The soil types within the plots represented a wide range of soil properties and are soil types that are commonly used for agriculture. The results showed that the three soil‐erosion models performed with varying effectiveness dependent on basic soil properties. However, statistical analysis showed the EUROSEM model to be the best for estimating soil loss in Hungary.  相似文献   

18.
Soil chemistry models often use gibbsite solubility and similar equilibrium models to predict Al concentrations in soil solution. A kinetic alternative was developed with the goal of finding universal rate constants instead of the site- and depth-specific solubility constants usually associated with the equilibrium approach. The behavior of the two approaches was studied within the framework of the steady-state soil chemistry model PROFILE using data from Solling, Germany and Gårdsjön, Sweden, two sites with different mineralogy and land use history. The kinetic alternative uses a mass balance to predict Al concentrations. The sources of Al in soil water are deposition, weathering and mineralization. The sinks are leaching and the formation of an aluminosilicate precursor. The precursor slowly transforms into an ordinary clay mineral. Both formation and transformation of the precursor are treated as irreversible processes. The kinetic model introduces a new relationship between pH and Al and produces a systematic pattern of different apparent gibbsite equilibrium constants at different depths. Results show that the kinetic model systematically underestimates Al concentration in the upper horizons, which indicates that there may be additional sources of Al in the upper horizons not accounted for in the model. Predicted values of pH and Al concentrations are comparable with field observations.  相似文献   

19.
It is suggested that stopping liming on agricultural land could lead to a potential chemical time bomb (CTB). the sequence of interrelated events leading to the CTB include the end of liming, perhaps caused by a change in land use, a progressive decrease in soil pH and increased solubility of potentially toxic contaminants that accumulate in soils as a result of agricultural practices. Data are presented on rates of long-term soil acidification and modelled changes in the solubility of some trace metals in soil as a result of acidification. Soil acidification rates depend primarily on acid input rates and the soil's acid neutralizing capacity, possibly limited by neutralization kinetics. Experimental data illustrating this point show that the pH decreased rapidly in a field soil receiving ammonium rather than nitrate fertilizer treatment. on a limed agricultural field that was later abandoned and converted to deciduous woodland, The pH of the 0-23 cm soil layers decreased over 100 years from pH 7 to 4.2. Deeper layers acidified at a slower rate. Thermodynamic model calculations simulating the solubilities of metals in a sandy topsoil showed zinc, cadmium and aluminium solubilities increasing exponentially with decreasing pH, resulting in several-fold solubility increases between pH 5 and 4. These results suggest how metal solubility increases after liming stops. the model pH-solubility relationships depended on the type of metal, The solid phase controlling the solubility, and the amount of metal in the soil if adsorption controlled the solubility. Decreasing pH and the resultant increase in metal solubility expected on abandoned farmland might be managed through techniques such as liming or planting forests of selected tree species.  相似文献   

20.
针对饱和—非饱和条件下土壤水的垂向下渗,分别用半经验计算公式和全物理基础的HYDRUS模型模拟了不同降雨情景下的土壤水渗漏量,对两种方法的计算结果进行了比较。结果表明,两种方法均能反映出土壤水渗漏率与降雨强度的相关性,降雨强度和降雨总量的增加引起土壤水渗漏总量的增加。在较小雨强条件下,公式计算土壤水渗漏总量稍大于HYDRUS模型计算,雨强较大时则相反。两种方法的计算结果在渗漏率峰值的出现时间和土层底部初始出流时间上存在差异。当土层厚度减小时,半经验解析式的计算精度有所提高,在使用该解析式时,建议对土壤层分层计算,可以提高计算精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号