首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
Two populations of Lactuca serriola L. with resistance to acetolactate synthase (ALS)-inhibiting herbicides were discovered in wheat fields at two locations more than 25 km apart in South Australia. Both resistant populations carried a single base change within a highly conserved coding region of the ALS gene that coded for a single amino acid modification within ALS. The modification of proline 197 to threonine resulted in an enzyme that was highly resistant (>200-fold) to inhibition by sulfonylurea herbicides and moderately resistant to triazolopyrimidine and imidazolinone herbicides. The herbicide-resistant ALS was also less sensitive to inhibition by the branched-chain amino acids valine and leucine. In addition, the resistant enzyme had a lower Km for pyruvate. However, extractable ALS activity was similar between resistant and susceptible plants. The substitution of threonine for proline 197 within ALS has multiple impacts on ALS enzyme activity in L. serriola that may influence the frequency of this resistant allele in the environment.  相似文献   

2.
Vulpia bromoides is a grass species naturally tolerant to acetolactate synthase (ALS) and acetyl-coenzyme A carboxylase (ACCase) inhibiting herbicides. The mechanism of tolerance to ALS herbicides was determined as cytochrome P450-monooxygenase mediated metabolic detoxification. The ALS enzyme extract partially purified from V. bromoides shoot tissue was found to be as sensitive as that of herbicide susceptible Lolium rigidum to ALS-inhibiting sulfonylurea (SU), triazolopyrimidine (TP), and imidazolinone (IM) herbicides. Furthermore, phytotoxicity of the wheat-selective SU herbicide chlorsulfuron was significantly enhanced in vivo in the presence of the known P450 inhibitor malathion. In contract, the biochemical basis of tolerance to ACCase inhibiting herbicides was established as an insensitive ACCase. In vitro ACCase inhibition assays showed that, compared to a herbicide susceptible L. rigidum, the V. bromoides ACCase was moderately (4.5- to 9.5-fold) insensitive to the aryloxyphenoxypropionate (APP) herbicides diclofop, fluazifop, and haloxyfop and highly insensitive (20- to >71-fold) to the cyclohexanedione (CHD) herbicides sethoxydim and tralkoxydim. No differential absorption or de-esterification of fluazifop-P-butyl was observed between the two species at 48 h after herbicide application, and furthermore V. bromoides did not detoxify fluazifop acid as rapidly as susceptible L. rigidum. It is concluded that two co-existing resistance mechanisms, i.e., an enhanced metabolism of ALS herbicides and an insensitive target ACCase, endow natural tolerance to ALS and ACCase inhibiting herbicides in V. bromoides.  相似文献   

3.
BACKGROUND: Wild radish, a problem weed worldwide, is a severe dicotyledonous weed in crops. In Australia, sustained reliance on ALS‐inhibiting herbicides to control this species has led to the evolution of many resistant populations endowed by any of several ALS mutations. The molecular basis of ALS‐inhibiting herbicide resistance in a novel resistant population was studied. RESULTS: ALS gene sequencing revealed a previously unreported substitution of Tyr for Ala at amino acid position 122 in resistant individuals of a wild radish population (WARR30). A purified subpopulation individually homozygous for the Ala‐122‐Tyr mutation was generated and characterised in terms of its response to the different chemical classes of ALS‐inhibiting herbicides. Whole‐plant dose‐response studies showed that the purified subpopulation was highly resistant to chlorsulfuron, metosulam and imazamox, with LD50 or GR50 R/S ratio of > 1024, > 512 and > 137 respectively. The resistance to imazypyr was found to be relatively moderate (but still substantial), with LD50 and GR50 R/S ratios of > 16 and > 7.8 respectively. In vitro ALS activity assays showed that Ala‐122‐Tyr ALS was highly resistant to all tested ALS‐inhibiting herbicides. CONCLUSION: The molecular basis of ALS‐inhibiting herbicide resistance in wild radish population WARR30 was identified to be due to an Ala‐122‐Tyr mutation in the ALS gene. This is the first report of an amino acid substitution at Ala‐122 in the plant ALS that confers high‐level and broad‐spectrum resistance to ALS‐inhibiting herbicides, a remarkable contrast to the known mutation Ala‐122‐Thr endowing resistance to imidazolinone herbicide. Copyright © 2012 Society of Chemical Industry  相似文献   

4.
BACKGROUND: Papaver rhoeas (L.) has evolved resistance to tribenuron in winter wheat fields in northern Greece owing to multiple Pro197 substitutions. Therefore, the cross‐resistance pattern to other sulfonylurea and non‐sulfonylurea ALS‐inhibiting herbicides of the tribenuron resistant (R) and susceptible (S) corn poppy populations was studied by using whole‐plant trials and in vitro ALS catalytic activity assays. RESULTS: The whole‐plant trials revealed that tribenuron R populations were also cross‐resistant to sulfonylureas mesosulfuron + iodosulfuron, chlorsulfuron and triasulfuron. The whole‐plant resistance factors (RFs) calculated for pyrithiobac, imazamox and florasulam ranged from 12.4 to > 88, from 1.5 to 28.3 and from 5.6 to 25.4, respectively, and were lower than the respective tribenuron RF values (137 to > 2400). The ALS activity assay showed higher resistance of the ALS enzyme to sulfonylurea herbicides (tribenuron > chlorsulfuron) and lower resistance to non‐sulfonylurea ALS‐inhibiting herbicides (pyrithiobac > florasulam ≈ imazamox). CONCLUSION: These findings indicate that Pro197 substitution by Ala, Ser, Arg or Thr in corn poppy results in a less sensitive ALS enzyme to sulfonylurea herbicides than to other ALS‐inhibiting herbicides. The continued use of sulfonylurea herbicides led to cross‐resistance to all ALS‐inhibiting herbicides, making their use impossible in corn poppy resistance management programmes. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
Acetolactate synthase (ALS) genes from Monochoria vaginalis resistant (R) and susceptible (S) biotypes against ALS inhibitors found in Korea revealed a single amino acid substitution of Proline (CCT), at 169th position based on the M. vaginalis ALS sequence numbering, to serine (TCT) in conserved domain A of the gene (equal to the proline 197 in Arabidopsis thaliana ALS gene sequence). A. thaliana plants transformed with the single mutated (Pro169 to Ser) M. vaginalis ALS gene (including transit signal peptide) showed cross-resistance patterns to ALS-inhibiting herbicides, like as sulfonylurea-herbicide bensulfuron methyl (R/S factor of 9.5), imidazolinone-herbicide imazapyr (R/S factor of 5.1), and triazolopyrimidine-herbicide flumetsulam (R/S factor of 17.6) when measuring hypocotyls’ length of A. thaliana. The ALS activity from the transgenic A. thaliana plants confirmed the cross-resistance pattern to these herbicides like as R/S factor of 8.3 to bensulfuron methyl, 2.3 to imazapyr, and 13.2 to flumetsulam.  相似文献   

6.
Schoenoplectus juncoides, a noxious weed for paddy rice, is known to become resistant to sulfonylurea (SU) herbicides by a target-site mutation in either of the two acetolactate synthase (ALS) genes (ALS1 and ALS2). SU-resistant S. juncoides plants having an Asp376Glu mutation in ALS2 were found from a paddy rice field in Japan, but their resistance profile has not been quantitatively investigated. In this study, dose–response of the SU-resistant accession was compared with that of a SU-susceptible accession at in vivo whole-plant level as well as at in vitro enzymatic level.  相似文献   

7.
Amaranthus hybridus L. populations (A, B and C) obtained from escapes in Massac County and Pope County fields in southern Illinois, USA were subjected to greenhouse and laboratory experiments to measure multiple resistance to triazine and acetolactate synthase (ALS)‐inhibiting herbicides and cross‐resistance between sulfonylurea and imidazolinone herbicides. Phytotoxicity responses of the three populations revealed that only population B exhibited multiple resistances to triazine and ALS‐inhibiting herbicides. This population was >167‐, >152‐ and >189‐fold resistant to atrazine, imazamox and thifensulfuron, respectively, at the whole plant level compared with the susceptible population. Population A was only resistant to triazines and population C was only resistant to ALS‐inhibiting herbicides. Results from in vivo ALS enzyme and chlorophyll fluorescence assays confirmed these findings and indicated that an altered site‐of‐action mediated resistance to both triazine and ALS‐inhibiting herbicides. Gene sequencing revealed that a glycine for serine substitution at residue 264 of the D1 protein, and a leucine for tryptophan substitution at residue 574 of ALS were the causes of resistance for the three populations.  相似文献   

8.
Water chickweed is a widespread and competitive winter annual or biennial weed of wheat in China. One Water chickweed population (HN02) resistant to several acetolactate synthase (ALS) inhibitors was found in Henan province of China. Whole-plant bioassays showed that HN02 was high resistance to tribenuron (292.05-flod). In vitro ALS assays revealed that resistance was due to reduced sensitivity of the ALS enzyme to tribenuron. The I50 value for HN02 was 85.53 times greater respectively than that of susceptible population (SD05). This altered ALS sensitivity in the resistant population was due to a mutation in the ALS gene resulting in a Pro197 to Ser substitution. Cross-resistance experiments indicated that HN02 exhibited various resistance patterns to pyrithiobac-sodium, florasulam and pyroxsulam, without resistance to imazethapyr. This is the first report of tribenuron-resistant Water chickweed in Henan province of China, target-site based resistance was established as being due to an insensitive form of ALS, resulting from a Pro to Ser substitution at amino acid position 197 in the ALS gene.  相似文献   

9.
10.
Properties of acetolactate synthase (EC 4.1.3.18; ALS) from sulfonylurea-resistant (SUR) Scirpus juncoides Roxb. var. ohwianus T. Koyama were studied biochemically and physiologically in comparison with those from sulfonylurea-susceptible weed (SUS). GR50 values for growth inhibition and I50 values for ALS inhibition by imazosulfuron were determined for both SUR and SUS. Imazosulfuron controlled the SUS above 80% at the dosage more than 10 g a.i./ha but did not control the SUR at the even great dosage of 1000 g a.i./ha. The rates required for 50% growth inhibition of the SUR relative to the SUS (R/S ratio) were 271-fold. The I50 value for inhibition of ALS from the SUS was 15 nM, compared to I50 of >3000 nM for inhibition of ALS from the SUR. These results suggest that a resistance may due to an altered ALS that is insensitive to imazosulfuron. The Km (pyruvate) value of ALS from the SUR was similar to the Km for ALS from the SUS, suggesting that a mutation resulting in resistance does not change the affinity of the enzyme for pyruvate. The specific activity of the SUR ALS was similar to that of the SUS ALS, which indicates that resistance is not an over-expression of the enzyme. ALS activity from both biotypes was inhibited by isoleucine, valine, and leucine in this order. However, the SUR ALS was less sensitive to inhibition by valine than the SUS ALS.  相似文献   

11.
BACKGROUND: Horseweed is a weed commonly found in agronomic crops, waste areas and roadsides. Resistance to ALS‐inhibiting herbicides in horseweed was first reported in 1993 in a population from Israel. Resistance to ALS‐inhibiting herbicides in horseweed is now widespread, but, as of now, the resistance mechanism has not been reported. RESULTS: Two of three populations evaluated (P116 and P13) were found to be uniform for resistance (>98% of individuals survived 8.8 g AI ha?1 of cloransulam), whereas a third population, P525, contained about 85% resistant individuals. Cross‐resistance to cloransulam, chlorimuron, imazethapyr and bispyribac was observed in the P116 population. P525 and P13 were both sensitive to imazethapyr but resistant to chlorimuron, imazethapyr and bispyribac. Enzyme activity assays indicated that resistance in P13 was due to an altered target site. Southern blot analysis indicated that the ALS target site is encoded by a single copy gene. Overlapping ALS gene regions were amplified and sequenced from each population. Amino acid substitutions of Ser for Pro at position 197 (P197S) was detected from P13, Ala for Pro (P197A) was identified from P525 and substitution of Glu for Asp (D376E) at position 376 was found in P116. Molecular markers were developed to differentiate between wild‐type and resistant codons at positions 197 and 376 of horseweed ALS. CONCLUSION: Resistance to ALS‐inhibiting herbicides in horseweed is conferred by target‐site mutations that have also been identified in other weed species. Identification of the mutations within horseweed ALS gene sequence enables molecular assays for rapid detection and resistance diagnosis. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
An investigation, using herbicidal pot tests in a greenhouse condition, was conducted to determine the whole‐plant dose–response relationships to several acetolactate synthase (ALS)‐inhibiting herbicides of sulfonylurea (SU)‐resistant Schoenoplectus juncoides with various Pro197 mutations in ALS that was collected from Japanese rice paddy fields. All the tested SU‐resistant accessions with a Pro197 mutation were highly resistant to two commonly used SU herbicides (imazosulfuron and bensulfuron‐methyl), but were much less resistant to another SU herbicide, metsulfuron‐methyl, and were substantially not resistant to imazaquin‐ammonium. These cross‐resistance patterns have been known previously in fragments of S. juncoides and other weed species and were comprehensively confirmed in this study with a whole set of Pro197 mutations. The analyses of resistance levels, based on ED90 values, newly showed that different accessions with a common amino acid substitution in ALS1 showed similar responses to these herbicides (confirmed with four amino acid substitutions), that the rankings of resistance levels that were conferred by various Pro197 mutations in ALS1 differed among the SU herbicides and that the resistance levels of the ALS2‐mutated accessions were higher than, lower than or similar to those of the corresponding ALS1‐mutated accessions, depending on the compared pair, but the deviation patterns were generally similar among the SU herbicides in each compared pair. The final finding might suggest that the abundance of ALS2 is not as stable as that of ALS1. In addition, as a result of these new findings, together with expected further research, a suggested possibility is that substituting amino acids at Pro197 generally could be estimated by plotting each accession's ED90 values of imazosulfuron and bensulfuron‐methyl in a two‐dimensional graph.  相似文献   

13.
Sulfonylurea-resistant biotypes of Schoenoplectus juncoides were collected from Nakafurano, Shiwa, Matsuyama, and Yurihonjyo in Japan. All of the four biotypes showed resistance to bensulfuron-methyl and thifensulfuron-methyl in whole-plant experiments. The growth of the Nakafurano, Shiwa, and Matsuyama biotypes was inhibited by imazaquin-ammonium and bispyribac-sodium, whereas the Yurihonjyo biotype grew normally after treatment with these herbicides. The herbicide concentration required to inhibit the acetolactate synthase (ALS) enzyme by 50% (I50), obtained using in vivo ALS assays, indicated that the four biotypes were > 10-fold more resistant to thifensulfuron-methyl than a susceptible biotype. The Nakafurano, Shiwa, and Matsuyama biotypes exhibited no or little resistance to imazaquin-ammonium, whereas the Yurihonjyo biotype exhibited 6700-fold resistance to the herbicide. The Nakafurano and Shiwa biotypes exhibited no resistance to bispyribac-sodium, but the Matsuyama biotype exhibited 21-fold resistance and the Yurihonjyo biotype exhibited 260-fold resistance to the herbicide. Two S. juncoides ALS genes (ALS1 and ALS2) were isolated and each was found to contain one intron and to encode an ALS protein of 645 amino acids. Sequencing of the ALS genes revealed an amino acid substitution at Pro197 in either encoded protein (ALS1 or ALS2) in the biotypes from Nakafurano (Pro197 → Ser197), Shiwa (Pro197 → His197), and Matsuyama (Pro197 → Leu197). The ALS2 of the biotype from Yurihonjyo was found to contain a Trp574 → Leu574 substitution. The relationships between the responses to ALS-inhibiting herbicides and the amino acid substitutions, which are consistent with previous reports in other plants, indicate that the substitutions at Pro197 and Trp574 are the basis of the resistance to sulfonylureas in these S. juncoides biotypes.  相似文献   

14.
Schoenoplectiella juncoides is a noxious sedge weed in rice paddy fields that has evolved resistance to sulfonylurea (SU) herbicides. The molecular basis of resistance is amino acid substitutions at Pro197, Trp574 or Asp376 in the acetolactate synthase (ALS) enzyme, which is the target of SUs. Schoenoplectiella juncoides has two ALS genes and resistant plants have point mutations that cause amino acid substitutions in either encoded protein. Single‐nucleotide substitutions at the codon for Pro197 in the ALS genes can cause six types of amino acid substitutions and all of these substitutions have been found in both ALS genes among Japanese SU‐resistant biotypes. Whole‐plant herbicide responses differ among the amino acid substitution types. Furthermore, analyses of ALS activity in plant extracts show that the extracts’ responses to herbicides differ, depending on which ALS gene is mutated. The activity responses of the ALS extracts to the SU, imazosulfuron, showed double‐sigmoid curves with plateaus of ~30% inhibition for Pro197 substitutions in ALS1 and ~70% for Pro197 substitutions in ALS2. This indicates that ALS1 and ALS2 contribute to the responses with a proportion of 7:3. The double‐sigmoid curves can be reconstructed to show the responses of the resistant and susceptible enzymes separately by regression analysis. The resistance levels of the separate ALS1 or ALS2 mutated enzyme are highly correlated with the whole‐plant responses, with a relationship that the former is the square of the latter. This could provide a quantitative insight into the physiological basis of resistance.  相似文献   

15.
The baseline toxicity of 22 acetolactate synthase (ALS)-inhibiting herbicides and the cross-resistance patterns of chlorsulfuron- and imazapyr-resistant (R) lines on these 22 ALS-inhibiting herbicides were investigated using the model species Arabidopsis thaliana. The 22 herbicides consisted of 18 sulfonylureas (SU), three imidazolinones (IMI) and one triazolopyrimidine (TP). The ED50 values (doses of herbicides required to reduce dry matter by 50%) of the post-emergence-treated Col and Ler susceptible (S) lines ranged from 22 to 4822 mg ha−1 and from 17 to 3143 mg ha−1 respectively. The csr1-1 chlorsulfuron-resistant line (substitution of Pro197 to Ser) conferred a high resistance to the only TP tested as well as to nine SU herbicides (R:S ratio ≥30), a low resistance to two SU herbicides (R:S≥5 and <30) and little or no resistance to the three IMI and seven other SU herbicides (R:S <5). This result contradicts the expectation that an ALS mutation selected by an SU herbicide confers high cross-resistance to other SU herbicides. We found that the efficacy of specific ALS inhibitors was different for different species and therefore could not be predicted from our results with A. thaliana; however, the cross-resistance patterns in A. thaliana were highly correlated with cross-resistance patterns in unrelated species with the same resistance mutation. These results have implications for resistance management.  相似文献   

16.
A population of Amaranthus powellii that had survived imazethapyr did not have any of the documented AHAS mutations causing resistance in this species in Ontario. The goal of this research was to confirm resistance in this population, determine its molecular basis and develop diagnostic tests. Whole plant dose-response experiments showed the resistant population had greater than 25-fold resistance to the selective agent imazethapyr at the whole plant level. Whole plant resistance to other herbicides ranged between 9-fold to flumetsulam and 85-fold to flucarbazone. This was confirmed at the enzyme level with resistance ranging between 25-fold to imazethapyr and 485-fold to thifensulfuron. AHAS from the resistant population had 16% higher specific activity than that of the susceptible population and it was also less sensitive to feedback inhibition by valine, leucine and isoleucine. Genomic DNA was extracted to PCR amplify and sequence the AHAS gene and to determine the applicability of diagnostic tests. Sequencing of the AHAS gene revealed a single point mutation of thymine1125 to guanine coding for an Asp376Glu substitution. Two different diagnostic tests, restriction fragment length polymorphism and PCR amplification of specific allele, were able to correctly identify the resistant population from the susceptible control and from other resistant populations. Although this mutation appears to confer higher resistance to pyrithiobac and flucarbazone, two herbicides not registered in Eastern Canada, it endows plants with enough protection to allow survival to imazethapyr, the main selective agent in Ontario.  相似文献   

17.
Capsella bursa-pastoris, a winter annual weed in the mustard family, can not be controlled by tribenuron after the herbicide has been continuously used for several years. The resistant biotype Lz-R was the generation of a population collected from Liangzhu, a place where tribenuron had been used for more than 15 consecutive years. To confirm and characterize the resistance of C. bursa-pastoris to tribenuron, whole-plant bioassays were conducted in the greenhouse. The results of whole-plant bioassays revealed that Lz-R was highly resistant to tribenuron with the resistance index (GR50 Lz-R)/(GR50 Lz-S) up to 236.6. To investigate the molecular basis of resistance in C. bursa-pastoris, the acetolactate synthase (ALS) genes were sequenced and compared between susceptible and resistant biotypes. Analysis of the nucleotide and deduced amino acid sequences between the biotypes indicated that one substitution had occurred in Domain A, cytosine by thymine (CCT to TCT) at position 197, that led to a change of the amino acid proline in the susceptible to serine in the Lz-R.  相似文献   

18.
Sulfonylurea resistance in Stellaria media [L.] Vill.   总被引:1,自引:1,他引:1  
A sulfonylurea resistant biotype of common chickweed (Stellaria media L. Vill.) was found in a field treated with chlorsulfuron or metsulfuron for eight consecutive years. In pot experiments the biotype was resistant to postemergence treatments with the following acetolactate synthase (ALS) inhibitors: chlorsulfuron, metsulfuron, tribenuron, triasulfuron, rimsulfuron, sulfometuron, flumetsulam and imazapyr. The level of resistance to chlorsulfuron and sulfometuron was higher than to the other sulfonylurea herbicides. Whereas the level of cross resistance to the triazolopyrimidine herbicide, flumetsulam was comparable to that of metsulfuron, that of imazapyr was significantly lower. In contrast to imazapyr the biotype was not resistant to imazethapyr, an other imidazolinone herbicide. ALS in vitro assays revealed that resistance was due to an ALS enzyme that was less sensitive to ALS inhibiting herbicides. Herbicides with different modes of action were equally effective on the susceptible and resistant biotypes.  相似文献   

19.
为明确河南省部分地区的多花黑麦草Lolium multiflorum种群对乙酰辅酶A羧化酶(acetylCoA carboxylase,ACCase)和乙酰乳酸合成酶(acetolactate synthase,ALS)抑制剂类除草剂的抗性水平和抗性机理,采用整株生物测定法测定采自新乡市和驻马店市的多花黑麦草种群对ACCase抑制剂类除草剂精噁唑禾草灵、炔草酯、唑啉草酯和ALS抑制剂类除草剂甲基二磺隆、氟唑磺隆、啶磺草胺的抗性水平,并对多花黑麦草ACCase和ALS靶标酶编码基因进行克隆及氨基酸序列比对,分析其靶标抗性机理。结果显示,与多花黑麦草敏感种群HNXX01相比,HNZMD04和HNXX05种群对6种除草剂均产生了抗性,HNZMD04种群对精噁唑禾草灵和啶磺草胺的相对抗性倍数分别为44.65和40.31,对炔草酯和氟唑磺隆的相对抗性倍数分别为11.91和11.93;HNXX05种群对精噁唑禾草灵和氟唑磺隆的相对抗性倍数分别为27.70和25.67。HNZMD04和HNXX05抗性种群的ACCase基因均发生了D2078G突变,2个种群的突变率分别为55%和70%;HNZMD04...  相似文献   

20.
采用温室盆栽法和培养皿法测定了山东省部分市县冬小麦田杂草麦家公Lithospermum arvense L.对苯磺隆的抗药性水平,以及其抗药性生物型乙酰乳酸合成酶(ALS)对苯磺隆的敏感性。温室盆栽结果显示,供试杂草对苯磺隆产生了不同程度的抗药性,其中胶州麦家公生物型抗性水平最高,抗性倍数为12.8倍;培养皿法测定结果也显示胶州麦家公生物型抗性水平最高,但抗性倍数为3.89倍。交互抗性测定结果表明,胶州抗性麦家公生物型对其他ALS抑制剂噻吩磺隆和苄嘧磺隆已产生不同程度的交互抗性,其中对噻吩磺隆的抗性倍数达到3.11倍。离体条件下,与敏感生物型ALS活力的抑制中浓度(IC50)相比较,胶州抗性麦家公生物型的IC50值是敏感麦家公的 2.65倍。表明ALS敏感性降低可能是山东部分市县麦家公对苯磺隆产生抗药性的重要原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号