首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 964 毫秒
1.
Curcumin is a bioactive compound with poor oral bioavailability. Low water solubility and rapid metabolism are two known limiting factors, but the absorption mechanism of solubilized curcumin remains unclear. This study investigated the permeation mechanism of solubilized curcumin using an in vitro Caco-2 cell monolayer model. It was shown that curcumin permeated across the monolayers fairly rapidly [P(app)(A-B) = (7.1 ± 0.7) × 10(-6) cm/s] and the permeation mechanism was found as passive diffusion [P(app)(B-A)/P(app)(A-B) = 1.4]. Furthermore, the permeation rates of curcumin complexed with bovine serum albumin and in the bile salts-fatty acids mixed micelles were also determined as P(app)(mixed micelle) > P(app)(DMSO) > P(app)(protein complex). These results suggested that solubilization agents play an important role in the permeation of solubilized curcumin, and stronger binding between the solubilization agents and curcumin may decrease the permeation rate. The results further suggest that lipid-based formulations, which solubilize curcumin in mixed micelles after lipid digestion, are promising vehicles for curcumin oral delivery.  相似文献   

2.
Angiotensin converting enzyme (ACE) inhibitory peptides are biologically active peptides that play a very important role in blood pressure regulation. In previous experiments, we obtained an ACE inhibitory peptide Val-Leu-Pro-Val-Pro (VLPVP) by DNA recombinant technology. The purpose of this study was to examine the bidirectional transport of VLPVP by using the human intestinal Caco-2 monolayers. The permeability coefficient ( P app) values of VLPVP over 4-8 mmol/L ranged from 7.44 x 10(-8) to 1.35 x 10(-6) cm/s for apical (AP) to basolateral (BL) transport, while the P app values for BL to AP flux were significantly lower than those for the AP to BL flux, with efflux ratio values of 0.74-0.13 over 4-8 mM. Preincubation of the paracellular transport enhancer (sodium deoxycholate), the inhibitor of multidrug resistant protein (MK-571), or sodium azide stimulated efflux of VLPVP significantly ( p < 0.01); these results indicate that the transport of VLPVP across Caco-2 monolayers was involved in paracellular diffusion and MRP2 transport.  相似文献   

3.
Two stilbenes (trans-piceid and its aglycone trans-resveratrol) were investigated in the uptake across the apical membrane of the human intestinal cell line Caco-2 in order to determine their mechanisms of transport. The uptake was quantified using a reverse phase high-performance liquid chromatography method with fluorescence detection. The rate of cellular accumulation in the cells was found to be higher for trans-resveratrol than for trans-piceid. In addition, trans-resveratrol uses passive transport to cross the apical membrane of the cells, whereas the transport of trans-piceid is likely active. With regard to the mechanisms of transport, the involvement of the active transporter SGLT1 in the absorption of trans-piceid was deduced using various inhibitors directly or indirectly exploiting the activity of this transporter (glucose, phlorizin, and ouabain). Moreover, we investigated the involvement of the multidrug-related protein 2 (MRP2), an efflux pump present on the apical membrane, in stilbene efflux by Caco-2 cells. The effect of MK-571 (an MRP inhibitor) seems to implicate MRP2 as responsible for apical efflux of trans-piceid and trans-resveratrol.  相似文献   

4.
Many studies investigating drug interactions with citrus compounds focus on the major grapefruit furanocoumarins bergamottin, dihydroxybergamottin, and the flavonoid naringenin. This study evaluated the influence of polymethoxylated flavones (PMFs), tangeretin, nobiletin, 3,5,6,7,8,3,4'-heptamethoxyflavone, and sinensetin, as well as other minor occurring citrus phenols, hesperetin, limettin, 7-OH-coumarin, 7-geranyloxycoumarin, and eriodictyol, on P-glycoprotein-mediated transport of the beta-blocker talinolol using the Caco-2 cell monolayer model and was used to determine the structure-function aspects of the interaction. The transport of talinolol across Caco-2 cells monolayers was determined in the absence and presence of distinct concentrations of the calcium-channel blocker verapamil (a known inhibitor of P-glycoprotein) and citrus compounds. A sigmoid dose-response model was used to fit the data and to estimate the IC50 values of the potential inhibitors. Results from this study show that PMFs significantly decreased talinolol transport from the basolateral to apical side, where tangeretin had the lowest IC50 of 3.2 micromol/L, followed by nobiletin, heptamethoxyflavone, and sinensetin with IC50 values of 3.5, 3.8, and 3.9 micromol/L, respectively. However, the efficacy of the compounds did not appear to be dependent on the number of methoxy groups. Other citrus compounds did not have any significant effect on the transport of talinolol. This study suggests that PMFs have a high potential in the interaction with P-gp-mediated talinolol transport in Caco-2 cells. Based on their relatively low concentrations (< or =3 microg/mL) in citrus, the clinical relevance of these interactions needs to be further elucidated in in vivo studies.  相似文献   

5.
6.
Bioactivity-guided fractionation of black bean (Phaseolus vulgaris) seed coats was used to determine the chemical identity of bioactive constituents, which showed potent antiproliferative and antioxidative activities. Twenty-four compounds including 12 triterpenoids, 7 flavonoids, and 5 other phytochemicals were isolated using gradient solvent fractionation, silica gel and ODS columns, and semipreparative and preparative HPLC. Their chemical structures were identified using MS, NMR, and X-ray diffraction analysis. Antiproliferative activities of isolated compounds against Caco-2 human colon cancer cells, HepG2 human liver cancer cells, and MCF-7 human breast cancer cells were evaluated. Among the compounds isolated, compounds 1, 2, 6, 7, 8, 13, 14, 15, 16, 19, and 20 showed potent inhibitory activities against the proliferation of HepG2 cells, with EC50 values of 238.8 +/- 19.2, 120.6 +/- 7.3, 94.4 +/- 3.4, 98.9 +/- 3.3, 32.1 +/- 6.3, 306.4 +/- 131.3, 156.9 +/- 11.8, 410.3 +/- 17.4, 435.9 +/- 47.7, 202.3 +/- 42.9, and 779.3 +/- 37.4 microM, respectively. Compounds 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 14, 15, 19, and 20 showed potent antiproliferative activities against Caco-2 cell growth, with EC50 values of 179.9 +/- 16.9, 128.8 +/- 11.6, 197.8 +/- 4.2, 105.9 +/- 4.7, 13.9 +/- 2.8, 35.1 +/- 2.9, 31.2 +/- 0.5, 71.1 +/- 11.9, 40.8 +/- 4.1, 55.7 +/- 8.1, 299.8 +/- 17.3, 533.3 +/- 126.0, 291.2 +/- 1.0, and 717.2 +/- 104.8 microM, respectively. Compounds 5, 7, 8, 9, 11, 19, 20 showed potent antiproliferative activities against MCF-7 cell growth in a dose-dependent manner, with EC50 values of 129.4 +/- 9.0, 79.5 +/- 1.0, 140.1 +/- 31.8, 119.0 +/- 7.2, 84.6 +/- 1.7, 186.6 +/- 21.1, and 1308 +/- 69.9 microM, respectively. Six flavonoids (compounds 14-19) showed potent antioxidant activity. These results showed the phytochemical extracts of black bean seed coats have potent antioxidant and antiproliferative activities.  相似文献   

7.
The effects of 24 h supplementation of human colon carcinoma cells (Caco-2) with isoflavones, genistein, and daidzein and their activities against oleic acid hydroperoxide mediated oxidative stress were investigated. Genistein, at 25, 50, and 100 microM, and daidzein, at 25 and 50 microM, did not induce cell injury to Caco-2 cells. Both compounds reduced cell injury and DNA damage mediated by 5 microM oleic acid hydroperoxides in Caco-2 cells. The effects of genistein and daidzein on antioxidant enzymes were dependent upon the compound and its concentration.  相似文献   

8.
The distribution of seven flavonoids, eriocitrin, luteolin 3'-O-beta-d-glucuronide, hesperidin, diosmin, isoscutellarein 7-O-glucoside, hispidulin 7-O-glucoside, and genkwanin, has been studied in Rosmarinus officinalis leaves, flowers, stems, and roots during plant growth. The maximum level reached by luteolin 3'-O-beta-d-glucuronide in leaves during June-August suggests the existence of a delay between the activation of the enzymes involved in the flavanone and flavone biosynthesis. The presence of hesperidin and diosmin in the vascular system is significant, and hesperidin shows even higher levels than the phenolic diterpenes and rosmarinic acid. The distribution of flavonoids observed in R. officinalis suggests a functional and structural relationship between phytoregulators and flavonoids, where flavonoids would be "protectors" of the activity of phytoregulators. A hypothesis for the general pathway of biosynthesis of these compounds in plants of the family Labiatae is proposed.  相似文献   

9.
Among various factors influencing β-carotene (Bc) bioavailability, information on interactions between carotenoids or other micronutrients such as flavonoids during a meal that contains different plant-derived foods is quite limited. Because orange-fleshed sweet potato (OFSP) is an important Bc-rich staple food, a source of vitamin A in developing countries, this study focused on the effect of citrus fruit juice carotenoids and flavonoids on Bc bioaccessibility from OFSP. In vitro digestion coupled with the Caco-2 cell culture model was used to evaluate the bioaccessibility and cellular uptake of Bc from OFSP in the presence of pink grapefruit (pGF) or white grapefruit (wGF) juices. The addition of grapefruit juices significantly decreased the bioaccessibility, by up to 30%, but not the cellular uptake of Bc from boiled OFSP. Lycopene, but more probably naringin, present in grapefruit juices was suspected to be responsible for the inhibitory effect of the citrus juices on Bc bioaccessibility. This inhibition was apparently due in part to competition for incorporation between Bc and naringin into mixed micelles during in vitro digestion. In contrast, Bc uptake from dietary micelles was not impaired by naringin.  相似文献   

10.
Sodium copper chlorophyllin (SCC), a mixture of water-soluble chlorophyll derivatives, is used as both a food colorant and a common dietary supplement. Although the potential antimutagenic and antioxidant properties of this commercial preparation have been demonstrated, limited information is available on its digestion and absorption by humans. Stability of SCC was examined during simulated gastric and small intestinal digestion. Three preparations were subjected to in vitro digestion: SCC in water, SCC in water + 10% corn oil, and SCC in applesauce. SCC components from raw material preparations and in digested samples were analyzed by C(18) HPLC with photodiode array detection. Cu(II)chlorin e(4), the major chlorin component of SCC, was relatively stable during simulated digestion. In contrast, greater than 90% of Cu(II)chlorin e(6) was degraded to undetermined products during digestion. Recovery of Cu(II)chlorin e(6) after digestion was increased by incorporation of SCC into applesauce, suggesting a protective role of the inclusion matrix for stabilization of labile SCC components. Accumulation of SCC derivatives was investigated by using differentiated cultures of the TC7 clone of the Caco-2 human intestinal cell line. Cellular accumulation from media containing 0.5 to 60 ppm SCC was linear with intracellular content ranging between 0.2 and 29.6 microg of total SCC per mg of cellular protein. Uptake of SCC by Caco-2 cells was significantly (p < 0.01) lower in cultures incubated at 4 degrees C than in those incubated at 37 degrees C. Although intracellular SCC was transported into both apical and basolateral compartments when Caco-2 cells were grown on inserts, apical efflux was significantly greater (p < 0.01) than basolateral efflux. Stability of Cu(II)chlorin e(4) during in vitro digestion and effective uptake by Caco-2 enterocyte-like cells support the likelihood that a portion of this SCC component or its metabolites is absorbed from the human intestine.  相似文献   

11.
12.
Bioactivity-guided fractionation of Red Delicious apple peels was used to determine the chemical identity of bioactive constituents, which showed potent antiproliferative and antioxidant activities. Twenty-nine compounds, including triterpenoids, flavonoids, organic acids and plant sterols, were isolated using gradient solvent fractionation, Diaion HP-20, silica gel, and ODS columns, and preparative HPLC. Their chemical structures were identified using HR-MS and 1D and 2D NMR. Antiproliferative activities of isolated pure compounds against HepG2 human liver cancer cells and MCF-7 human breast cancer cells were evaluated. On the basis of the yields of isolated flavonoids (compounds 18- 23), the major flavonoids in apple peels are quercetin-3-O-beta-D-glucopyranoside (compound 20, 82.6%), then quercetin-3-O-beta-D-galactopyranoside (compound 19, 17.1%), followed by trace amounts of quercetin (compound 18, 0.2%), (-)-catechin (compound 22), (-)-epicatechin (compound 23), and quercetin-3-O-alpha-L-arabinofuranoside (compound 21). Among the compounds isolated, quercetin (18) and quercetin-3-O-beta-D-glucopyranoside (20) showed potent antiproliferative activities against HepG2 and MCF-7 cells, with EC 50 values of 40.9 +/- 1.1 and 49.2 +/- 4.9 microM to HepG2 cells and 137.5 +/- 2.6 and 23.9 +/- 3.9 microM to MCF-7 cells, respectively. Six flavonoids (18-23) and three phenolic compounds (10, 11, and 14) showed potent antioxidant activities. Caffeic acid (10), quercetin (18), and quercetin-3-O-beta-D-arabinofuranoside (21) showed higher antioxidant activity, with EC 50 values of <10 microM. Most tested flavonoids and phenolic compounds had high antioxidant activity when compared to ascorbic acid and might be responsible for the antioxidant activities of apples. These results showed apple peel phytochemicals have potent antioxidant and antiproliferative activities.  相似文献   

13.
Studies were conducted to evaluate the cell damage caused by exposing human colon carcinoma cells, Caco-2, to hydrogen peroxide at concentrations varying from 0 to 250 microM for 30 min. Evaluation of cell viability, as measured by trypan blue dye exclusion test, showed that the loss of viability was < 5% at concentrations up to 250 microM hydrogen peroxide. Cell membrane damage and DNA damage as measured by the leakage of lactate dehydrogenase and the comet assay, respectively, were significantly high at concentrations >100 microM hydrogen peroxide compared to those of the control. Antioxidant mechanisms in Caco-2 cells were evaluated by measuring catalase, superoxide dismutase, and glutathione peroxidase activities. Catalase activities remained constant in cells treated with 50-250 microM hydrogen peroxide. Superoxide dismutase activity decreased, whereas glutathione peroxidase activity increased in cells treated with H(2)O(2) concentrations of >50 microM. This study showed that with increasing hydrogen peroxide concentration, cell membrane leakage and DNA damage increased, whereas the three antioxidant enzymes responded differently, as shown by mathematical models.  相似文献   

14.
Anticancer compound screening of natural products using tumor cell lines has been commonly used to identify anticancer drugs. Two highly significant anticancer drugs, paclitaxel (Taxol) and camptothecin, were discovered using tumor cell lines by the U.S. National Cancer Institute (NCI) screening program of plants. It has been recently reported that the inhibition of cancer cell proliferation by fruit extracts was indirectly caused by phenolic-induced H(2)O(2) production in the cell culture media, suggesting that many previously reported effects of flavonoids and phenolic compounds on cultured cells might be from an artifact of H(2)O(2)-induced oxidative stress. The objective of the present study was to determine if apple extracts induced H(2)O(2) formation in common cell culture media and to investigate if the antiproliferative activity of apple extracts was due to phenolic-induced H(2)O(2) formation. It is reported here that apple extracts did not induce H(2)O(2) formation in WME, DMEM, or DMEM/Ham F12 media with the cell culture conditions tested. These same extracts inhibited proliferation of HepG(2) and Caco-2 cells. Therefore, antiproliferative activity of apple extracts was not due to the phenolic-induced H(2)O(2) production in cell culture media. In addition, H(2)O(2) added to the culture medium at 100 microM did not cause inhibition of cell proliferation in either HepG(2) liver cancer cells or Caco-2 colon cancer cells in vitro.  相似文献   

15.
This study investigated the underlying mechanisms of action for blood lipid lowering effects of citrus flavonoids and their methoxylated analogues (n = 19; dose range: 0-100 μM) in HepG2 cells. Cholesterol (CH) and triglyceride (TG) syntheses were assessed by measuring the incorporation of (14)C-acetate and (14)C-glycerol, respectively, whereas apoB secretion was determined by ELISA. Results show that two polymethoxylated citrus flavonoids (PMFs), tangeretin and nobiletin, potently inhibited apoB secretion (IC(50) = 13 and 29 μM, respectively) and modestly inhibited CH synthesis (IC(50) = 49 and 68 μM) and TG synthesis (IC(50) = 14 and 73 μM), without effecting LDL-receptor activity. Other PMFs (e.g., sinensetin) and non-PMFs (e.g., hesperetin and naringenin) had only weak effects on CH and TG syntheses and apoB secretion (IC(50) > 100 μM). The structure-activity analysis indicated that a fully methoxylated A-ring of the flavonoid structure was associated with a potent inhibitory activity on hepatic apoB secretion. In conclusion, this study using HepG2 cells indicates that citrus flavonoids with a fully methoxylated A-ring may lower blood CH and TG concentrations primarily by suppressing hepatic apoB secretion as a main underlying mode of action.  相似文献   

16.
Melanoma is one of the most frequently metastasizing malignant neoplasias. This study examines an experimental model of pulmonary metastasis and the B16F10 cell subline, highly metastatic in the lung. Antimetastatic effects of the flavonoids tangeretin, rutin, and diosmin were analyzed, and at the same time an analysis of the metastatic activity of ethanol was performed, considered to be necessary because it is used as a vehicle for administering the flavonoids. Lentini's model, which complements the macroscopic evaluation of nodule numbers by using a stereoscopic microscope and image analysis at the microscopic level, was used. The greatest reduction in the number of metastatic nodules (52%) was obtained with diosmin; similarly, the percentages of implantation, growth index, and invasion index (79.40, 67.44, and 45.23%, respectively), were all compared with those of the ethanol group, considered to be an effective control group. Rutin- and tangeretin-treated groups also showed reductions of the same index compared with the ethanol group. It would seem that structural factors would better explain these results and the antimetastatic activity of each flavonoid and the respective metabolites.  相似文献   

17.
Both chlorogenic and caffeic acids exhibited nonsaturable transport in Caco-2 cells, whereas caffeic acid also showed proton-coupled polarized absorption. Thus, the absorption efficiency of caffeic acid was greater than that of chlorogenic acid. Polarized transport of caffeic acid was inhibited by substrates of MCT such as benzoic and acetic acids. Almost all of the apically loaded chlorogenic and caffeic acid was retained on the apical side, and the transepithelial flux was inversely correlated with the paracellular permeability of Caco-2 cells. These results indicate that transport was mainly via paracellular diffusion, although caffeic acid was absorbed to a lesser extent by the monocarboxylic acid transporter (MCT). Furthermore, m-coumaric acid and 3-(m-hydroxyphenyl)propionic acid, the main metabolites of chlorogenic and caffeic acid by colonic microflora, competitively inhibited the transport of fluorescein, a known substrate of MCT. This suggests that their absorption could also be mediated by MCT. These findings have exemplified the physiological importance of MCT-mediated absorption in both phenolic acids per se and their colonic metabolites.  相似文献   

18.
Anthocyanins (ACNs) have been reported to have multiple biological properties imparting benefits to human health. Their role in human nutrition, however, needs to be related to biokinetic data, such as bioavailability. The purpose of the present study was to focus on the potential absorption of black currant ( Ribes nigrum L.) ACNs. Caco-2 monolayers were used as an in vitro model of the absorptive intestinal epithelium. For absorption studies, Caco-2 cells grown on permeable filters were mounted into Ussing type chambers. The monolayer integrity was monitored by measuring the transepithelial electrical resistance (TEER). Luminal to serosal transport of ACNs was examined by comparing ACN disappearance from the luminal solution of Ussing chambers not containing any inserts (control chambers) with that of Ussing chambers containing inserts. ACNs (C total ACN approximately 180 microM) were not detected in any serosal solution. However, it was shown that ACNs disappeared from the luminal side, not due to ACN degradation processes but rather--at least in part--due to physiological actions of the cells. The luminal net disappearance of ACNs was calculated (max(t20 min) approximately 11% for total ACNs) and labeled as "absorption efficiency". This apical transport might occur to a much larger extent than the further translocation across the basolateral membrane. Thus, cell metabolism and translocation across the basolateral membrane may be the key determinants of ACN absorption and bioavailability.  相似文献   

19.
It has been demonstrated that reactive oxygen species, free radicals, and oxidative products, such as lipid hydroperoxides, participate in tissue injuries and in the onset and progression of degenerative diseases in humans. Studies were conducted using Caco-2 colon carcinoma cells to evaluate cellular damage caused by exposing cells for 30 min to oleic acid hydroperoxides (OAHPx) at concentrations varying from 0 to 25 microM. Cell membrane damage and DNA damage were significantly high even at the lowest concentration of 2.5 microM OAHPx compared to the control. Cell lipid peroxidation, indicated by conjugated diene concentration, increased exponentially with increasing OAHPx concentration. Antioxidant mechanisms in Caco-2 cells were evaluated by measuring catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Cellular catalase and GPx activities were not significantly different from each other at 0 to 25 microM OAHPx concentrations. SOD activity decreased with increasing OAHPx concentration. These results show that existing enzymatic antioxidant mechanisms are not sufficient for complete detoxification of 5-25 microM lipid hydroperoxides.  相似文献   

20.
Four different colored beans (white, red, pinto, and black beans) were investigated for factors affecting iron bioavailability using an in vitro digestion/human Caco-2 cell model. Iron bioavailability from whole beans, dehulled beans, and their hulls was determined. The results show that white beans contained higher levels of bioavailable iron compared to red, pinto, and black beans. These differences in bioavailable iron were not due to bean-iron and bean-phytate concentrations. Flavonoids in the colored bean hulls were found to be contributing to the low bioavailability of iron in the non-white colored beans. White bean hulls contained no detectable flavonoids but did contain an unknown factor that may promote iron bioavailability. The flavonoids, kaempferol and astragalin (kaempferol-3-O-glucoside), were identified in red and pinto bean hulls via HPLC and MS. Some unidentified anthocyanins were also detected in the black bean hulls but not in the other colored bean hulls. Kaempferol, but not astragalin, was shown to inhibit iron bioavailability. Treating in vitro bean digests with 40, 100, 200, 300, 400, 500, and 1000 microM kaempferol significantly inhibited iron bioavailability (e.g., 15.5% at 40 microM and 62.8% at 1000 microM) in a concentration-dependent fashion. Thus, seed coat kaempferol was identified as a potent inhibitory factor affecting iron bioavailability in the red and pinto beans studied. Results comparing the inhibitory effects of kaempferol, quercitrin, and astragalin on iron bioavailability suggest that the 3',4'-dihydroxy group on the B-ring in flavonoids contributes to the lower iron bioavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号