首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A salivary component, nitrate, is reduced to nitrite in the oral cavity. Polyphenols in foods are mixed with nitrite in the saliva to be swallowed into the stomach. An objective of the present study is to elucidate reactions between a polyphenol quercetin and a nitrite under acidic conditions. Nitric oxide, which is formed by the reactions between nitrous acid and quercetin or ascorbic acid (AA), can be measured using an oxygen electrode in the saliva as well as a buffer solution. The initial oxidation of quercetin was inhibited by AA, and quercetin enhanced the oxidation of AA, suggesting AA-dependent reduction of quercetin radicals, which might be formed during the oxidation of quercetin by nitrous acid. On the basis of the above results, the usefulness of an oxygen electrode for the measurement of nitrite-dependent nitric oxide formation under acidic conditions is proposed and the possible mechanism of reduction of nitrous acid by quercetin and the interaction between quercetin and AA, which is a normal component in the gastric juice, for the reduction of nitrous acid is discussed.  相似文献   

2.
When saliva and gastric juice are mixed, salivary nitrite is transformed to nitrous acid to produce nitric oxide (NO). The NO formation in acidified saliva was enhanced by ascorbic acid and chlorogenic acid. Thiocyanate ion (SCN(-)) also enhanced the transformation of nitrous acid to NO. During the NO formation in the presence of both ascorbic acid and chlorogenic acid, ascorbic acid was preferentially oxidized. Chlorogenic acid was oxidized after ascorbic acid had been oxidized. Ascorbyl radical was detected during the oxidation of ascorbic acid, and the radical intensity was decreased by chlorogenic acid. The decrease is discussed to be due to the reduction of the oxidation intermediate or product of chlorogenic acid by ascorbyl radical. The result obtained in this study suggests that ascorbic acid was preferentially oxidized and that not only ascorbic acid but also ascorbyl radical could interact with the oxidation intermediate or product of chlorogenic acid when chlorogenic acid was added to the mixture of saliva and gastric juice that contained ascorbic acid.  相似文献   

3.
Reactions of nitrous acid with freeze-dried instant coffee and its methanol-insoluble melanoidin fractions were studied at pH 2 in the presence and absence of thiocyanate (SCN (-)), simulating the mixture of coffee, saliva, and gastric juice. Coffee contained stable radicals, and the radical concentration increased by ferricyanide and decreased by ascorbic acid. This result indicates that the radical concentration was affected by the redox state of coffee and that the nature of the radical was due to quinhydrone structure that might be included in coffee melanoidins. Nitrite also increased the electron spin resonance (ESR) signal intensity at pH 2, suggesting that nitrite oxidized melanoidins producing nitric oxide (NO). The formation of NO could be detected by oxygen uptake due to the autoxidation of NO and using an NO-trapping agent. SCN (-) largely enhanced NO formation in coffee and methanol-insoluble melanoidin fractions but only slightly in a methanol-soluble fraction, and the enhancement accompanied the consumption of SCN (-) but did not accompany the formation of a stable ESR signal. The enhancement was explained by the reduction of NOSCN by melanoidins in methanol-insoluble fractions and that the consumption was due to binding of SCN (-) to melanoidins during their oxidation by nitrous acid. The result obtained in this study suggests that when coffee is ingested, in addition to chlorogenic acid and its isomers, melanoidins can also react with salivary nitrite and SCN (-) in the gastric lumen, producing NO.  相似文献   

4.
Local pH in the oral cavity can decrease to below 7 at the site where acid-producing bacteria are proliferating. Effects of pH on nitration of 4-hydroxyphenylacetic acid were studied using dialyzed human saliva. Dialyzed saliva nitrated 4-hydroxyphenylacetic acid to 4-hydroxy-3-nitrophenylacetic acid in the presence of nitrite and H(2)O(2). The rate of the nitration was dependent on pH, and the maximal rate was observed between pH 5.5 and 7.2. The optimum pH seemed to reflect rates of formation of nitrogen dioxide and 4-hydroxyphenylacetic acid radicals. Quercetin inhibited the nitration. The quercetin-dependent inhibition might be due to scavenging of nitrogen dioxide and 4-hydroxyphenylacetic acid radicals, which were formed by salivary peroxidase-dependent oxidation of nitrite and 4-hydroxyphenylacetic acid, respectively, and competition with nitrite and 4-hydroxyphenylacetic acid for peroxidase in saliva. An oxidation product of quercetin was formed during inhibition of the nitration by quercetin. The oxidation product was identified as 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone. This component could also be oxidized by salivary peroxidase and nitrogen dioxide radicals. The oxidation products were 2,4,6-trihydroxyphenylglyoxylic and 3,4-dihydroxybenzoic acids. On the basis of the results, the significance of quercetin for inhibition of nitrogen dioxide formation and for scavenging of nitrogen dioxide radicals in the oral cavity is discussed.  相似文献   

5.
The food additive sulfite is mixed with saliva, which contains nitrite, in the oral cavity, and the mixture is mixed with gastric juice in the stomach. In the stomach, salivary nitrite can be transformed to nitric oxide (NO). In this study, the effects of sulfite on nitrite-dependent NO production were investigated using acidified saliva (pH 2.6) and acidic buffer solutions (pH 2.0). Sulfite enhanced NO production in acidified saliva and acidic buffer solutions, and the enhancement increased with the increase in sulfite concentration from 0 to 0.1 mM, whereas suppressed NO production and the suppression increased as the concentration was increased over 0.2 mM. The enhancement was due to the increase in reaction rate between nitrous acid and nitrososulfonate (ONSO(3)(-)) that was formed by the reaction of nitrous acid with hydrogen sulfite, and the suppression was due to the increase in hydrogen sulfite-dependent consumption rate of ONSO(3)(-). A salivary component SCN(-) (1 mM) enhanced and suppressed NO production induced by 1 mM nitrite when sulfite concentrations were lower and higher than 1 mM, respectively. ONSO(3)(-) formed from hydrogen sulfite and nitrosyl thiocyanate (ONSCN), which was produced by the reaction of nitrous acid with SCN(-), seemed to contribute to the enhancement and suppression. NO production induced by nitrite/ascorbic acid systems was suppressed by sulfite, and the suppressive effects were decreased by SCN(-), whereas sulfite-induced suppression of NO production in nitrite/rutin systems was increased by SCN(-). During reactions of nitrite with sulfite in the presence and absence of SCN(-), oxygen was taken up. The oxygen uptake is discussed to be due to autoxidation of NO and radical chain reactions initiated by hydrogen sulfite radicals. The results of the present study suggest that sulfite can enhance and suppress nitrite-dependent NO production. It is discussed that radicals including hydrogen sulfite radicals can be formed through the reactions of nitrite and sulfite in the stomach.  相似文献   

6.
Oxidation of the flavonol quercetin by polyphenol oxidase   总被引:5,自引:0,他引:5  
Because direct oxidation of flavonols by polyphenol oxidase (PPO) has not previously been reported and, given the importance of flavonols, the ability of broad bean seed PPO to oxidize the flavonol quercetin was studied. The reaction was followed by recording spectral changes with time. Maximal spectral changes were observed at 291 nm (increase) and at 372 nm (decrease). The presence of two isosbectic points (at 272 and 342 nm) suggested the formation of only one absorbent product. These spectral changes were not observed in the absence of PPO. The oxidation rate, which varied with pH, was highest at pH 5.0. The following kinetic parameters were also determined: V(m) = 11 microM/min, K(m) = 646 microM, V(m)/K(m) = 17 x 10(-)(2) min(-)(1). Flavonol oxidation was efficiently inhibited (K(I) = 3.5 microM) by specific PPO inhibitors such as 4-hexylresorcinol. The results obtained showed that quercetin oxidation was strictly dependent on the presence of PPO.  相似文献   

7.
This study investigated whether reducing agents such as quercetin and iron(II) facilitate formation of nitric oxide (NO) gas from orally ingested nitrite in an vivo study. When 3 mg/kg Na (15)NO2 was orally administered to rats with or without iron(II) or quercetin, Hb (15)NO, which is indicative of systemic (15)NO, was detected in the blood, with the maximum blood concentration of Hb (15)NO at 15 min after nitrite or nitrite plus quercetin treatment, whereas after administration of nitrite plus iron(II) or nitrite plus iron(II) and quercetin, the time was shortened to 10 min. Interestingly, iron(II), quercetin, or iron(II) plus quercetin did not affect the total amount of Hb (15)NO generated from orally administered Na (15)NO2. However, the systemic nitrite concentration was significantly decreased in the presence of iron(II) or iron(II) plus quercetin. These results may indicate that iron(II) is critical to the generation of NO gas from nitrite, whereas quercetin contributed little under the in vivo experimental conditions.  相似文献   

8.
The objective of the present study was to elucidate how chlorogenic acid in coffee was transformed under acidic conditions simulating the mixture of saliva and gastric juice. When coffee was incubated in acidified saliva that contained nitrite and SCN-, in addition to nitric oxide (NO), four major components were detected. Two of the four components (components 3 and 4) were generated when chlorogenic acid was incubated in acidified saliva and when incubated in an acidic buffer solution in the presence of both nitrite and SCN-. By the incubation of chlorogenic acid in acidic nitrite in the absence of SCN-, components 3 and 4 were not formed but the quinone of chlorogenic acid and nitrated chlorogenic acid were formed. The result indicates that SCN- was indispensable for nitrous acid induced formation of components 3 and 4. Component 4 was isolated and its structure was determined to be (E)-5'-(3-(7-hydroxy-2-oxobenzo[d] [1,3]oxathiol-4-yl)acryloyloxy)quinic acid. Component 3, which was suggested to be 2-thiocyanatochlorogenic acid, seemed to be formed by the reaction between SCN- and the quinone of chlorogenic acid. As it has been reported that the quinone of chlorogenic acid can react with thiols and can decompose producing H2O2, the formation of component 4 can reduce the toxic effects of the quinone of chlorogenic acid.  相似文献   

9.
Studies on the decomposition/oxidation of nitrite at differentpH values and aeration flow rates were investigated using abench-scale batch reactor. The conditions were pH 2.85, 3.50,5.80, 7.0, and 11.6, and with or without aeration at airflowrates of 1.50, 2.25, and 3.25 L min-1.Decomposition/oxidation of nitrite may be described by apseudo-first order expression, and the rate constants fornitrite decomposition/oxidation ranged from 1.2 ×10-6 s-1 to 1.12 × 10-4 s-1 depending on the experimental conditions. The rate ofdecomposition/oxidation of nitrite was found to increase for lowpH conditions and for high airflow rates. The experimentalresults showed that the dominant reaction in thedecomposition/oxidation of nitrite in low pH solutions and inthe presence of some aeration was most probably thedecomposition of nitrous acid to NO and NO2. Oxidation ofnitrite to nitrate appeared to proceed in a smaller proportionin comparison to the breakdown of nitrous acid to nitrogen oxidecompounds. Results from this study showed that emissions ofnitrogen oxides from nitrite-containing solutions are possible ifthe solutions were agitated and the pHs of the solutions wereless than 6.  相似文献   

10.
The evolution of methane from soil samples under anaerobic conditions was suppressed by adding nitrogen-containing chemicals. Nitrate caused the strongest inhibition of CH4 formation followed with decreasing efficiency by nitrite, nitric oxide and nitrous oxide; ammonium sulfate and hydroxylamine did not have an influence. It was also observed that organic substances in relation to their structure and concentration influence the evolution of CH4.  相似文献   

11.
Two structurally related flavonols, quercetin and morin, along with protocatechuic acid (PA), beta-resorcylic acid (DHBA), and phloroglucinol carboxylic acid (PCA), which represent quercetin and morin degradation products, were assessed with respect to their antioxidant potency by chemical comparisons in competing oxidation reactions. The measurement of the antioxidant capacity was performed with the beta-carotene bleaching method, and the compounds were also tested with respect to their abilities to prevent lipid, protein, and DNA oxidation. The effect of concentration was also considered. The results obtained strongly suggested that quercetin is a powerful antioxidant in every system used, whereas morin is a much weaker antioxidant and in some cases may also have pro-oxidant action. PA and PCA were always inferior antioxidants compared to the parent molecule quercetin; DHBA and PCA exhibited activities comparable to that of morin in reaction comparisons.  相似文献   

12.
Peroxynitrite (ONOO(-)), formed from the nearly diffusion limited reaction between nitric oxide and superoxide, could be an important prooxidant in muscle foods. The objective of this study was to determine whether peroxynitrite caused oxidation of pyrogallol red, liposomes, muscle microsomes, and skeletal muscle homogenate. Oxidation of pyrogallol red, liposomes, and microsomes initiated by peroxynitrite continuously produced by 3-morpholinosydnonimine (SIN-1, 2 mM) was time-dependent and enhanced by CO(2) (1 mM). Reagent peroxynitrite (2 mM) caused concentration-dependent oxidation of pyrogallol red, liposomes, and muscle microsomes that was very rapid with no change after 5 min. Peroxynitrite-induced oxidation was suppressed by CO(2) and low pH. Skeletal muscle homogenate oxidized by reagent peroxynitrite (0.5 mM) exhibited gradual oxidation with time and was suppressed by CO(2), low pH, and metal chelators. These data suggest that peroxynitrite could be an important prooxidant in muscle foods.  相似文献   

13.
Polyphenols have recently attracted much attention as potent antioxidants and related bioactive substances. These potent antioxidative polyphenols are very oxidizable due to their chemical properties, and their oxidation products must accumulate in the oxidizing foods when they are contained as the active ingredients. In this investigation, 30 polyphenols and related phenolics were oxidized with oxygen in the presence of a catalytic amount of Fe ions. Piceatannol, catechin, epicatechin, hydroxytyrosol, carnosol, and carnosic acid were oxidized very quickly. Sinapic acid, caffeic acid, chlorogenic acid, rosmarinic acid, gallic acid, propyl gallate, α-tocopherol, quercetin, and nordihydroguaiaretic acid were moderately oxidized. Protocatechuic acid, syringic acid, taxifolin, resveratrol, gentisic acid, secoisolariciresinol, and ellagic acid were oxidized for 19-20 days; however, their oxidation was very slow and did not complete. The other phenolics were not oxidized. The obtained oxidation products were next subjected to a lipoxygenase inhibition assay and the results compared to those of the corresponding phenols. Very interestingly, the oxidation product from resveratrol showed a high inhibitory activity, whereas resveratrol itself had no activity and its oxidation efficiency was low. To clarify the inhibition principle of the oxidation product, an LC-MS analysis was carried out on the oxidation product. The analytical results showed that they are the oligomeric and degraded compounds of resveratrol. Among them, the structures of three dimeric compounds were successfully identified, and their activity data clarified that the closed ring dimers were potent lipoxygenase inhibitors, whereas the opened ring dimer was not. It should be noted that resveratrol had almost no lipoxygenase inhibitory activity, contrary to some researchers' findings.  相似文献   

14.
The magnitude of methane emission is a net result of methane production and the oxidation rate. The possibility of measuring oxidized products of alternative substrates of methane monooxygenase was examined to determine methane-oxidizing ability of soils, and to count methanotrophic populations in soils. Wetland rice soils were incubated under methane containing air to enirch the methanotrophs. Methane loss and oxygen uptake were inhibited by acetylene, dimethylether, and nitrapyrin (N-Serve). Acetylene was used routinely, because it inhibited methane oxidation even at a low concentration of 0.03 to 0.06 l ml-1 in the incubation headspace. Propylene at 10 kPa was used as an alternative substrate of methane monooxygenase, and the formation of propylene oxide was measured. When soils were incubated under methane, their methane-oxidizing activity increased. Propylene oxide formation increased simultaneously. Acetylene also blocked propylene oxidation. The results of several experiments and propylene oxide formation (r=0.87 after long-transformation). These results indicate that propylene oxide formation can be used as a semiquantitative measure of the methane-oxidizing activity of soils. The colonies of soluble methane monooxygenase-forming methanotrophs were counted on Cu-deficient methanotroph agar medium by the formation of naphthol from haphthalene. The counts increased from 104 (0 days) to 107 (21 days) g-1 soil during oxic incubation under methane.  相似文献   

15.
The sources of NO during biomass oxidation, and in particular tobacco oxidation, have been disputed. Literature results range from decomposition of nitrate to the oxidation of atmospheric nitrogen. To rectify these discrepancies, this study focuses on the sources of nitric oxide (NO) during the oxidation of tobacco samples. When Burley tobacco was heated in a partially oxidized atmosphere, NO was produced at two distinct temperature ranges, namely 275-375 degrees C (the low-temperature range) and 425-525 degrees C (the high-temperature range). The formation of NO at the low-temperature range with Burley tobacco was found to be unaffected by oxygen, while the formation of NO at the high-temperature range required an oxygen atmosphere. With Bright and Oriental tobacco, NO was produced only within the higher-temperature range. To understand the formation processes and the sources of NO formation within these two temperature ranges, several endogenous nitrogenous tobacco compounds were examined. These were mixed with non-nitrogenous biomass model materials, namely cellulose, pectin, xylan, or lignin, which also occur naturally in tobacco, and the mixtures were heated in a flow tube reactor under a partially oxidative atmosphere. A commercial gas analyzer was used to monitor the formation of NO during heating. Nitrate ion was determined to be the source of NO formation in the range of 275-375 degrees C. This ion was decomposed in a carbonaceous surrounding to produce NO. For NO formation at the higher temperature range, amino acids and proteins were shown to be the sources. The interaction between nitrogenous organic compounds (amino acids and proteins) and pectin first produced a nitrogen-containing char at a temperature below 350 degrees C. Oxidation of this char at the higher temperatures produced NO.  相似文献   

16.
Three specialized nitrite-dissimilatory microorganisms, found to be incapable of nitrate dissimilation, were isolated from Oregon soils. These isolates were designated as members of the genus Pseudomonas.Soil extracts stimulated nitrite dissimilation, with highest rates of activity observed with extracts from a manured soil. Nitrous oxide accumulation occurred with both nitrite- and oxygen-grown soil isolates during nitrite dissimilation in the presence of oxygen, whereas an isolate derived from a marine mud environment did not accumulate this intermediate when tested under comparative conditions.The soil-derived isolates were better able to adapt to changes between oxygen and nitrite as terminal electron acceptors, in comparison with the marine derived isolate. All isolates appeared capable of utilizing oxygen and nitrite simultaneously in their terminal respiration processes.Nitrous, but not nitric oxide was utilized as an electron acceptor by all isolates, and nitrite and nitrous oxide dissimilation was inhibited to varying degrees by cyanide, azide, and 2,4-dinitrophenol.Such infrequently studied specialized nitrite-dissimilating microorganisms, incapable of nitrate dissimilation, should be further investigated to better understand their role in nitrogen transformations, especially in manured soil environments.  相似文献   

17.
The oxidative degradation of quercetin and rutin in phosphate buffer solutions, pH 8.0, at 97 degrees C, was studied by means of UV-vis spectroscopy and reversed-phase high-performance liquid chromatography (HPLC). The effect of the transition metal ions Fe(2+) and Cu(2+) on degradation rate and browning development was also assessed. It was shown that both flavonols are very labile to thermally induced degradation under oxidative conditions. Fe(2+) and Cu(2+) caused an increase in the degradation rate, as well as an increase in browning (A(420)). Significant differences were observed in the degradation mechanisms, as implied by HPLC analyses. It is postulated that metal ions promote flavonol oxidation through reactive oxygen species formation, whereas increases in browning could be ascribed to oxidation and metal-polyphenol interactions.  相似文献   

18.
The amounts of myricetin, quercetin, and kaempferol were analyzed in 16 red and 2 white berry and grape wines after acid hydrolysis using an RP-HPLC method with diode array detection. The red berry wines analyzed were made mainly from black currant, crowberry, and bog whortleberry, i.e., berries rich in flavonols. The red grape wines were made mainly from Cabernet Sauvignon or Merlot grapes in several countries. The white wines studied were gooseberry and white currant wines and Chardonnay and Riesling wines. The amount of myricetin ranged from 3.8 to 22.6 mg L(-1) in red berry wines and from 0 to 14.6 mg L(-1) in red grape wines. The amount of quercetin was from 2.2 to 24.3 mg L(-1) red berry wines and from <1.2 to 19.4 mg L(-1) in red grape wines. Low levels of kaempferol were found in all red berry wines and in 9 red grape wines. The total concentration of these flavonols was from 6 to 46 mg L(-1) (mean 20 mg L(-1)) in red berry wines and from 4 to 31 mg L(-1) (mean 15 mg L(-1)) in red grape wines. Small amounts of quercetin were found in white currant and gooseberry wines, whereas no flavonols were detected in white grape wines. These results demonstrate that the contents of flavonols in red  相似文献   

19.
The formation of volatile compounds from precursors or through chemical rearrangement during heat treatment of bacuri pulp at fruit natural pH were studied using simultaneous distillation/extraction (SDE) technique. An increase of the quantities of oxygenated and hydrocarbon terpenes and, to a lesser degree, aldehydes, was observed after SDE at pH 3, relative to the other extraction methods used, SDE at neutral pH and solid phase extraction (SPE). More particularly, linalool, linalool furanoxides, alpha-terpineol, hotrienol, nerol oxide, nerol, and geraniol were isolated in more important quantities after the first treatment than after the others. These results can be partially explained by the hydrolysis of glycosidically bound compounds previously identified in bacuri. Other pathways such as polyol rearrangements were also involved. The formation of linalool and alpha-terpineol was probably the result of the rearrangement of 2,6-dimethyloct-1-ene-3,7-diol. Moreover, it was assumed that oxidation reactions occurred during SDE at pH 3; more particularly, linalool pyranoxides partially resulted from nonenzymatic oxidation of linalool. When SDE was performed at pH 3, an increase of furfural and 4-methoxy-2,5-dimethyl-3(2H)-furanone was noticed. The modifications of the concentration of aliphatic aldehydes, known as lipid oxidation compounds, and of fatty acid esters were in good agreement with the observed decrease of palmitic and linoleic acid concentrations during this treatment. Moreover, important amounts of 2-acetyl-1-pyrroline were found in the SDE extract recovered at pH 7.  相似文献   

20.
The effect of fresh-cutting and subsequent cold storage on phenolic compounds from five long-term-stored potato cultivars (Agria, Cara, Liseta, Monalisa, and Spunta) was studied. Fresh-cutting induced the biosynthesis of three flavonols, which were identified by HPLC-DAD-ESIMS as quercetin 3-rutinoside, quercetin 3-diglucoside, and quercetin 3-glucosylrutinoside. The flavonols were detected after a lag period of 3 days of cold storage. The content ranged from 6 to 14 mg/100 g of fresh weight depending on the cultivar after 6 days of storage. Chlorogenic acid as the main caffeic acid derivative and the amino acids tyrosine and tryptophan were also quantified. The effect of cold storage under light or in dark was studied with new-season-harvested Monalisa potatoes. The flavonol induction was higher in fresh-cut potatoes stored under light than in the dark. However, caffeic acid derivatives were not affected. Domestic cooking such as boiling, microwaving, and frying provoked a partial loss of the flavonols, which were retained in the range of 4-16 mg per serving (213 g). Steam-cooking resulted in the highest retention of caffeic acid derivatives and aromatic amino acids compared with the other cooking methods studied. This means that due to the large amount of potatoes consumed in the Western diet, fresh-cut potatoes can be a significant source of health-promoting phenolics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号