首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
Over a one year program of intensive monitoring of effluents from Ontario Hydro's nuclear, fossil and hydroelectric generating facilities, theDaphnia magna and rainbow trout,Oncorhynchus mykiss, acute toxicity tests correlated well, with 61 % of the toxic effluents toxic to both species. If the effluent was toxic to only one of the test species it was generally toxic toD. magna, with from 23 to 57% of the toxic effluents toxic toD. magna only. The greater sensitivity ofD. magna to boiler blowdown effluent likely resulted from a combination of the low conductivity of boiler blowdown effluent and the smaller size and greater surface to volume ratio ofD. magna relative to rainbow trout.D. magna were also particularly susceptible to oil/water separator samples, with the daphnids frequently observed to be caught at the surface/water interface. These observations suggest that an accumulation of organic material at the air/water interface was responsible for the mortality ofD. magna. In subsequent tests, we also examined the relationship between theD. magna acute toxicity test and a bacterial-based assay (Toxi-Chromotest®) for several toxic effluents from Ontario Hydro stations to determine if bacterial-based tests could provide similar information in less time with smaller sample volumes. TheD. magma acute toxicity test did not correlate well with the bacterial-based Toxi-chromotest®. In particular, many of the samples which were toxic toD. magna were not toxic to the Toxi-chromotest® assay. The poor correlation between theD. magna and Toxi-chromotese® likely relates to both the relatively low toxicity of many of the effluent samples, and the fact that in many cases toxicity likely resulted from relatively simple combinations of inorganic toxicants. Accordingly, the Toxi-Chromotest® assay would not seem suitable as a surrogate for theD. magna acute toxicity test for our effluents.  相似文献   

2.
In order to recover and reuse water in the Kraft mill process, evaluation of separate streams is required to identify toxic compounds or microcontaminants. The stage E1 Kraft effluent, corresponding to the first extraction step of the bleaching Kraft mill process, provides the main toxic compounds found in the final process effluent. This paper uses the toxicity identification evaluation (TIE) procedure for the physicochemical and ecotoxicological characterization of the E1 Kraft effluent. To distinguish the most important toxic compounds, a physicochemical characterization and Phase I of the TIE procedure were performed. The acute toxic effect of the E1 Kraft effluent and treated fraction was performed on Daphnia magna. Results show that untreated E1 Kraft effluent exerts an acute toxic effect on D. magna (24 h LC50?=?27.6%), where the E1 Kraft effluent is characterized by pH 10.5, chemical organic demand (COD) 1,348.8 mg/l, and biological organic demand (BOD5) 397.5 mg/l, while total phenolic compounds and color are 853.7 mg/l and 0.204 1?×?1 cm, respectively. Additionally, Cu+2 (0.51 mg/l) and Fe+2 (0.64 mg/l) were detected. With respect to different treatments, our results indicate that activated carbon, anionic and cationic exchange treatments were able to reduce more that 45% of E1 Kraft effluent’s acute toxicity and that the ethylenediaminetetraacetic acid treatment was able to reduce the E1 Kraft effluent’s acute toxicity to around 75% and the Cu+2 concentration to 0.019 mg/l. Moreover, specific analysis of heavy metals and organic compounds by GC-MS show that the main compound responsible for the toxicity was Cu+2, whose tolerance level on D. magna of the 0.12 mg/l.  相似文献   

3.
This study characterizes the effects of water–soil flooding volume ratio and flooding time on copper (Cu) desorption and toxicity following multiple floodings of field-collected soils from agricultural sites acquired under the Comprehensive Everglades Restoration Plan (CERP) in south Florida. Soils from four field sites were flooded with three water–soil ratios (2, 4, and 6 [water] to 1 [soil]) and held for 14 days to characterize the effects of volume ratio and flooding duration on Cu desorption (volume ratio and flooding duration study). Desorption of Cu was also characterized by flooding soils four times from seven field sites with a volume ratio of 2 (water) to 1 (soil) (multiple flooding study). Acute toxicity tests were also conducted using overlying waters from the first flooding event to characterize the effects of Cu on the survival of fathead minnows (Pimephales promelas), cladocerans (Daphnia magna), amphipods (Hyalella azteca), midges (Chironomus tentans), duckweed (Lemna minor), and Florida apple snails (Pomacea paludosa). Acute tests were also conducted with D. magna exposed to overlying water from the second and third flooding events. Results indicate that dissolved Cu concentrations in overlying water increased with flooding duration and decreased with volume ratio. In the multiple flooding study, initial Cu concentrations in soils ranged from 5 to 223 mg/kg (dw) and were similar to Cu concentration after four flooding events, indicating retention of Cu in soils. Copper desorption was dependent on soil Cu content and soil characteristics. Total Cu concentration in overlying water (Cuw) was a function of dissolved organic carbon (DOC), alkalinity, and soil Cu concentration (Cus): log(Cuw)?=?1.2909?+?0.0279 (DOC)?+?0.0026 (Cus)???0.0038 (alkalinity). The model was validated and highly predictive. Most of the desorbed Cu in the water column complexed with organic matter in the soils and accounted for 99% of the total dissolved Cu. Although total dissolved Cu concentrations in overlying water did not significantly decrease with number of flooding events, concentrations of free Cu2+ increased with the number of flooding events, due to a decrease in DOC concentrations. The fraction of bioavailable Cu species (Cu2+, CuOH+, CuCO3) was also less than 1% of the total Cu. Overlying water from the first flooding event was only acutely toxic to the Florida apple snail from one site. However, overlying water from the third flooding of six out of seven soils was acutely toxic to D. magna. The decrease in DOC concentrations and increase in bioavailable Cu2+ species may explain the changes in acute toxicity to D. magna. Results of this study reveal potential for high Cu bioavailability (Cu2+) and toxicity to aquatic biota overtime in inundated agricultural lands acquired under the CERP.  相似文献   

4.
Since swine wastewater is used by farmers for soil fertilization, evaluation of toxic compounds or micro-contaminants of separate streams is required. This paper uses the toxicity identification evaluation (TIE) procedure for the physicochemical and ecotoxicological characterization of swine wastewater. To distinguish the most important toxic compounds, a physicochemical characterization and phase I-TIE procedure were performed. The acute toxic effect of swine wastewater and treated fractions (phase II-TIE) were evaluated using Daphnia magna determining 48-h LC50. Results show a high level of conductivity (23.5 μS cm−1), which is explained as due to the concentration of ions, such as ammonium (NH4+–N 1.6 g L−1), sulfate (SO42− 397.3 mg L−1), and chlorine (Cl 1,230.0 mg L−1). The acute toxicity of the swine wastewater was evaluated on D. magna (48-h LC50 = 3.4%). Results of the different water treatments indicate that anionic exchange treatments could reduce 22.5% of swine wastewater’s acute toxicity by reducing chlorine (to around 51%) and conductivity (8.5%). On the other hand, cationic exchange treatment increased acute toxicity on D. magna (% RT = −624.4%), by reducing NH4+–N (around 100%) and total nitrogen (95.5%). This finding suggests that part of the toxicity comes from anionic compounds, such as chlorine.  相似文献   

5.
A method was developed to fractionate chloride ions from complex effluents using an ion exchange column. The procedure utilizes a strongly basic anion exchange resin with hydroxide ions as the exchange ion. The chloride within the effluent is exchanged for hydroxide which is less toxic to Ceriodaphnia dubia. The addition of hydroxide to the solution requires a pH adjustment to a physiologically acceptable pH for Ceriodaphnia with an acid. The fractions are added to Ceriodaphnia and the ET 50 (median lethal time) determined. The column was applied to two effluents with suspected chloride toxicity. The column successfully removed virtually all of the chloride from the effluents. A significant reduction in toxicity was found following the process for one of the effluents. In addition, a control that consisted of the original effluent at the ionic strength of the column fractions revealed that chloride was a causative toxicant in both of the effluents.  相似文献   

6.
Acid mine drainage (AMD), a legacy of coal and mineral extraction, contaminates streams with complex mixtures of acid and heavy metals that are usually partitioned between the water column and substrate. Understanding the conditions under which sediments retain toxicity after the water column is cleared is important for predicting the long term success of remediation efforts. We conducted laboratory and field experiments to evaluate the relative contribution of acidity versus metals to the toxicity of AMD contaminated sediment towards aquatic macroinvertebrates. Laboratory bioassays showed that precipitate-coated substrate from AMD-impacted sites were toxic to Ctenodaphnia magna and reduced growth of mayflies (Ephemeroptera: Heptageniidae). Toxicity correlated more with acidity released from the sediment than with metals. After transplantation to a clean stream, the same Al- and Fe-contaminated substrate were not toxic to daphnia and was readily colonized by benthic macroinvertebrates within 5 weeks.  相似文献   

7.
Background and Objectives  The current environmental legislation regulating pollution issues is based on total levels of pollutants. This approach is not taking into account the bioavailability of pollutants (that is especially important for an analysis of soils and sediments as heavy metals and hydrophobic organic toxicants tend to sorb to solid matrix) and effects of toxicants in mixtures. Thus, toxicity-based criteria should be added to the currently existing chemical ones for the meaningful evaluation of the environmental hazard. The aim of the current study was 1) to compare the ecotoxicity and chemistry-based environmental evaluations for 27 solid-phase environmental samples (soils, sediments, solid wastes); 2) to suggest the battery of biotests for the screening of water-extracted toxicity. Methods  14 soils, 9 sediments and 4 oil-shale industry solid waste samples from Estonia and Lithuania were analyzed for the concentration of total PAHs, heavy metals, oil products and water-extracted phenols. The pollution level was evaluated by comparison of measured concentrations with Estonian permitted limit values in residential (PLVr) and industrial (PLVi) areas for each key pollutant A battery of 8 aquatic toxicity tests was applied for the analysis of aqueous extracts (L/S=3) of samples: tests with microalgaeSelenastrum capricornutum, macroalgaeNitellopsis obtusa, protozoaTetrahymena thermophila, crustaceansDaphnia magna andThamnocephalus platyurus, rotifersBrachionus calyciflorus and photobacteriaVibrio fiscberi. Particle-bound bioavailable toxicity was evaluated using a kinetic photobacterial assay withVibrio fiscberi (Solid-Phase Flash-Assay). The toxicity data were evaluated by MaxTox index (highest toxic signal of the battery). Results  Chemical evaluation and toxicological evaluation pointed to the same direction in half of the cases (13/27): 5 samples (including 2 presumably clean control soils) proved harmless and 8 hazardous to environment in case of both evaluations. However, there was a disagreement between chemical and toxicological evaluations for the rest of the samples (14/27). In two mismatching cases (soils from the territory of former gasoline stations) the level of oil products exceeded the PLVr, but no toxicity was detected, most probably due to the low bioavailability of aged pollutants. It must be taken as a warning that a majority of mismatching cases (12/14) of the samples proved to be toxic or even very toxic despite the fact that the measured hazardous key pollutant levels were below the PLVr. Within these 12 samples were 2 soils from municipal dumping sites, 2 soils from the territory of military airport, 6 sediments from Curonian lagoon (Lithuania) and 2 oil-shale industry solid wastes (Estonia). Conclusions  The results of this study show the necessity of biotesting in environmental risk assessment to avoid the falsenegative results that may result in harmful effects for the ecosystems and also to human health. The following, reduced test battery was proposed for the ecotoxicological hazard assessment of water-extractable toxicity of solid-phase samples:Tetrahymena thermophila growth inhibition assay,Daphnia magna mortality assay andSelenastrum capricornutum growth inhibition assay. Also, the Microtox test (Vibrio fiscberi luminescence inhibition assay) could be valuable for screening purposes. For the evaluation of particle-bound, bioavailable toxicity of soil suspensions, Solid-Phase Flash-Assay (test organismVibrio fiscberi) is suggested. Compared to the results obtained with the initial battery of 8 tests, the reduced battery detected the toxicity in 85% of the cases.  相似文献   

8.
Sediments from an eutrophic reference lake (L. HjÄlmaren) and eleven oligotrophic Swedish lakes were analyzed for heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and tested for whole sediment toxicity to Daphnia magna. Whole sediment toxicity, expressed as 48-hr EC50 on a wet weight basis in reconstituted dilution water, ranged from 2.8% (most toxic) to >32% (least toxic). Correlations between bulk sediment heavy metal concentrations and toxicity were significant (P≤0.05) for Hg, Pb, and Zn. However, a causal connection between the concentrations of these metals and toxicity was not supported by the results from metal-spiked sediment toxicity tests. In addition sediment toxicity was not affected by the addition of EDTA, which is a strong chelator known to reduce metal toxicity. After storage for several months test sediments either remained nontoxic, toxic, or increased in toxicity. These results illustrate some of the difficulties in the interpretation of bulk sediment chemistry data and the release of toxic chemicals from sediment samples, highlighting the effect of sediment storage on toxicity.  相似文献   

9.
Antimony (Sb) and Copper (Cu) are two metals of major concern in sewage sludge. Antimony because its use in society is increasing and this might lead to increased Sb concentrations in sludge. Copper because its total volume in use in society is large and because of corrosion from water pipes it is most difficult to reduce the Cu concentrations in sludge. Fresh digested sewage sludge was spiked with Cu or Sb and the sludge was cultivated with oat (Avena sativa), lettuce (Lactuca sativa) or radish (Raphanus sativus). Elutriates from the cultivated sludge were tested for toxicity with Lemna minor (7-d growth) and Daphnia magna (48 h immobility). Before cultivation the elutriates were toxic to Lemna and Daphnia due to high concentrations of ammonia (NH3) and nitrite (NO2 -). Cultivation decreased the concentrations of both NH3 and NO2 -, thereby reducing the impact of these compounds in the toxicity tests. Cultivation also decreased the metal concentrations and pH. Daphnia magna was the most sensitive test organism in this study with a 48 h EC50 of 1130 mg Cu kg-1 dry wt and 5 mg Sb kg-1 dry wt in elutriates from sludge cultivated with oat. In sludge cultivated with radish the 48 h EC50 was 1700 mg Cu kg-1 dry wt and 22 mg Sb kg-1 dry wt. The effect of Cu could be predicted by pH and Cu concentrationin the elutriate, but the effect of Sb could not solely be explained by its concentration in the elutriate.  相似文献   

10.
The genotoxic potential of tannery waste water was evaluated by means of the induction of gene conversion and point mutation in Saccharomyces cerevisiae D7 strain. Neither a toxic nor a genotoxic response was obtained after a 2 hr incubation of raw water samples with the strain. A dose-related increase in the induced gene conversion and mitotic reversion was obtained when dilutions of the raw effluent were incubated for 24 hr. Samples of the waste water were also passed through an XAD2 resin column. The column was sequentially eluted with ethyl ether, chloroform and methanol. The ether and methanol fractions showed a positive genotoxic response.  相似文献   

11.
The toxicity of U to Daphnia magna was determined in acute and chronic tests. The 48-hr LC50 of U (VI) in Columbia River water was 6 mg L?1. Acute toxicity diminished by a factor of 7.5 as mean water hardness and alkalinity values increased from 70 mg L?1. and 57 mg L?1. to 195 mg L?1. and 130 mg L?1. respectively. This effect was most likely the result of complexation of uranyl ion with carbonate ions. D. magna reproduction was suppressed in Columbia River water at U concentrations between 0.5 and 3.5 mg L?1. Potential hazards of U to aquatic life are discussed as they relate to mining practices.  相似文献   

12.
Increasing environmental pollution is connected with broad applications of dyes and imperfection of dyeing technology. Decolourization of triphenylmethane brilliant green and disazo Evans blue by bacterial and fungal strains and toxicity (phyto- and zootoxicity) of degradation by-products were investigated. Influence of incubation method on dyes removal was evaluated (static, semi-static, shaken). Dead biomass was used for sorption estimation. Toxicity of treated dyes was measured to estimate possible influence on aquatic ecosystems. The zootoxicity test was done with Daphnia magna and phytotoxicity with Lemna minor. Samples were classified according to ACE 89/BE 2/D3 Final Report Commission EC. The best results of removal for all tested strains were reached in shaken samples. In opposite to fungi, bacterial strains decolourized brilliant green more effectively than Evans blue. The most effective bacterial strain was Erwinia spp. (s12) and fungal strains were Polyporus picipes (RWP17) and Pleurotus ostreatus (BWPH and MB). Decolourization of brilliant green was connected with decrease of zootoxicity (D. magna) and phytotoxicity (L. minor). Removal of Evans blue was connected with no changes in zootoxicity and decrease of phytotoxicity in most of samples.  相似文献   

13.
The toxic effect of some chemical reagents in drilling muds has been studied for shrimp (Palaemon adspersus P.), amphipoda (Pontogammarus maeoticus S.) and mytilaster (Mytilaster lineatus G.). The toxicity has been studied for drilling agents and/or water-soluble oil fractions. The survival, growth rate, O2 consumption and generation number of experimental organisms have been taken as toxicity criteria. Some data concerning minimum toxic, sublethal and lethal concentrations of drilling agents have been obtained. The concentration increase of water-soluble oil fractions leads to increased damage effect.  相似文献   

14.
The toxicity of pure phenol, formaldehyde, and industrial wastewater, containing phenol and formaldehyde, from a resin production plant was evaluated using aquatic organisms from different taxonomic groups. Test organisms included mixed bacterial culture, unicellular green algae Scenedesmus quadricauda (Turp.) Breb., crustacea Daphnia pulex de Geer (daphnids), and fish Oncorhynchus mykiss Call, 1990 (rainbow trout). Formaldehyde was found to be more toxic to the mixed bacterial culture (120h EC50 = 34.1 mg L-1), algae (24h EC50 = 14.7 mg L-1), and crustacea (48h EC50 = 5.8 mg L-1) than phenol. Phenol proved to be more toxic to fish (48h LC50 = 13.1 mg L-1) than to the mixed bacterial culture (120h EC50 = 510 mg L-1), algae (24h EC50 = 403 mg L-1), and crustacea (48h EC50 = 25 mg L-1). The toxicity of the industrial wastewater to the mixed bacterial culture, algae, and crustacea was caused mainly by formaldehyde, but for fish the presence of phenol in the wastewater proved to be the significant reason for toxicity. Differences in sensitivity of the selected test organisms were also observed, with fish and crustacea being the most sensitive species.  相似文献   

15.
Abstract

Al toxicity in plants is related to the activity of Al3+ and Al‐hydroxy monomers in the soil solution, whereas Al complexed with ligands such as fluoride (F), sulphate (SO4 2‐), and oxalate is not toxic. Estimation of toxic Al relies on measurement of “labile”; Al after short contact times with colorimetric reagents or cation‐exchange resins. However, shifts in equilibrium may result in non‐toxic forms of Al reacting with the complexing agent or resin.

A series of laboratory experiments tested the degree to which labile Al is related to Al3+ in simplified media and compared methods of estimating labile Al in the presence of organic ligands and in soils. Cation‐exchange resins extracted more than the theoretical concentration of Al3+ from solutions containing a range of concentrations of OH and SO4 2‐. More Al was extracted in 15 s by 8‐hydroxy‐quinoline than by Chelex‐100 from solutions of Al‐humate at pH 4. In sands which had been spiked with Al and organic matter, the estimation of labile Al varied with both the method of measurement and type of extract. The cations present in commonly used soil‐extracting chloride solutions can decrease the proportion of organically complexed Al.  相似文献   

16.
ABSTRACT

Silicon (Si) protects plants from multiple abiotic and biotic stresses The effect of exogenous Si levels (50, 75, and 100 mg kg?1) on the growth, boron (B) and Si uptake, lipid peroxidation (MDA), lipoxygenase activity (LOX; EC 1.13.11.12), proline, and H2O2 accumulation, non-enzymatic antioxidant activity (AA) and the activities of major antioxidant enzymes (superoxide dismutase, SOD, EC 1.15.1.1; catalase, CAT, EC 1.11.1.6 and ascorbate peroxidase, APX, EC 1.11.1.11) of barley (Hordeum vulgare L.) were investigated under glasshouse conditions. Increasing levels of Si supplied to the soil with 20 mg kg?1 B counteracted the deleterious effects of B on shoot growth. Application of B significantly increased the B concentration in barley plants. However, Si application decreased B concentrations. Increasing application of Si increased the Si concentration in barley plants. The concentration of H2O2 was increased by B toxicity but decreased by Si supply. Boron toxicity decreased proline concentrations and increased lipid peroxidation (MDA content) and LOX activity of barley. Compared with control plants, the activities of AA, SOD, CAT, and APX in B stressed plants grown without Si decreased, and application of Si increased their activities under toxic B conditions. The LOX activity was decreased by Si. Based on the present work, it can be concluded that Si alleviates B toxicity by possibly preventing oxidative membrane damage, both through lowering the uptake of B and by increasing tolerance to excess B within the tissues.  相似文献   

17.
Acute toxicity screening tests were conducted with water soluble fractions (WSFs) of a solvent refined coal (SRC-II) liquid from a pilot plant and three reference organisms: the cladoceran Daphnia magna, the fathead (FH) minnow Pimephales promelas, and larvae of the midge fly Chironomus tentans. Stock WSFs typically contained 900 to 1100 mg l?1 total carbon (TC) and 700 to 800 mg l?1 total dye complexable phenolics, with lower concentrations of aromatic and saturate hydrocarbons and N compounds. Under standard test conditions (temperature 20 °C, pH 7.3 to 8.2 and hardness 65 to 80 mg l?1 CaCO3), mean LC50 values in mg l? TC were 3.3 for daphnia, 11.l for FH minnow, and 13.7 for midge larvae. Acute toxicity was also examined under other water quality conditions (temperature 10 or 25 °C, pH 6.0 or 6.5, and hardness ? 180 to 220 mg 1?1 CaCO3). The coal liquid was less toxic to daphnids at 10 °C than at 20 or 25 °C, but response of other organisms at different temperatures varied. The pH of the liquid had little effect on toxicity values. All organisms were less susceptible in hard water. Chemical compositions of stock WSFs were similar, suggesting that temperature, pH, and hardness had little effect on solubility of major synfucl components. Dilution indexes for stock WSFs were higher than for petroleum oils, and reflect the greater solubility of chemicals from the liquified coal in freshwater.  相似文献   

18.
In this study, the effects of 1 h aeration, nitrogen gas N2(g) sparging (15 and 30 min) and increasing ferric ions (Fe+3) as FeSO4 (10, 20 and 50 mg L−1) and Fe3O4 nanoparticles (1, 2 and 4 g L−1) concentrations on three less hydrophobic and three more hydrophobic polycyclic aromatic hydrocarbons (PAHs) and toxicity removals from a petrochemical industry in Izmir (Turkey) were investigated in a sonicator with a power of 650 W and an ultrasound frequency of 35 kHz; 1 h aeration increased the yields in benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]pyrene PAHs (less hydrophobic) from 62% to 67% to around 95–97% after 150 min sonication at 60°C. However, 1 h aeration did not contribute to the yields of more hydrophobic PAHs (indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene). The maximum yields were obtained at acidic and alkaline pH for more and less hydrophobic PAHs, respectively, after 60 and 120 min sonication at 30°C; 30 min N2(g) sparging, 50 mg L−1 Fe+3 increased the yields of less hydropobic PAHs after 150 min sonication at 60°C. Two milligrams per liter of Fe3O4 nanoparticles increased both less (87–88%) and more (96–98%) hydrophobic PAH yields. The Daphnia magna acute toxicity test showed that the toxicity decreased significantly with an hour aeration, 30 min N2(g) sparging, 50 mg L−1 Fe+3 and 2 g L−1 Fe3O4 nanoparticles at 60°C after 120 and 150 min sonications. Vibrio fischeri was found to be more resistant to the sonicated samples than D. magna. Significant correlations were found between the physicochemical properties of sonicated PAHs and acute toxicities both organisms.  相似文献   

19.
Lowering the oxygen (O2) partial pressure from 21?kPa to 1?kPa delayed the light-dependent increase of the net carbon dioxide (CO2) assimilation rate in rice (Oryza sativa L. cv. Notohikari) leaves. Researching the underlying molecular mechanisms that act before the start of photosynthesis, we established the following facts. First, O2 at 21?kPa enhanced the quantum yield of PSII [Y(II)] and PSI [Y(I)]. More than 90% of Y(II) and Y(I) were not accounted for by O2-dependent electron flow in the Mehler-ascorbate peroxidase (MAP) pathway. Both yields increased further with the start of photosynthesis. Second, O2 enhanced photochemical quenching of chlorophyll (Chl) fluorescence (qL). qL also increased further with the rate of photosynthesis. Third, O2 enhanced the photo-oxidation of P700. Fourth, O2 suppressed the reduction of P700. Fifth, O2 enhanced non-photochemical quenching of Chl fluorescence (NPQ). These results showed that the MAP pathway triggered cyclic electron flow within PSII (CEF-II) and cyclic electron flow around PSI (CEF-I) by inducing ΔpH across thylakoid membranes and oxidizing the plastoquinone pool, before photosynthesis started. We propose that the photosynthetic electron transport system is controlled by the MAP pathway, which would explain the O2-dependent enhancement of the induction of photosynthesis.  相似文献   

20.
Terrestrial Model Ecosystems (TMEs) are frequently used to assess the potentially harmful effects of contaminants on terrestrial organisms. Therefore we have used this tool to simulate the leaching phenomena from agricultural soils, within the drainage basin of Lake Vela (Figueira da Foz, Central Portugal), and to perform a subsequent evaluation of the toxicity of the leachates obtained, after the treatment of soil-cores with the herbicide Lasso® on non-target freshwater species. Hence, standard (algae: Pseudokirchneriella subcapitata; cladoceran: Daphnia magna) and autochthonous (algae: Aphanizomenon flos-aquae; cladoceran: Daphnia longispina) species were exposed to several dilutions of leachates obtained from the application of different treatments to soil-cores collected in an agricultural field in the Lake Vela surrounds: RW-soil-core irrigated with artificial rain water; RW+L-soil-core irrigated with artificial rain water after the application of Lasso®; GW+L-soil-core irrigated with groundwater collected in local wells, after the application of Lasso®. Chemical analysis confirmed the presence of alachlor (active ingredient of Lasso®) in the leachates RW+L and GW+L at concentrations of 88 and 16.9 μg L?1 respectively. As expected, the results demonstrated that the leachate RW was not toxic for the tested species. However, leachates where the herbicide was applied, particularly the RW+L, was highly toxic to P. subcapitata (96 h-IC50?=?9.7%), contrasting with the absence of toxic effects in A. flos-aquae. Notwithstanding the effects on algae, the reproduction and growth of both daphnids were not affected by the potential toxicity of leachates. Nevertheless, our results were consistent with the chemical analysis and alachlor ecotoxicity data reported in the literature. Our study confirmed that the current use of pesticides in the lands near Lake Vela, especially Lasso®, combined with the specific properties of local soils, can contribute to the contamination of surface and groundwater resources, through leaching, and could compromise the weak balance of the freshwater ecosystem by affecting one of the main trophic levels: the primary producers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号