首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Proximate characteristics and protein compositions of selected commercial flour streams of three Australian and two U.S. wheats were investigated to evaluate their effects on the quality of white salted noodles. Wheat proteins of flour mill streams were fractionated into salt‐soluble proteins, sodium dodecyl sulfate (SDS)‐soluble proteins, and SDS‐insoluble proteins with a sequential extraction procedure. SDS‐soluble proteins treated by sonication were subsequently separated by nonreducing SDS polyacrylamide gel electrophoresis (SDS‐PAGE). There was a substantial amount of variation in distributions of protein content and protein composition between break and reduction mill streams. SDS‐insoluble proteins related strongly to differences in protein quantity and quality of flour mill streams. The soluble protein extracted by SDS buffer included smaller glutenin aggregates (SDS‐soluble glutenin) and monomeric proteins, mainly gliadin (α‐, β‐, γ‐, and ω‐types) and albumin and globulin. SDS‐soluble proteins of different flour mill streams had similar protein subunit composition but different proportions of the protein subunit groups. Noodle brightness (L) decreased and redness (a) increased with increased SDS‐insoluble protein and decreased monomeric gliadin. Noodle cooking loss and cooking weight gain decreased with increased glutenin aggregate (SDS‐soluble glutenin and SDS‐insoluble glutenin) and decreased monomeric gliadin. Noodle hardness, springiness, cohesiveness, gumminess, chewiness, tensile strength, breaking length, and area under the tensile strength versus breaking length curve increased with increased glutenin aggregate. Monomeric gliadin contributed differently to texture qualities of cooked noodles from glutenin aggregate. Monomeric albumin and globulin were not related to noodle color attributes (except redness), noodle cooking quality, and texture qualities of cooked noodles. The results suggested that variation in protein composition of flour mill streams was strongly associated with noodle qualities.  相似文献   

2.
The independent effects of flour protein and starch on textural properties of Chinese fresh white noodles were investigated through reconstitution of fractionated flour components. Noodle hardness decreased with decreased protein content, whereas it unexpectedly increased as protein content decreased to a very low level (7.0%). Noodle cohesiveness, tensile strength, and breaking length increased with increased protein content. Higher glutenin‐to‐gliadin ratio resulted in harder and stronger noodles at constant protein content. Increased starch amylose content resulted in increased flour peak viscosity. When water absorption remained the same during noodle making, hardness and cohesiveness of cooked noodles also increased with increased starch amylose content, while springiness did not vary significantly. Increased starch damage of ≈5.5–10.4% effectively improved noodle hardness; however, starch damage >10.4% decreased it. Increased starch damage also enhanced noodle springiness while it decreased cohesiveness.  相似文献   

3.
White salted noodles were prepared through reconstitution of fractionated flour components with blends of waxy and regular wheat starches to determine the effects of amylose content on textural properties of white salted noodles without interference of protein variation. As the proportion of waxy wheat starch increased from 0 to 52% in starch blends, there were increases in peak viscosity from 210 to 640 BU and decreases in peak temperature from 95.5 to 70.0°C. Water retention capacity of waxy wheat starches (80–81%) was much higher than that of regular wheat starch (55–62%). As the waxy wheat starch ratio increased in the starch blends, there were consistent decreases in hardness of cooked noodles prepared from reconstituted flours, no changes in springiness and increases in cohesiveness. White salted noodles produced from blends of regular and waxy wheat flours became softer as the proportion of waxy wheat flour increased, even when protein content of flour blends increased. Amylose content of starch correlated positively with hardness and negatively with cohesiveness of cooked white salted noodles. Protein content of flour blends correlated negatively with hardness of cooked noodles, which were prepared from blends of regular (10.5% protein) and waxy wheat flours (> 16.4% protein).  相似文献   

4.
Whole grain oats are widely regarded as conferring significant health benefits. Composite flour of whole grain oat flour, wheat flour, and tapioca starch in the ratio 1:1:0.16 was formulated to make oat noodles with the addition of gluten at various levels. The influence of gluten on pasting and gelling properties of composite flour, and on cooking, textural, and sensory properties of salted oat noodles was evaluated. Addition of gluten decreased the paste viscosity, reduced hardness and springiness of gel, reduced cooking yield, cooking loss, and broken ratio during cooking, and increased the tensile strength and firmness of cooked noodles. Scanning electron microscopy showed that gluten tightened the network of protein in the noodles by forming oriented fibrils. Addition of gluten had little effect on the color of raw and cooked oat noodles, which were somewhat yellow. Sensory evaluation indicated that addition of gluten could enhance the overall acceptability of cooked oat noodles. This study may stimulate further interest in using functional whole grain cereal ingredients in developing healthy staple foods.  相似文献   

5.
Mineral content, as determined and expressed by ash content, serves as an index of wheat flour quality for flour millers and food manufacturers who prefer flour of low mineral content, even though the significance of mineral content on the functional properties of wheat flour is not well understood. We explored whether minerals have any influence on the functional properties of wheat flour and product quality of white salted noodles. Ash, obtained by incinerating wheat bran, was incorporated into two hard white spring wheat flours and their starches to raise the total ash content to 1, 1.5, or 2%. Pasting properties were determined using a rapid visco analyzer (RVA). Addition of ash increased the peak viscosity of the flours in both water and buffer solution but did not affect the peak viscosity of starch. Wheat flours with added ash showed lower pasting temperature by approximately 10°C in buffer solution. Mineral extracts (15.3% ash) isolated from wheat bran, when added to increase the ash content of wheat flour and starch to 2%, increased the peak viscosity and lowered the pasting temperature of flour by 13.2–16.3% but did not affect the pasting properties of the isolated starch. The mineral premix also increased peak viscosity of wheat flour but not in starch. Added ash increased noodle thickness and lowered water retention of cooked noodles while it exhibited no significant effect on cooked noodle texture as determined using a texture analyzer.  相似文献   

6.
The effects of four inorganic phosphates on the thermodynamic and pasting properties of whole wheat flour as well as color, cooking quality, textural properties, and structural characteristics of whole wheat noodles were studied. The addition of phosphates increased the gelatinization temperature and enthalpy of melting of starch in whole wheat flour. Rapid visco analysis showed that all phosphates significantly increased whole wheat flour peak viscosity and final viscosity. Moreover, the whole wheat noodles prepared with disodium phosphate, trisodium phosphate, and sodium tripolyphosphate (STPP) exhibited brighter appearance, and the use of STPP and sodium hexametaphosphate reduced the cooking loss of whole wheat noodles. Texture profile analysis of cooked noodles revealed that the addition of phosphates significantly decreased the hardness and slightly increased the springiness, cohesiveness, and resilience. The microstructure of whole wheat noodles showed a larger degree of connectivity of the protein network and coverage of starch granules in the presence of inorganic phosphates. The results suggested that inorganic phosphates exhibited substantial effects on improving the quality of whole wheat noodles. Of the four phosphates studied, STPP appeared to be the most effective one in improving the overall properties of whole wheat noodles when they were normalized to constant phosphate content.  相似文献   

7.
Instant noodles were prepared by substituting hard red winter (HRW) wheat flour with Great Northern bean powder (GNBP) at selected levels (0–60%) using a pilot‐scale noodle processing machine. The functional properties, water absorption, water solubility, and pasting profiles of flour mixtures were tested to verify the process tolerances of ingredients. Prepared noodle samples were evaluated for color, cooking quality, texture, and sensory properties. Slight color differences, an increased cooking loss, and reduced chewiness, cohesiveness, and hardness were observed in cooked noodles that were prepared with GNBP up to 25% of HRW wheat flour weight. The results suggest that HRW wheat flour could be replaced up to 20% (w/w) with GNBP, while still using the conventional processing conditions, to improve the product nutritional value (i.e., increased protein and fiber contents and reduced fat content) (P < 0.05).  相似文献   

8.
This study evaluated the blending of flours made from an Ontario hard red winter wheat (HWF) and an Ontario soft red winter wheat (SWF) and compared it with a commercial standard noodle flour (control) made from Canadian Western Hard Red Spring wheat to assess the impact on white salted noodle‐making performance and texture of cooked noodles. Flour characteristics, gluten aggregation, and starch pasting properties were assessed with a farinograph, GlutoPeak tester, and Rapid Visco Analyzer, respectively. The machinability of dough was evaluated with an SMS/Kieffer rig attached to a TA.XT Plus texture analyzer. Tensile and bite tests of cooked noodles were also conducted. Blending HWF with standard noodle flour decreased gluten strength and dough extensibility linearly proportional to the blend ratio, whereas a curvilinear response from blending SWF with standard noodle flour was observed. HWF demonstrated more favorable pasting properties except for lower peak viscosity for noodle making than standard noodle flour. Below a 20% blend ratio with HWF, no significant changes were seen on dough extensibility, cooking loss, tensile properties, and bite testing parameters of cooked noodles. It can be concluded that blending HWF up to a 20% level caused no significant change in the processing properties of dough and cooked noodle quality. The results also showed that the GlutoPeak tester is a sensitive tool for evaluating gluten strength in wheat flour.  相似文献   

9.
Production of common wheat (Triticum aestivum L.) in the Pacific Northwest of the United States specifically for Asian noodle products is a relatively new goal for grain producers. We surveyed commercial fields of the hard white spring wheat cultivar Idaho 377s in two years to determine the variables contributing to Asian noodle quality and to validate previous observations made with small‐plot research. Fields were surveyed in 1998 and 1999 in two areas of the Snake River Plain of southeastern Idaho separated by ≈100 km, with both irrigated fields and rain‐fed fields sampled in both zones. Samples were evaluated for grain characteristics then milled and evaluated for flour quality, alkaline noodle color, and color and texture of nonalkaline Chinese (salted, neutral pH) noodles. Grain from rain‐fed fields produced brighter and more yellow alkaline noodles than grain from irrigated fields. Grain produced in rain‐fed fields also had lower peak flour pasting viscosity than grain produced in irrigated fields. Flour ash was lowest in grain from rain‐fed fields located in a higher elevation district (Upper Valley) and greatest in grain from irrigated fields located in a lower elevation district (Lower Valley). Noodle hardness and chewiness were greater in Chinese noodles made from grain produced in the Upper Valley than grain from the Lower Valley. Chinese noodle color had significant interaction with the location and irrigation management used for producing the grain. However, Chinese noodle brightness was consistently negatively correlated with flour protein concentration. The color and texture of noodles produced from flours milled from on‐farm commercial production was consistent with previous experiment station small‐plot research.  相似文献   

10.
Flour was obtained from oats fermented with lactic acid bacteria (LAB) to study the effect of fermentation on the physical properties and the suitability of fermented oats for use in starch noodle production. The results showed that fermented samples had a significantly lower pH than control samples. Gel strength and amylose content initially increased and then decreased (P < 0.05) with fermentation time. The peak viscosity, breakdown, final viscosity, and setback value decreased with fermentation time. Fermented noodles showed a higher hardness and springiness. In particular, Lactobacillus plantarum (LP) induced the highest springiness, cohesiveness, gumminess, chewiness, and resilience over 12 hr of fermentation. The cooking quality evaluation indicated that fermentation improved the quality of oat starch noodles. Fermented oats resulted in noodles with low cooking loss and higher cooking weight compared to noodles made from fresh flour. The use of LP for 12 hr of fermentation time yielded noodles of the best quality.  相似文献   

11.
Instrumental texture tests on cooked noodles are valuable research tools and are well suited for monitoring noodle texture after changes in formulations, raw materials, and processing. Uniaxial tests are most common, and a variety of test types, strains, strain rates, and probe dimensions are used. Consequently, standardization is a challenge. Compressive tests (cutting and blunt probe compression) are more frequently reported than tensile tests. Combining results of tensile and compressive tests shows potential to uncover aspects of noodle texture not detectable using one method alone. Tensile and blunt‐probe compression tests can be both adapted for stress relaxation experiments and may be used to derive fundamental rheological information. Dynamic oscillating rheometry shows promise as a tool for investigating composition/structure/function relationships in cooked noodles. However, unlike large deformation “texture” tests, dynamic oscillating rheometry struggles to match sensory perceptions of noodle texture. This may result from the scale of the deformations applied, which are commonly much smaller than the deformations required for rupture. Limitations of small deformations become more evident when considering fracture properties of noodles and how these are affected by changes in flour composition and inhomogenieties in noodle structure at the macro‐, meso‐, and micro‐scales. Combining information from small and large deformations has been used to investigate changes in noodle texture occurring after changes in amylose and protein composition. This combined approach may prove to be useful in resolving differences and similarities in noodle texture wrought by changes in the constituent polymers of wheat flour.  相似文献   

12.
Double‐null partial waxy wheat (Triticum aestivum L.) flours were used for isolation of starch and preparation of white salted noodles and pan bread. Starch characteristics, textural properties of cooked noodles, and staling properties of bread during storage were determined and compared with those of wheat flours with regular amylose content. Starches isolated from double‐null partial waxy wheat flours contained 15.4–18.9% amylose and exhibited higher peak viscosity than starches of single‐null partial waxy and regular wheat flours, which contained 22.7–25.8% amylose. Despite higher protein content, double‐null partial waxy wheat flours, produced softer, more cohesive and less adhesive noodles than soft white wheat flours. With incorporation of partial waxy prime starches, noodles produced from reconstituted soft white wheat flours became softer, less adhesive, and more cohesive, indicating that partial waxy starches of low amylose content are responsible for the improvement of cooked white salted noodle texture. Partial waxy wheat flours with >15.1% protein produced bread of larger loaf volume and softer bread crumb even after storage than did the hard red spring wheat flour of 15.3% protein. Regardless of whether malt was used, bread baked from double‐null partial waxy wheat flours exhibited a slower firming rate during storage than bread baked from HRS wheat flour.  相似文献   

13.
Oat consumption is regarded as having significant health benefits. The enrichment of white salted noodles with oat flour would provide a potential health benefit but may affect the texture and sensory quality. Oat cultivars grown in Western Australia (Yallara, Kojonup, Mitika, Carrolup, and new line SV97181‐8) and a commercial oat variety were milled into flour and added to wheat flour at 10, 20, and 30% to produce oat‐enriched white salted noodles. The purpose of the study was to determine the quality characteristics of the oat flours and to assess the influence the oat flour blends had on noodle texture, color, and sensory characteristics. In addition, another goal was to determine whether the different oat cultivars had similar potential to provide health benefits by measuring the β‐glucan content before and after processing. The results indicated that protein, ash content, and noodle firmness increased with the increased percentage of oat flour in the noodle formulations, whereas the pasting properties of the noodle wheat–oat flour blends did not differ significantly. The color of raw noodle sheets and boiled noodles changed significantly with oat incorporation and resulted in lower lightness/brightness, higher redness, lower yellowness, and lower color stability in comparison to standard wheat white salted noodles. Noodles made with the lowest oat percentage (10%) scored highest for all sensory parameters and were significantly different in appearance, color, and overall acceptability compared with noodles made with 20 and 30% oat flour. The β‐glucan content of the flour blends increased with the increase in the level of oat incorporation but subsequently decreased during processing into noodles. The decrease in the β‐glucan content varied across the different oat cultivars and levels of incorporation into the noodles. A new oat cultivar, SV97181‐8, exhibited the least β‐glucan loss during processing. In this study, the quality characteristics of white salted noodles enriched with oat flour from Western Australian cultivars were determined to provide essential information for the commercial development of healthier noodles.  相似文献   

14.
《Cereal Chemistry》2017,94(5):881-886
In this study, the impact of characteristics (physicochemical, rheological, and pasting properties) of different wheat flours on the quality of frozen cooked noodles was investigated. In this sample set, results showed the cooking loss of noodles related negatively to flour swelling power. The water absorption of noodles related negatively to the dough stability time, the area, and the resistance to extension. The wheat flour with higher dough development time resulted in frozen cooked noodles with higher hardness, chewiness, and adhesiveness. Springiness of noodles correlated negatively to degree of softening. The tensile properties of frozen cooked noodles were influenced by rheological and pasting properties of wheat flours. The present study indicated high quality of frozen cooked noodles demanded wheat flours with high dough gluten strength, peak viscosity, and final viscosity and with low pasting temperature.  相似文献   

15.
小麦被蛀食害虫侵害后其面条质构参数的动态变化   总被引:3,自引:2,他引:1  
为探讨玉米象、米象和谷蠹3种蛀食性储粮害虫不同感染程度对面条质构参数的影响和变化规律,以指导科学评价小麦受害虫侵害后其蒸煮品质的优劣,安全储粮和确保面制品品质。选用河南产储藏2 a的商用小麦为材料,按不同虫种分组,设定不同的虫口密度,检测不同感染时间小麦的粗蛋白、湿面筋质量分数及熟面条的最大剪切力、拉断力和拉伸距离;面条的硬度、弹性、黏合性、咀嚼性和回复性。结果表明:各虫口密度下,害虫侵害初期其面条的最大剪切力略有增加,后期则快速下降;拉断力和拉伸距离在整个侵害过程中呈先增后降趋势;硬度和弹性在初期变化不大,在后期弹性快速上升,硬度快速下降;黏合性和咀嚼性在整个侵害过程中呈先减小后增加的变化趋势,且感染末期黏合性和咀嚼性均大于初期;回复性在整个虫害侵害过程中有较大幅度地增大。害虫侵害后面条质构特性变化是通过其湿面筋质量分数的变化而产生的,且虫口密度和感染时间是导致其变化的重要因素,因此,在实际储藏过程中,宜适时采取防控措施,阻止虫害种群数量的扩大,以确保小麦原有品质。  相似文献   

16.
Fresh and dried white salted noodles (WSN) were prepared by incorporating up to 40% flour from hull‐less barley (HB) genotypes with normal amylose, waxy, zero amylose waxy (ZAW), and high amylose (HA) starch into a 60% extraction Canada Prairie Spring White (cv. AC Vista) wheat flour. The HB flours, depending on genotype, contained four to six times the concentration of β‐glucan of the wheat flour, offering potential health benefits. The HB‐enriched noodles were made with conventional equipment without difficulty. Noodles containing 40% HB flour required less work input during sheeting, probably due to higher optimum water absorption and weakening of the dough due to dilution of wheat gluten. The addition of HB flour had a negative impact on WSN color and appearance, as evident from decreased brightness, increased redness, and more visible specking. The impact of HB flour on cooked WSN texture varied by starch type. Enrichment with HA or normal starch HB flour produced WSN with bite and chewiness values equivalent to or superior to the wheat flour control. Addition of waxy and ZAW HB flour resulted in WSN with lower values for bite and chewiness. The diversity of HB starch types allows tailoring of WSN texture to satisfy specific markets. HB flour also has potential as an ingredient in novel noodle products targeting health‐conscious consumers who associate darker colored cereal‐based foods with superior nutritional composition.  相似文献   

17.
A hard white spring wheat was milled to yield three patent flours with different starch damage levels by manipulating reduction grinding conditions, and each flour was sieved to give three different particle sizes (85–110, 110–132, 132–183 μm). Raw alkaline noodles were prepared using either 1% w/w kansui (sodium and potassium carbonates in 9:1 ratio) or 1% w/w sodium hydroxide. Noodles prepared with sodium hydroxide were significantly brighter, less red, and more yellow than those made with kansui. Differences in noodle color among flour treatments were evident but were attributable to differences in flour refinement rather to than particle size or starch damage. Noodles were rested for 1 hr after processing before cooking. Alkaline reagent was the main factor associated with cooking loss, being ≈50% greater for sodium hydroxide noodles because of higher pH compared with kansui noodles. Cooked sodium hydroxide noodles were thicker than kansui noodles, and cooked strands for both noodle types became thicker as starch damage increased and as particle size became coarser. Instrumental assessment of cooked noodle texture showed that maximum cutting stress (MCS), resistance to compression (RTC), recovery (REC), stress relaxation time (SRT), chewiness (CHE), and springiness (SPR) were influenced by the type of alkaline reagent. Flour particle size and starch damage also influenced noodle texture but the magnitude of the effects and the trends were dependent on alkaline reagent. MCS of kansui noodles was much greater than for sodium hydroxide noodles. MCS of kansui noodles increased as starch damage increased but, in contrast, MCS of sodium hydroxide noodles decreased with increasing starch damage. REC of kansui noodles increased with increasing starch damage and decreased with larger particle size, whereas for sodium hydroxide noodles REC decreased with increasing starch damage and declined dramatically with larger particle size. Kansui noodles exhibited significantly shorter SRT than sodium hydroxide noodles. SRT of kansui noodles was only moderately affected by starch damage and particle size, whereas for sodium hydroxide noodles, SRT became much shorter as flour became coarser and starch damage became higher. CHE of kansui noodles was greater than for sodium hydroxide noodles. CHE of kansui noodles increased as starch damage increased. In contrast, CHE of sodium hydroxide noodles decreased as starch damage increased and also decreased as flour became coarser. SPR of both noodle types decreased as flour became coarser and starch damage became greater. On the basis of these experiments, flour of smaller particle size is an asset to the cooking quality of sodium hydroxide noodles, but high starch damage is to be avoided. For kansui noodles, the impact of flour particle size on cooked noodle texture was less evident and low starch damage, rather than high starch damage, was an asset.  相似文献   

18.
Protein characteristics of wheat flours from various wheat classes, and of commercial flours for making noodles, were evaluated to determine the effects of protein content and quality on processing and textural properties of white salted noodles, as well as to identify protein quality required for making white salted noodles. SDS sedimentation volume based on constant protein weight, mixograph mixing time, and proportions of salt‐ and alcohol‐soluble protein of three commercial flours for making noodles were more similar to those of hard wheat than to soft wheat flours. SDS sedimentation volume of commercial flours for making noodles based on constant protein weight ranged from 38.5 to 40.0 mL and was higher than those of most soft wheat flours. Mixograph mixing time and proportion of salt‐soluble protein of hard and commercial flours for making noodles were >145 sec and mostly <13.8%, respectively, while those of club and soft wheat flours were < 95 sec and >15.0%. Both protein content and protein quality, as determined by SDS sedimentation volume based on constant protein weight, mixograph mixing time, proportion of salt‐soluble protein, and score of HMW‐GS compositions correlated with optimum water absorption of noodle dough and hardness of cooked white salted noodles.  相似文献   

19.
Eleven rice genotypes with diverse Rapid Visco Analyzer (RVA) pasting characteristics were evaluated for their physicochemical and gel textural characteristics relative to their suitability for making rice noodles. Apparent amylose content (AC) was highly correlated with swelling power (r = -0.65, P < 0.05), flour swelling volume (FSV) (r = -0.67, P < 0.05), noodle hardness (r = 0.74, P < 0.01), gumminess (r = 0.82, P < 0.01), chewiness (r = 0.74, P < 0.01), and tensile strength (r = 0.72, P < 0.05). Solubility showed an inverse relationship with the pasting parameters and noodle rehydration, and a positive relationship with cooking loss, noodle hardness, and gumminess. FSV and most of the pasting parameters were negatively correlated with noodle hardness. RVA parameters and textural parameters of gels formed in the RVA canister were well correlated with actual noodle texture and may, therefore, be used for predicting rice noodle quality during early screening of genotypes in breeding programs.  相似文献   

20.
Amylose content in wheat endosperm is controlled by three Wx loci, and the proportion of amylose decreases with successive accumulation of Wx null alleles at the three loci. The proportion of amylose is believed to influence end‐use quality of bread and Asian noodles. The objectives of this study were to determine influence of the allelic difference at Wx‐B1 locus on bread quality, bread firmness, and white salted noodle texture in a spring wheat cross segregating for the Wx‐B1 locus and in a set of advanced spring wheat breeding lines differing in allelic state at the Wx‐ B1 locus. In addition, we examined the relationship between amylose content and flour swelling properties on bread and noodle traits. Fifty‐four recombinant inbred lines of hard white spring wheat plus parents were grown in replicated trials in two years, and 31 cultivars and breeding lines of hard spring wheat were grown in two locations. Bread and white salted noodles were processed from these trials. The presence of the Wx‐B1 null allele reduced amylose content by 2.4% in a recombinant inbred population and 4.3% in a survey of advanced breeding lines and cultivars compared with the normal. The reduced amylose was accompanied by an average increase in flour swelling power (FSP) for the Wx‐B1 null group of 0.8 g/g for the cross progeny and 2.3 g/g for the cultivar survey group. The Wx‐B1 allelic difference did not affect flour protein in cross progeny where the allelic difference was not confounded with genetic background. Bread from the Wx‐B1 null groups on average had increased loaf volume and was softer than the normal group for the cross progeny and cultivar survey group. The Wx‐B1 allelic difference altered white salted noodle texture, most notably noodle springiness and cohesiveness where the Wx‐B1 null groups was more springy and more cohesive than the normal groups for both sets of genetic materials. Flour protein was more highly related to loaf volume than were FSP or amylose. Both flour protein and FSP were positively related to noodle textural traits, but especially noodle springiness and cohesiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号