首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
蒸发是水循环的一个重要组成部分,对蒸发量的估算是对水资源和灌溉水量有效利用的一个重要手段。该研究旨在利用多元线性回归模型、多层感知器(MLP)和人工神经网络(ANN)模型模拟印度中央邦马尔瓦地区周蒸发量。利用4种不同天气变量组合训练神经网络模型。多元线性回归模型只将最高温和相对湿度作为输入值,但是模拟结果不令人满意。MLP模型采用的数据集包括最高和最低温度、风速和相对湿度,在训练和验证中都取得了比较好的结果。MLP模型可以用来模拟周开放式蒸发皿蒸发量,估算缺失数据,并可以作为替代模型以验证蒸发量测定值。降雨量数据并不能改善模型性能。   相似文献   

2.
Soil water and temperature dynamics were measured in a field experiment with winter wheat on a clay soil. There were four treatments: Control (C), receiving natural precipitation, drought (D), protected from rain by plastic screens during the growing season, daily irrigation (I) and daily irrigation and fertilization (IF). Treatments C, D and I received the nitrogen fertilizer as a single application of solid fertilizer in spring. In IF daily dressings of nutrients were supplied in the irrigation water. All treatments received 20 g Nm–2. An associated experiment with a newly sown grass ley (L) that was irrigated and fertilized daily (total 5.6 g Nm –2) was also performed. Standard meteorological variables (air temperature and humidity, wind speed, precipitation, global radiation, and relative cloudiness) and crop development data (green area index, crop height, relative root distribution in depth) above and below ground were used as driving variables within a physically based dynamic model (SOIL) for simulating water and heat fluxes. Measured soil temperature and water content from one treatment (I) were used to tune the model parameters, tentatively set from literature data. Thereafter, water and heat fluxes in the other treatments were simulated using the same parameter values but with different crop-related measurements as driving variables for each treatment. Measured soil temperature and water content in C, D, IF and L could thus be used for validation of the simulations. The theory formulated in the model could accurately explain measured treatment differences in soil water and temperature dynamics. Since the soil-related parameters were identical in all treatments, the model was shown to be applicable over a wide range of moisture conditions.  相似文献   

3.
【目的】探讨五道沟地区"蒸发悖论"及成因探析。【方法】以位于五道沟地区的五道沟实验站气象场1970―2017年实测数据为背景资料。对蒸发量的年际变化趋势进行分析与预测,对其影响因素(风速、温度、日照时间、水汽压力差、降雨量、相对湿度)应用线性趋势法进行定性分析,应用熵值法进行综合评价,并深入探讨蒸发皿蒸发量趋势变化的成因。【结果】1970―2017年蒸发量呈明显下降趋势,下降速率为8.7 mm/a,运用灰色系统中的GM(1,1)模型与Verhulst模型对蒸发量的年际趋势进行预测,结果表明GM(1,1)模型预测效果更好。蒸发量与各气象要素的相关关系:风速、日照时间与蒸发量呈正相关关系,气温、相对湿度、降雨量与蒸发量呈负相关关系。1970―2017年间气温每10年平均升高0.25℃,水面蒸发每10年平均下降86.9 mm,该区存在"蒸发悖论"现象。线性趋势法与熵值法对各影响因素分析结果一致:风速>气温>相对湿度>日照时间>降雨量>水汽压力差,表明在全球气候变暖的大背景下,风速下降、相对湿度增加和日照时间减少是该区"蒸发悖论"现象的主要因素。日照时间的下降可能是气溶胶含量增多造成的;风速的下降可能与城镇化发展有关,风速减弱可能会引起气溶胶增多;相对湿度的增加,会导致日照时间的减少。【结论】五道沟地区"蒸发悖论"的成因可能是气溶胶量的增加,太阳辐射减少,蒸发量下降。  相似文献   

4.
The objective of this study was to explore the soil water dynamics under micro-advective conditions. A numerical model was introduced to estimate the airflow turbulence generated by the crop canopy. The vapor pressure and air temperature in the vicinity of the soil surface were estimated from the wind velocity predicted by this model. The energy budget on the soil surface was estimated using wind velocity, vapor pressure, and air temperature simulated by numerical models. The soil water content and temperature were predicted using the simulation model describing the water and heat transfer in soil. Using the energy budget, the accuracy of this model was experimentally verified using a wind tunnel. Spatial changes of the soil water content simulated by this model were reproduced by the experiment. This indicated that the numerical model for estimating the soil water movement under micro-scale advection considering the crop body was satisfactory.  相似文献   

5.
Sprinkler irrigation efficiency declines when applied water intercepted by the crop foliage, or gross interception (Igross), as well as airborne droplets and ponded water at the soil surface evaporate before use by the crop. However, evaporation of applied water can also supply some of the atmospheric demands usually met by plant transpiration. Any suppression of crop transpiration from the irrigated area as compared to a non-irrigated area can be subtracted from Igross irrigation application losses for a reduced, or net, interception (Inet) loss. This study was conducted to determine the extent in which transpiration suppression due to microclimatic modification resulting from evaporation of plant-intercepted water and/or of applied water can reduce total sprinkler irrigation application losses of impact sprinkler and low energy precision application (LEPA) irrigation systems. Fully irrigated corn (Zea Mays L.) was grown on 0.75 m wide east-west rows in 1990 at Bushland, TX in two contiguous 5-ha fields, each containing a weighing lysimeter and micrometeorological instrumentation. Transpiration (Tr) was measured using heat balance sap flow gauges. During and following an impact sprinkler irrigation, within-canopy vapor pressure deficit and canopy temperature declined sharply due to canopyintercepted water and microclimatic modification from evaporation. For an average day time impact irrigation application of 21 mm, estimated average Igross loss was 10.7%, but the resulting suppression of measured Tr by 50% or more during the irrigation reduced Igross loss by 3.9%. On days of high solar radiation, continued transpiration suppression following the irrigation reduced Igross loss an additional 1.2%. Further 4–6% reductions in Igross losses were predicted when aerodynamic and canopy resistances were considered. Irrigation water applied only at the soil surface by LEPA irrigation had little effect on the microclimate within the canopy and consequently on Tr or ET, or irrigation application efficiency.  相似文献   

6.
西北干旱区滴灌棉田膜间土壤蒸发试验研究   总被引:2,自引:0,他引:2  
膜间土壤蒸发是覆膜棉田水分消耗的主要组成部分,在干旱少雨的新疆石河子利用微型蒸渗仪观测了地下滴灌和膜下滴灌条件下,覆膜棉田膜间土壤水分蒸发,并对膜间不同位置处的土壤蒸发规律进行了试验研究,研究结果表明,滴灌条件下膜间土壤水分蒸发分别与气温、辐射、饱和水汽差以及相对湿度呈指数相关关系,与参考作物需水量呈线型相关关系,与表层土壤含水率呈指数关系;膜间土壤累积蒸发量在苗期最高、其次是花铃期、吐絮期最小;膜下滴灌条件下膜边土壤的蒸发量高于膜间(两条膜正中间的裸地)蒸发量;地下滴灌条件下,错位种植会导致灌溉水的无效蒸发,不利于灌溉水的高效利用。  相似文献   

7.
提出了大空间局域环境喷雾降温、增湿、调湿系统的设计方法.针对细水雾扩散蒸发过程,建立了大空间局域环境调节的数学模型.以上海世博会特钢大舞台喷雾降温系统为例,对系统终端的耗水量以及降温空间内的湿度变化进行计算分析后发现,在半室外环境喷雾降温过程中,由于环境温度的降低,空气的饱和含水量下降,水蒸气含量增加,局部环境湿度增大.采用人工送风对环境湿度进行调节,配风量对比计算表明,增大配风量可以加快环境湿度趋于稳定.设定降温终端的工作频率后,相对湿度可控制在88%以下.计算分析模型忽略了人体散热、散湿等非关键因素.所提出的系统设计、优化和分析方法已经成功应用于奥运会场馆工程,对世博轴及场馆等室外和半室外环境喷雾降温系统的设计也具有重要的参考价值.  相似文献   

8.
根据土壤冻结过程中水热迁移的基本方程,推导了土壤水热耦合方程,改进了冻结条件下土壤水热迁移问题的求解方法。用该模型模拟了室内土柱冻结试验,模拟结果与试验结果吻合较好,同时计算速度较快。根据地表能量平衡原理、微气象学理论,建立了冻结条件下土壤蒸发模型,将其作为土壤水热迁移的上边界条件,模拟了北京永乐店试验站冬小麦试区1995~1996年越冬期(1995.12.01~1996.02.29共3个月)土壤的冻融过程,模拟结果与实测值基本符合。在模拟过程中,采用有限差分法求解土壤水热运动方程,水、热方程的上边界分别为第二、三类边界。根据模拟结果,分析了越冬期土壤水热状况的变化规律  相似文献   

9.
采用VOF两相流模型研究了气液叉流条件下受热液膜热质传递特性,在模型中添加了表面张力源项和气液相间传质源项.为了验证所建立模型的可靠性,采用非接触式红外热成像测温方法,进行了相应的气液叉流试验.对叉流条件下受热液膜热质传递过程进行了试验和模拟计算,结果显示无量纲壁面温度计算结果与试验结果吻合很好.应用所建立的模型,模拟计算并分析了表面张力、固液接触角、液膜流量等因素对液膜流动侧形和热质传递性能的影响,结果表明:在其他参数保持不变的情况下,表面张力从0.014 N/m增大到0.072 N/m的过程中,液膜覆盖面积由82.7%减小到73.2%;固液接触角从30°增大到60°的过程中,液膜覆盖面积由80.6%减小到69.4%;液膜流量越小,液膜厚度越小,越有利于液膜的蒸发;相反,较高的液膜流量会使液膜厚度增大,阻碍了液膜蒸发,从而使外掠过液膜的单位体积空气含湿量减小.  相似文献   

10.
A mathematical model which describes water flow under subsurface drip lines taking into account root water uptake, evaporation of soil water from the soil surface and hysteresis in the soil water characteristic curve θ(H) is presented. The model performance in simulating soil water dynamics was evaluated by comparing the predicted soil water content values with both those of Hydrus 2D model and those of an analytical solution for a buried single strip source. Soil water distribution patterns for three soils (loamy sand, silt, silty clay loam) and two discharge rates (2 and 4 l m−1 h−1) at four different times are presented. The numerical results showed that the soil wetting pattern mainly depends on soil hydraulic properties; that at a time equal to irrigation duration decreasing the discharge rate of the line sources but maintaining the applied irrigation depth, the vertical and horizontal components of the wetting front were increased; that at a time equal to the total simulation time the discharge rate has no effect on the actual transpiration and actual soil evaporation and a small effect on deep percolation. Also the numerical results showed that when the soil evaporation is neglected the soil water is more easily taken up by the plant roots.  相似文献   

11.
车间湿帘降温系统热湿交换的研究   总被引:3,自引:0,他引:3  
根据空气降温增湿后对人体舒适性影响很小的特点,在某生产车间设计和安装了湿帘降温系统,通过空气和水在湿帘纸表面的传热传质特征,建立湿帘降温系统的降温增湿模型,系统测试表明,降温增湿模型能准确地反映空气通过湿帘后温度和湿度的变化,为湿帘系统设计提供了理论依据。  相似文献   

12.
Water vapor adsorption by the soil in Mediterranean ecosystems is very important to plant growth. We hypothesized that relative air humidity, soil texture, soil water content, and soil surface conditions affect water vapor adsorption. These factors were studied in four areas in Greece with semi-arid climatic conditions on four soils classified as Xerochrept. The study was conducted on hilly areas with various physiographic and microclimatic conditions greatly affecting daily fluctuations of air humidity. Time domain reflectometers (TDR) continuously monitored soil water content at depths 5, 10 and 25 cm. Rainfall, open pan water evaporation, air temperature, and relative air humidity were measured every 40 s, averaged, and recorded on data loggers every hour. Two weighing lysimeters were used to confirm soil water data measured by TDR-electrodes.The obtained data indicated that night-time water vapor adsorption is very important for areas characterized by high oscillation of air humidity (>25%), favored under certain physiographic and microclimatic conditions. Daily water vapor adsorption by the soil was inversely proportional related to the minimum air humidity, while adsorption increased proportionally as the daily amplitude of humidity increased. Cumulative water vapor adsorption decreased during the dry period as the amount of clay content increased. The depth of penetration of wetness increased as the amplitude of fluctuation in soil water content in the upper 5 cm soil layer increased. The presence of dense perennial shrubs growing in close contact with the soil surface greatly reduced water vapor adsorption by restricting the diurnal fluctuations in air humidity in the soil–atmosphere interface. Rock fragments or plant residues on the soil surface slightly reduced water vapor adsorption but greatly favored soil water conservation. The amount of water vapor adsorbed by the soil may satisfy up to 70% of the loss of water through evaporation during the dry period under semi-arid climatic conditions.  相似文献   

13.
不同质地条件下土壤表层温度与土壤蒸发量的关系研究   总被引:2,自引:0,他引:2  
土壤表层温度与土壤蒸发量有着紧密联系,土壤质地对二者均有着重要影响。【目的】探究不同质地土壤表层温度变化对土壤蒸发的影响。【方法】选取2种质地原状土(粉壤土与砂土),进行配比混合,得到5种不同质地土壤。测量1次性供水与充分供水条件下不同土壤的蒸发量、土壤表层温度数据、土壤砂粒量,探究不同质地条件下土壤相对蒸发量(RE)和土壤表层相对温度差(RT)的关系。【结果】①1次供水和充分供水条件下RT随着蒸发过程的进行逐渐增大,当蒸发过程至水汽扩散阶段时,RT趋于稳定;②随着土壤砂粒量增大,蒸发至水汽扩散阶段时对应的RT逐渐减小;③土壤质地相同情况下,RT越大,其RE越小,回归建立了二者的二次函数关系;④RT相同情况下,土壤中砂粒量越高,其RE越小。【结论】土壤中砂粒量的不同,使土壤孔隙、热容量等性质产生差异,导致蒸发过程中土壤温度及蒸发量变化出现规律性特点,RE与RT呈与含砂率有关的二次函数关系。  相似文献   

14.
根据宝鸡峡灌区11个气象站近30 a的气象及近20 a种植面积资料,分析了气候及作物种植结构的变化特征,计算了作物需水量和农业需水量,研究了灌区农业需水量的演变趋势,并利用主成分回归分析法揭示了影响农业需水量变化的驱动因素.结果表明:灌区气温呈显著上升趋势,相对湿度和风速呈显著下降趋势,蒸发量和日照时数略有增多,降水量有所减少.灌区农业种植结构变化较大,粮食作物与经济作物种植面积比例显著降低,由1991年的4.08减小为2010年的1.83;粮食作物与农作物总播种面积比例也呈下降趋势,由1991年的0.46减小为2010年的0.40.灌区小麦、玉米、油菜、棉花等4种主要作物需水量呈递增趋势,其中油菜需水量递增速率最快,约为3.558 mm/a;灌区农业需水量呈递减趋势,其递减速率为3.35×107m3/a.影响农业需水量变化的主要驱动因素为种植面积、降水量和蒸发量.降水量的减少和蒸发量的增多使得作物需水量明显增多,而农作物种植面积的减少,引起农业需水量的显著减少.  相似文献   

15.
Among traditional irrigation systems, pitcher irrigation is one of the most efficient. Water seeps out of a buried pitcher due to the pressure head gradient across the wall of the pitcher directly into the root zone of the irrigated crop. The pressure gradient results from positive pressure head inside pitcher and negative pressure head at the outer surface of the pitcher which is in contact with soil. Laboratory experiments were conducted to quantify the influence of evaporation, which controls the negative pressure condition in the soil, on the seepage rate of pitchers and to explore the auto-regulative capability of the pitcher irrigation system. Two groups of pitchers, group A with high hydraulic conductivity and group B with low hydraulic conductivity, were filled with water and placed in a closed chamber at varying temperature and humidity. The pan evaporation rate (Ep) inside chambers ranged from 1 mm/d when the temperature and relative humidity were kept around 20 °C and 97% to 16 mm/d at 45 °C and relative humidity of 40%. A positive and significant correlation was found between seepage rate of pitchers and Ep with an average R2 of 0.97. The average seepage rates of all pitchers at Ep values of 1 and 16 mm/d were 125 mL/d to as high as 1020 mL/d, respectively. Differences in the seepage rates in pitchers from group A and group B were high at low Ep and low at high Ep values. At low Ep, seepage rate was more affected by water pressure head inside pitchers and the hydraulic conductivity whereas at high Ep values the negative pressure head at the outer surface of pitchers were more important. The average seepage rate of type A pitchers was 200% higher than that of type B at Ep value of 1 mm/d but for the high Ep value of 16 mm/d the corresponding increase in the seepage rate of type A compared to type B was only 4%. Thus, evaporation rate controls seepage from the pitcher and the system is auto-regulative.  相似文献   

16.
通过模拟光照、吹风改变蒸发强度,对比分析了4种蒸发条件(CK、光照(L)、吹风(W)、光照+吹风(LW))下微润灌入渗速率以及湿润体变化特征。结果表明,常温下微润灌累积入渗量与时间呈显著线性相关关系(决定系数R2>0.99),符合Philip入渗模型水平吸渗项入渗规律;微润管出流速率因多孔介质管壁穿透入渗、管周土壤水分入渗分别随时间呈现出初期骤增、线性减小的演变规律;改变上边界条件后各处理蒸发均显著增大,然而入渗速率只随温度增加而提高,吹风带走土表热量,入渗速率反而减小;光照期间,L、LW处理入渗速率分别增长56.56%、29.51%;撤去光照2 h后,LW处理蒸发强度不变,入渗速率骤降5.90%,揭示了微润灌对温度响应的敏感性远高于上边界蒸发。湿润锋运移距离与时间呈显著幂函数关系,温度提高后入渗速率增加促进了湿润锋运移,温差和重力势共同驱动下水分向背离热源方向移动,光照处理中湿润锋水平运移距离Dhoriz、垂直向下运移距离Ddown较预测值分别增长75.81%、99.30%。该研究揭示了源于辐射的地温变化在微润灌...  相似文献   

17.
A discussion on and alternative to the Penman-Monteith equation   总被引:1,自引:0,他引:1  
The Penman-Monteith (PMe) equation that estimates evaporation from leaf/canopy surfaces is based on a few approximations. Several authors discussed ensuing errors and suggested improvements. This paper reminds those discussions which ended in the early nineties. It compares linearized PMe− with non-linear iterative solutions and illustrates resulting deviations. It differentiates between deviations for daily and hourly evaporation rate estimates. The latter are found to be higher. It also demonstrates deviations obtained at two different altitudes above sea level. Considering present tendencies to refine evaporation estimates for practical purposes and making use of easily available methods for solving non-linear equations this paper offers a new method to estimate evaporation.In a first step, a simple algebraic term, the surface temperature control sum, is introduced to find approximate differences between air and evaporating surface (leaf, canopy) temperatures. It suggests to concentrate research on the rs/ra ratio. A new formula is derived for estimating leaf/canopy surface temperatures for non-water stressed plants.In a second step, the estimates of temperature differences are used to calculate evaporation estimates. This two-step approximation leads to appreciably smaller errors as compared to the PMe-solution over the full range of input parameters of agro-meteorological relevance. It is, however, less accurate than some of methods proposed in literature. The method is meant for practical application in agricultural water management.  相似文献   

18.
The aim of this study was to characterize the influence of various shading materials on the evaporation rate from a Class-A pan and on its driving variables. Hourly evaporation measurements from two pans, one uncovered and the other covered with different types of shading meshes, were carried out under summer conditions, along with measurements of air temperature and humidity, water temperature, solar global radiation and wind speed. Single and double-layered polyethylene meshes of different colours and a single layered aluminized mesh were tested. The aerodynamic and shading effects responsible for the evaporation reduction, as well as the additional processes of condensation and water recovery, were analyzed and discussed. In all cases, shading the pan induced a significant decrease of the daily evaporation rate, ranging from 50% for the aluminized screen to near 80% for the coloured-polyethylene meshes. The latter materials combined an efficient aerodynamic effect (decrease of about 70% of the mass transfer coefficient) with a strong diminution of surface-to-air water vapour gradient. The condensation over the meshes was far for being negligible for the black polyethylene meshes, reaching up to 15–20% of the daily evaporation losses. It was concluded that the choice of the shading material should be based on criteria related to porosity and optical properties, but also to the capacity of the material in enhancing the condensation process during the night and collecting the condensed water. The extrapolation of the results to the case of agricultural water reservoirs was discussed, and an economic analysis was carried out to assess the viability of shading covers under the conditions of water use and pricing prevailing in Southern Spain.  相似文献   

19.
水面蒸发是河流、湖泊、水库等水体的主要消耗项之一.采用五道沟实验站1964-2009年观测资料,分析了水面蒸发量年际和季节变化特征及其与气温、相对湿度、日照时数、水汽压力差等各气象要素的相关关系,并提出五道沟实验站水面蒸发量的月经验公式.结果表明:水面蒸发量下降速率约92.9 mm/(10 a),水面蒸发量与气温、地面温度、水汽压力差相关关系很好,与日照和相对湿度的相关关系较好,与风速和降水的相关关系不太明显,这为进一步研究淮北地区气温升高而水面蒸发减少的悖论现象提供初步成果.  相似文献   

20.
Summary Traditional meteorological estimates of evapotranspiration include empirical crop factors which are inadequate for scheduling high frequency irrigation. The performance of a transpiration model was tested and adapted to suit the operational requirements of automated irrigation systems. Hourly measurements of global solar radiation, air temperature, humidity and wind speed, obtained from an automatic weather station are inputs to the model. Additional inputs include daily updated data of plant height and leaf area index. This information is processed to determine the active coupling surface between the crop and the atmosphere. The model takes into account the resistance of the leaf to diffusion of water vapor.Calculated transpiration, based on the model, matched very closely measurements of latent heat flux in an irrigated cotton field. It was also in good agreement with water uptake measured in stems of the cotton plants using a heat pulse technique. The test also showed that implementation of the model in the field under study would have improved the efficiency of water application.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 1855-E, 1986 series  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号