首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
小麦新资源对条锈病白粉病的抗性鉴定   总被引:11,自引:0,他引:11  
1991~1997年在甘谷田间对远缘小麦新资源进行抗条锈病、白粉病鉴定。结果表明,在供试160份材料中,对条锈病免疫或高抗、白粉病免疫的有25份,其抗性比较稳定,是良好的抗源材料,可供抗病育种利用。  相似文献   

2.
ABSTRACT Effects of phenylpropanoid and energetic metabolism inhibition on resistance were studied during appropriate host and nonhost cereal-rust interactions. In the appropriate barley-Puccinia hordei interaction, phenylalanine ammonia lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) inhibition reduced penetration resistance in two genotypes, suggesting a role for phenolics and lignins in resistance. Interestingly, penetration resistance of the barley genotype 17.5.16 was not affected by phenylpropanoid biosynthesis but penetration resistance was almost completely inhibited by D-mannose, which reduces the energy available in plant host cells. This suggests a parallel in the cellular basis of penetration resistance between 17.5.16 rust and mlo barleys powdery mildew interaction. Results revealed differing patterns of programmed cell death (PCD) in appropriate versus nonhost rust interactions. PAL and CAD inhibitors reduced PCD (hypersensitivity) in appropriate interactions. Conversely, they had no effect in PCD of wheat to P. hordei; whereas D-mannose dramatically reduced nonhost resistance and allowed colony establishment. The differential effects of inhibitors in the expression of the different resistances and the commonalities with the cereal-powdery mildew interaction is analyzed and discussed.  相似文献   

3.
Aegilops sharonensis (Sharon goatgrass) is a wild relative of wheat and a rich source of genetic diversity for disease resistance. The objectives of this study were to determine the genetic basis of leaf rust, stem rust, and powdery mildew resistance in A. sharonensis and also the allelic relationships between genes controlling resistance to each disease. Progeny from crosses between resistant and susceptible accessions were evaluated for their disease reaction at the seedling and/or adult plant stage to determine the number and action of genes conferring resistance. Two different genes conferring resistance to leaf rust races THBJ and BBBB were identified in accessions 1644 and 603. For stem rust, the same single gene was found to confer resistance to race TTTT in accessions 1644 and 2229. Resistance to stem rust race TPMK was conferred by two genes in accessions 1644 and 603. A contingency test revealed no association between genes conferring resistance to leaf rust race THBJ and stem rust race TTTT or between genes conferring resistance to stem rust race TTTT and powdery mildew isolate UM06-01, indicating that the respective resistance genes are not linked. Three accessions (1644, 2229, and 1193) were found to carry a single gene for resistance to powdery mildew. Allelism tests revealed that the resistance gene in accession 1644 is different from the respective single genes present in either 2229 or 1193. The simple inheritance of leaf rust, stem rust, and powdery mildew resistance in A. sharonensis should simplify the transfer of resistance to wheat in wide crosses.  相似文献   

4.
为西北农林科技大学小麦新育成品种(系)在黄淮麦区的大面积推广,该研究对83份西农新育成的小麦品种(系)进行苗期抗条锈病和白粉病鉴定,成株期抗条锈病、白粉病、叶锈病和赤霉病鉴定,并在田间自然环境下对其抗性进行鉴定及对相关抗病基因进行分子检测。结果显示,在苗期人工接种鉴定中,有63、29和16份小麦品种(系)分别对条锈菌Puccinia striiformis f.sp.tritici生理小种CYR32、CYR33和CYR34表现出抗性,9份小麦品种(系)对3个条锈菌生理小种均表现出抗性;有10、3和0份小麦品种(系)分别对白粉菌Blumeria graminis f.sp.tritici生理小种E15、E09和A13表现出抗性。在成株期人工接种鉴定中,有23、15、28和62份小麦品种(系)分别对条锈病、白粉病、叶锈病和赤霉病表现出抗性。在83份小麦品种(系)中有6份在苗期和成株期均对小麦条锈病表现出抗性。在田间抗性鉴定中,有57、6、65和40份小麦品种(系)分别对条锈病、白粉病、赤霉病及叶锈病表现出抗性。在83份小麦品种(系)中,3份含有Yr5基因,22份含有Yr9基因,3份含有Yr17基因,2份含有Pm24基因,14份含有Lr1基因,所占比例分别为3.6%、26.5%、3.6%、2.4%和16.8%。  相似文献   

5.
ABSTRACT A fundamental principle of integrated pest management is that actions taken to manage disease should be commensurate with the risk of infection and loss. One of the less-studied factors that determines this risk is ontogenic, or age-related resistance of the host. Ontogenic resistance may operate at the whole plant level or in specific organs or tissues. Until recently, grape berries were thought to remain susceptible to powdery mildew (Uncinula necator) until late in their development. However, the development of ontogenic resistance is actually quite rapid in berries, and fruit become nearly immune to infection within 4 weeks after fruit set. Our objective was to determine how and at what stage the pathogen was halted in the infection process on ontogenically resistant berries. Adhesion of conidia, germination, and appressorium formation were not impeded on older berries. However, once berries were approximately 3 weeks old and older, few germlings were able to form secondary hyphae. Ontogenically resistant berries responded rapidly to infection by synthesis of a germin-like protein that had been previously shown to play a role in host defense against barley powdery mildew. On susceptible berries, cell discoloration around penetration sites indicated the oxidation of phenolic compounds; a process that was followed by localized cell death. However, the pathogen was still able to infect such cells prior to their death, continue secondary growth, and thereby colonize young berries. Formation of papillae was not involved in the differential resistance mechanism of older berries. In susceptible berries, papillae formed frequently at infection sites but did not always contain the pathogen, whereas in resistant berries, the pathogen was always halted prior to the formation of papillae. The host defense, which conditions ontogenic resistance, operates in the earliest stages of the infection process, in the absence of gross anatomical barriers, prior to the formation of a functional haustorium and prior to the development of a conspicuous penetration pore. We also found that diffuse powdery mildew colonies that were not visible in the field predisposed berries to bunch rot by Botrytis cinerea, increased the levels of infestation by spoilage microorganisms, and substantially degraded wine quality. Our improved understanding of the nature, causes, and stability of ontogenic resistance in the grapevine/ powdery mildew system has supported substantial changes in how fungicides are used to control the disease. Present applications are more focused on the period of maximum fruit susceptibility instead of following a calendar-based schedule. This has improved control, reduced losses, and in many cases reduced the number of fungicide applications required to suppress the disease. Particularly where fungicides are deployed in a programmatic fashion and ontogenic resistance is dynamic, there may be equivalent improvements to be made in other hostpathogen systems through studies of how host susceptibility changes through time.  相似文献   

6.
大麦白粉病菌遗传学研究进展   总被引:1,自引:0,他引:1  
大麦白粉病是由布氏白粉菌属大麦专化型活体寄生菌Blumeria graminis f.sp.hordeiBgh)引起的真菌病害,在全球大麦种植区普遍发生,危害日趋严重。大麦白粉病菌与寄主之间存在着“基因对基因”的关系,分化为不同的生理小种或致病型。由于病原菌基因突变、重组和流动以及寄主的选择作用,大麦Bgh种群毒性、致病型频率和分布不断发生变化。随着分子生物学技术飞速发展,应用分子标记已对30多个Bgh无毒基因位点进行了连锁作图分析,已克隆了Bgh无毒基因AVRk1AVRa10,Bgh全基因组测序现已完成。文章综述了大麦白粉病菌的侵染循环、遗传分化及其无毒基因的定位、克隆和致病机制研究进展,并探讨了基于病原菌毒性进化和基因组解码信息获得持久控制大麦白粉病的有效手段。  相似文献   

7.
白粉病是黄瓜生产中发生普遍,危害严重的主要病害之一。pm5.1和PM5.2是黄瓜上的2个白粉病抗性位点,本文对7份不同抗病基因型的黄瓜自交系进行了黄瓜白粉病抗性鉴定,并开展了黄瓜白粉病菌侵染过程的研究,对侵染后12、24、72 h的萌发率、菌丝形成率及菌落形成率等进行了分析。结果表明,当基因型为PM5.1PM5.1 pm5.2pm5.2时,黄瓜病情指数最高,表现为高感白粉病;当基因型为PM5.1PM5.1PM5.2 PM5.2和pm5.1pm5.1pm5.2pm5.2时,表现为中感白粉病;当基因型为pm5.1pm5.1PM5.2PM5.2时黄瓜自交系病情指数最低,表现为抗白粉病。分生孢子在抗、感黄瓜自交系植株叶片上均能萌发,但只能在感病黄瓜材料上完成整个无性生长周期,产生分生孢子。此外,黄瓜白粉病菌分生孢子在感病材料上的萌发率、菌丝形成率及菌落形成率均高于抗病材料。  相似文献   

8.
为明确海南省苦瓜白粉病的病原菌、生理小种及苦瓜对白粉病的抗性遗传规律,结合形态学鉴定和分子鉴定解析白粉病菌及生理小种种类,通过显微镜观察白粉病菌侵染过程,并应用主基因+多基因混合遗传模型分析法探讨苦瓜对白粉病的主要抗性遗传规律。结果表明:采集自海南省6个市(县)的苦瓜白粉病病原菌均为单囊壳白粉菌Sphaerotheca fuliginea,属生理小种2F,该菌在侵染苦瓜叶片时有4个关键时期:接种后4 h为分生孢子萌发高峰期,8 h为附着孢形成高峰期,16~24 h为次生菌丝形成高峰期,5 d为分生孢子梗形成高峰期。将其接种于苦瓜抗、感品系,对白粉病的抗性符合2对加性-显性-上位性主基因+加性-显性多基因模型,主基因和多基因共同控制苦瓜对白粉病的抗性,其中以主基因遗传为主,且会受到环境变异的影响。根据苦瓜抗性遗传规律,F2代主基因遗传率最高,受环境影响最小,在苦瓜的白粉病抗性育种中,以早期世代F2代作为有效选择世代。研究表明白粉病菌侵染叶片的前2 d是白粉病防治的最佳时期,所以在白粉病易发的物候期,可将防治时间提前1~2 d。  相似文献   

9.
Results of annual surveys of winter wheat fields from 1974 to 1986 were compiled to describe epidemics of powdery mildew and rusts in relation to weather and cultivar resistance.An average of 29 and 70% of fields were infected by powdery mildew in May and July, respectively. Mildew prevalence in May was positively correlated with average temperature in October and with average temperature over the months December, January, February and March. In addition, it was correlated negatively with the average grade of mildew resistance of the cultivars sown each year. Prevalence of mildew in July did not show consistent correlations with weather characteristics nor with mildew prevalence in May.Yellow rust was usually not detected in May and on average 18% of the fields was infected in July. The occurrence of yellow rust decreased after 1977, when the farmers adopted cultivars resistant or moderately resistant to yellow rust.Brown rust was usually not detected in May, while in July on average 48% of the fields was infected. Brown rust intensity in July was high in years with a high March temperature and high precipitation during April and May.Black rust was rare in the Netherlands, with 3 and 1% of the fields infected in July 1977 and 1981, respectively.  相似文献   

10.
ABSTRACT In search of new durable disease resistance traits in barley to control leaf spot blotch disease caused by the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus), we developed macroscopic and microscopic scales to judge spot blotch disease development on barley. Infection of barley was associated with cell wall penetration and accumulation of hydrogen peroxide. The latter appeared to take place in cell wall swellings under fungal penetration attempts as well as during cell death provoked by the necrotrophic pathogen. Additionally, we tested the influence of a compromised Mlo pathway that confers broad resistance against powdery mildew fungus (Blumeria graminis f. sp. hordei). Powdery mildew-resistant genotypes with mutations at the Mlo locus (mlo genotypes) showed a higher sensitivity to infiltration of toxic culture filtrate of Bipolaris sorokiniana as compared with wild-type barley. Mutants defective in Ror, a gene required for mlo-specified powdery mildew resistance, were also more sensitive to Bipolaris sorokiniana toxins than wild-type barley but showed less symptoms than mlo5 parents. Fungal culture filtrates induced an H2O2 burst in all mutants, whereas wild-type (Mlo) barley was less sensitive. The results support the hypothesis that the barley Mlo gene product functions as a suppresser of cell death. Therefore, a compromised Mlo pathway is effective for control of biotrophic powdery mildew fungus but not for necrotrophic Bipolaris sorokiniana. We discuss the problem of finding resistance traits that are effective against both biotrophic and necrotrophic pathogens with emphasis on the role of the anti-oxidative system of plant cells.  相似文献   

11.
The overwintering and the epidemic development in spring of leaf rust was studied in 11 winter barley cultivars at two different sites near Wageningen in 1976/1977. The amount of leaf rust decreased through the winter at both sites. Cultivars differed considerably in the amount of leaf rust in late winter. Both the moment and the rate of increase of leaf rust after the winter varied with cultivars. The ultimate amount of leaf rust in a cultivar was therefore determined by three factors: The amount of overwintering leaf rust, the onset of leaf rust increase and the rate of increase. The latter was determined by the partial resistance of the cultivar. Why the epidemics did not start at the same moment is yet unknown. The differential overwintering could be explained from the amounts of leaf rust and powdery mildew at the start of the winter, the effect of powdery mildew being a negative one. The correlation coefficient between the values observed in March and those predicted from the December leaf rust and powdery mildew readings was 0.93. In a second experiment carried out in 1979/1980 with six winter barley cultivars chosen from the first experiment the powdery mildew was succesfully excluded by treatment with fungicides. There was no decrease in the leaf rust over the winter nor a differential cultivar effect on overwintering.  相似文献   

12.
Adenine and adenosine are metabolized by the adenine salvage pathway during primary infection of barley powdery mildew, Erysiphe graminis f.sp. hordei. Operation of this pathway was affected by the hydroxypyrimidine fungicide, ethirimol. Adenosine deaminase, ADAase, which was detected in mildew conidia and infected plants, but not in healthy barley, was the only enzyme in this pathway inhibited by the fungicide in in vitro assays. This feature of the mildew enzyme was unusual, and correlates with the specificity of hydroxypyrimidines which act against powdery mildews only. Other properties of this enzyme were similar to ADAase from other sources. In structure/activity studies with dimethirimol analogs, poor fungicidal activity was often associated with failure to inhibit ADAase, especially when assayed during appressoria formation. Purine derivatives were much less specific, and their mode of action against powdery mildew is probably different. Ethirimol resistance was not related to changes in ADAase, nor was the fungicide altered to an inactive metabolite. It is concluded that ADAase is one site of hydroxypyrimidine action.  相似文献   

13.
Jasmonic acid (JA) signalling plays an important role in plant resistance to pathogens. Previously, JA has been found to play a role in induced disease resistance to necrotrophic pathogens in various plant species, but current researches showed that JA also enhanced resistance to biotrophic pathogens. However, its role in wheat (Triticum aestivum L.) powdery mildew (Blumeria graminis f. sp. tritici, Bgt) resistance reaction is largely unknown. To settle this issue, several typical powdery mildew resistant and susceptible wheat varieties were employed. The sensitivity to exogenous methyl jasmonate (MeJA) to wheat powdery mildew resistance, the concentration fluctuation of endogenous JAs after Bgt inoculation, and the expression profiles of nine pathogenesis-related protein genes (PR genes) after MeJA and Bgt treatments were studied systematically. Exogenous MeJA significantly enhanced the powdery mildew resistance of the susceptible varieties. After inoculation with Bgt, endogenous JAs accumulated rapidly, reached the maxima at 2 to 5 h post-inoculation (hpi), then decreased rapidly, and the concentration was almost the same as that of un-inoculated control at 96 hpi. The expression levels of the nine PRs were measured by real time quantitative RT-PCR (qRT-PCR) at different time points after MeJA application or Bgt inoculation respectively. The MeJA and Bgt strongly activated PR1, PR2, PR3, PR4, PR5, PR9, PR10 and Ta-JA2, but almost didn’t affect Ta-GLP2a. The induced powdery mildew resistance was positively correlated with the activated PR genes. JA plays a positive role in defence against Bgt. JA is a signalling molecule in wheat powdery mildew resistance and future manipulation of this pathway may improve powdery mildew resistance in wheat breeding.  相似文献   

14.
Ethirimol, a hydroxypyrimidine fungicide active against powdery mildews only, inhibited the formation of appressoria during primary infection of barley powdery mildew, Erysiphe graminis f.sp hordei. It also affected other stages of mildew development. Several adenine analogs had similar effects and ethirimol-resistant mildew strains were generally cross-resistant to these. Adenine and adenosine reduced the fungitoxicity of ethirimol. During the formation of appressoria [3H]adenine was incorporated into RNA but [14C]glycine was not, suggesting that purine biosynthesis did not occur. Ethirimol inhibited this RNA synthesis and it is concluded that the fungicide may interfere with adenine metabolism at some site subsequent to its synthesis.  相似文献   

15.
Resistance to powdery mildew was induced in barley by preinoculation with virulent and avirulent races of barley powdery mildew ( Erysiphe graminis f.sp. hordei ), and with a race of wheat powdery mildew ( E. graminis f.sp. tritici ). Four inducer densities were tested in 13 different induction periods between 1 and 24 h. Generally, the resistance induced by barley powdery mildew increased up to 10-12 h of induction and was maintained in longer induction periods. The inducing abilities of virulent and avirulent races could not be distinguished up to 10-12 h of induction, after which the inducing ability of avirulent races increased significantly in relation to virulent races. Wheat powdery mildew was able to induce more resistance than barley powdery mildew in induction periods up to 8 h. In a single inoculation procedure the number of haustoria developing from virulent barley powdery mildew decreased as inoculum density increased. The effect was ascribed to induction of resistance. This reduction of infection efficiency in the compatible interaction was compared to induced resistance. However, the inoculum density needed for 50% resistance induction in the double inoculation procedure was approximately 40 times higher than the inoculum density needed for 50% reduction in infection efficiency in the single inoculation procedure.  相似文献   

16.
To determine whether Ca2+ promotes powdery mildew penetration, Ca2+-treated barley coleoptiles were inoculated with conidia of pathogenic and nonpathogenic fungi. Penetration efficiency of the pathogenic powdery mildew Blumeria graminis was enhanced by Ca2+ treatment, but that of the necrotrophic pathogen Helminthosporium sp. remained unaffected. Similarly, when actin-dependent penetration resistance is suppressed with cytochalasin A, Ca2+ treatment specifically enhanced penetration of the nonpathogenic powdery mildew Erysiphe pisi but not that of other nonpathogens. Calmodulin inhibitors suppressed the promotive effect of Ca2+ on B. graminis penetration. These results suggest that barley powdery mildew specifically requires Ca2+ and calmodulin for penetration.  相似文献   

17.
18.
ABSTRACT Effects on penetration and hypersensitive resistance of the cinnamyl acid dehydrogenase (CAD) suicide inhibitor ([(2-hydroxyphenyl) amino] sulphinyl) acetic acid, 1.1 dimethyl ester, which suppresses phenylpro-panoid biosynthesis, and of D-mannose, which sequesters phosphate and reduces energy available in host cells, were studied in faba bean (Vicia faba) genotypes with differing resistance mechanisms to faba bean rust (Uromyces viciae-fabae). Inhibition of CAD reduced penetration resistance in lines 2N-34, 2N-52, V-1271, and V-1272, revealing an important role for phenylpropanoid biosynthesis in the resistance of these lines. Inhibition of CAD also inhibited hypersensitive cell death in these lines. D-mannose had little or no effect on resistance. By contrast, CAD inhibition did not affect penetration resistance of line BPL-261, which has a high degree of penetration resistance not associated with hypersensitive cell death. In BPL-261, D-mannose inhibited penetration resistance. The parallelism between the faba bean genotype responses to rust observed here and the response of barley genotypes with differing resistance mechanisms to powdery mildew after similar inhibitor treatments is analyzed and discussed.  相似文献   

19.
Priming of pearl millet seedlings with nitric oxide (NO) donors sodium nitroprusside (SNP) and S-nitrosoglutathione (SNOG) induced hypersensitive reactions (HR) and accumulation of Proline/Hydroxyproline-rich glycoprotein (P/HRGP) during infection by downy mildew pathogen Sclerospora graminicola. Such defense responses were specifically altered by concentration of NO donors resulting in the modulation of endogenous NO in seedling tissues. The stoichiometric interactions of NO and hydrogen peroxide (H2O2) when followed in relation to HR and P/HRGP accumulation, the degree of defense response varied with H2O2 level, the latter being largely influenced by NO concentration. Therefore, balancing NO and H2O2 is vital for optimum expression of defense responses for imparting disease resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号