首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The self-assembly mechanism of alkanethiol monolayers on the (111) surface of gold was discovered with the use of an ultrahigh-vacuum scanning tunneling microscope. Monolayer formation follows a two-step process that begins with condensation of low-density crystalline islands, characterized by surface-aligned molecular axes, from a lower density lattice-gas phase. At saturation coverage of this phase, the monolayer undergoes a phase transition to a denser phase by realignment of the molecular axes with the surface normal. These studies reveal the important role of molecule-substrate and molecule-molecule interactions in the self-assembly of these technologically important material systems.  相似文献   

2.
Structural transformations on elemental semiconductor surfaces typically occur above several hundred degrees Celsius, and the atomic motions involved are extremely rapid and difficult to observe. However, on the (111) surface of germanium, a few lead atoms catalyze atomic motions so that they can be observed with a tunneling microscope at temperatures below 80 degrees C. Mass transport and structural changes are caused by the creation and propagation of both vacancy-like and interstitial-like point defects within the crystal surface. The availability of dangling bonds on the surface is critical. A detailed atomic model for the observed motions has been developed and is used to explain the structural phase transition Ge(111)-c(2x8) <--> 1x1, which occurs near 300 degrees C.  相似文献   

3.
The structure of self-assembled monolayers (SAMs) of long-chain alkyl sulfides on gold(111) has been resolved by density functional theory-based molecular dynamics simulations and grazing incidence x-ray diffraction for hexanethiol and methylthiol. The analysis of molecular dynamics trajectories and the relative energies of possible SAM structures suggest a competition between SAM ordering, driven by the lateral van der Waals interaction between alkyl chains, and disordering of interfacial Au atoms, driven by the sulfur-gold interaction. We found that the sulfur atoms of the molecules bind at two distinct surface sites, and that the first gold surface layer contains gold atom vacancies (which are partially redistributed over different sites) as well as gold adatoms that are laterally bound to two sulfur atoms.  相似文献   

4.
The charge distribution in atoms with closed electron shells is spherically symmetric, whereas atoms with partially filled shells can form covalent bonds with pointed lobes of increased charge density. Covalent bonding in the bulk can also affect surface atoms, leading to four tiny humps spaced by less than 100 picometers in the charge density of adatoms on a (001) tungsten surface. We imaged these charge distributions by means of atomic force microscopy with the use of a light-atom probe (a graphite atom), which directly measured high-order force derivatives of its interaction with a tungsten tip. This process revealed features with a lateral distance of only 77 picometers.  相似文献   

5.
We present studies of the electronic structure of La(2-x)BaxCuO4, a system where the superconductivity is strongly suppressed as static spin and charge orders or "stripes" develop near the doping level of x = (1/8). Using angle-resolved photoemission and scanning tunneling microscopy, we detect an energy gap at the Fermi surface with magnitude consistent with d-wave symmetry and with linear density of states, vanishing only at four nodal points, even when superconductivity disappears at x = (1/8). Thus, the nonsuperconducting, striped state at x = (1/8) is consistent with a phase-incoherent d-wave superconductor whose Cooper pairs form spin-charge-ordered structures instead of becoming superconducting.  相似文献   

6.
A recently designed single-crystal surface calorimeter has been deployed to measure the energy difference between two solid surface structures. The clean Pt{100} surface is reconstructed to a stable phase in which the surface layer of platinum atoms has a quasi-hexagonal structure. By comparison of the heats of adsorption of CO and of C(2)H(4) on this stable Pt{100}-hex phase with those on a metastable Pt{100}-(1x1) surface, the energy difference between the two clean phases was measured as 20 +/- 3 and 25 +/- 3 kilojoules per mole of surface platinum atoms.  相似文献   

7.
The recently discovered three-dimensional or bulk topological insulators are expected to exhibit exotic quantum phenomena. It is believed that a trivial insulator can be twisted into a topological state by modulating the spin-orbit interaction or the crystal lattice, driving the system through a topological quantum phase transition. By directly measuring the topological quantum numbers and invariants, we report the observation of a phase transition in a tunable spin-orbit system, BiTl(S(1-δ)Se(δ))(2), in which the topological state formation is visualized. In the topological state, vortex-like polarization states are observed to exhibit three-dimensional vectorial textures, which collectively feature a chirality transition as the spin momentum-locked electrons on the surface go through the zero carrier density point. Such phase transition and texture inversion can be the physical basis for observing fractional charge (±e/2) and other fractional topological phenomena.  相似文献   

8.
The spectrum of Mercury at the Fraunhofer sodium D lines shows strong emission features that are attributed to resonant scattering of sunlight from sodium vapor in the atmosphere of the planet. The total column abundance of sodium was estimated to be 8.1 x 10(11) atoms per square centimeter, which corresponds to a surface density at the subsolar point of about 1.5 x 10(5) atoms per cubic centimeter. The most abundant atmospheric species found by the Mariner 10 mission to Mercury was helium, with a surface density of 4.5 x 10(3) atoms per cubic centimeter. It now appears that sodium vapor is a major constituent of Mercury's atmosphere.  相似文献   

9.
Spectra of the region just above the bright limb of the Moon show weak emission features that are attributed to resonant scattering of sunlight from sodium and potassium vapor in the lunar atmosphere. The maximum omnidirectional emission flux above the bright limb is 3.8 +/- 0.4 kilorayleighs for sodium and 1.8 +/- 0.4 kiloray-leighs for potassium. The zenith column densities above the subsolar point are estimated to be 8 +/- 3 x 10(8) atoms cm(-2) for sodium 1.4 +/- 0.3 x 10(8) atoms cm(-2) for potassium. Corresponding surface densities are 67 +/- 12 atoms cm(-3) and 15 +/- 3 atoms cm(-3), respectively. The scale height for the sodium atmosphere is 120 +/- 42 kilometers, and for potassium 90 +/- 20 kilometers, which implies that the effective temperature of the sodium and potassium is close to the lunar surface temperature. The sodium density at the south polar region was found to be similar to that at the subsolar point, indicating wide-spread distribution of sodium vapor over the lunar surface. The ratio of the density of sodium to the density of potassium is (6 +/- 3) to 1, which is close to the sodium to potassium ratio in the lunar surface, suggesting that the atmosphere originates from the vaporization of surface minerals.  相似文献   

10.
The adsorption of iodine on platinum single crystals was studied with the scanning tunneling microscope (STM) to define the limits of resolution that can be obtained while imaging in air and to set a target resolution for STM imaging of metal surfaces immersed in an electrochemical cell. Two iodine adlattice unit cells of slightly different iodine packing density were clearly imaged: ( radical7 x radical7) R19.1 degrees -I, surface coverage ?(I) = 3/7; and (3 x 3)-I, ?(I) = 4/9. The three iodine atoms in the ( radical7 x radical7) unit cell form a regular hexagonal lattice interatomic distance d(I) = 0.424 nanometer, with two atoms adsorbed in threefold hollow sites and one atom adsorbed at an atop site. The (3 x 3) unit cell showed two different packing arrangements of the four iodine atoms exit. In one of the (3 x 3) structures, the iodine atoms pack to form a hexagonal lattice, d(I) = 0.417 nanometer, with three of the iodine atoms at twofold adsorption sites and one atom at an atop site. Another packing arrangement of iodine into the (3 x 3) unit cell was imaged in which the iodine atoms are not arranged symmetrically.  相似文献   

11.
The nature and control of individual metal atoms on insulators are of great importance in emerging atomic-scale technologies. Individual gold atoms on an ultrathin insulating sodium chloride film supported by a copper surface exhibit two different charge states, which are stabilized by the large ionic polarizability of the film. The charge state and associated physical and chemical properties such as diffusion can be controlled by adding or removing a single electron to or from the adatom with a scanning tunneling microscope tip. The simple physical mechanism behind the charge bistability in this case suggests that this is a common phenomenon for adsorbates on polar insulating films.  相似文献   

12.
Yang RT  Wong C 《Science (New York, N.Y.)》1981,214(4519):437-438
Etch-decoration reveals that the rate of removal of carbon atoms exposed at monolayer steps on graphite surfaces depends on the population density of these edge atoms (the rate is higher at a low-density surface) and that carbon removal continues for a prolonged period after the oxygen supply in the gas phase has been shut off. The edge carbons are removed by both oxygen from the gas phase and oxygen in the adsorbed oxides which migrate from the neighboring basal carbon atoms.  相似文献   

13.
The rate constant of the electron-transfer reaction between a gold electrode and an electroactive ferrocene group has been measured at a structurally well-defined metal-electrolyte interface at temperatures from 1 degrees to 47 degrees C and reaction free energies from -1.0 to +0.8 electron volts (eV). The ferrocene group was positioned a fixed distance from the gold surface by the self-assembly of a mixed thiol monolayer of (eta(5)C(5)H(5))Fe(eta(5)C(5)H(4))CO(2)(CH(2))(16)SH and CH(3)(CH(2))(15)SH. Rate constants from 1 per second (s(-1)) to 2 x 10(4) s(-1) in 1 molar HClO(4) are reasonably fit with a reorganization energy of 0.85 eV and a prefactor for electron tunneling of 7 x 10(4) s(-1) eV(-1). Such self-assembled monolayers can be used to systematically probe the dependence of electron-transfer rates on distance, medium, and spacer structure, and to provide an empirical basis for the construction of interfacial devices such as sensors and transducers that utilize macroscopically directional electron-transfer reactions.  相似文献   

14.
The [As@Ni12@As20]3- ion was prepared from As7(3-) and Ni(COD)2 in ethylenediamine solutions and isolated as the Bu4P+ salt (As, arsenic; Ni, nickel; COD, cyclooctadiene; Bu, butyl; P, phosphorus). The anion contains an icosahedral [Ni12(mu12-As)]3- fragment that resides at the center of an As20 dodecahedral (fullerene) cage to give an onion-skin-like [As@Ni12@As20]3- cluster with Ih point symmetry. The icosahedron and pentagonal dodecahedron are reciprocal platonic solids, and the 32 surface atoms form a dimpled geodesic sphere composed of 60 triangular faces. In the gas phase, the [As@Ni12@As20]3- ion sequentially loses all 21 As atoms to form a series of Ni12As(21-x) clusters where 0 相似文献   

15.
End states--the zero-dimensional analogs of the two-dimensional states that occur at a crystal surface--were observed at the ends of one-dimensional atom chains that were self-assembled by depositing gold on the vicinal Si(553) surface. Scanning tunneling spectroscopy measurements of the differential conductance along the chains revealed quantized states in isolated segments with differentiated states forming over end atoms. A comparison to a tight-binding model demonstrated how the formation of electronic end states transforms the density of states and the energy levels within the chains.  相似文献   

16.
Fields greater than 10 MG can be produced by explosive flux compression and fields up to 3 MG with capacitor banks. Measurement of fields up to 10 MG is reliable, but difficulties may be expected at higher fields. Megagauss fields have been applied successfully as high-pressure sources, in high-energy particle physics, and in solid-state investigations. Other uses remain to be exploited: plasma compression by megagauss fields has been relatively unsuccessful but shows promise; their use as particle accelerators has been studied only theoretically; and much work remains to be done, both experimentally and theoretically, in connection with applications of megagauss fields in solidstate physics. Note added in proof: Since this article was prepared, Grigor'ev et al. have carried out some experiments (48) in which they have compressed hydrogen up to a density of 1.95 grams per cubic centimeter with a calculated pressure of 8 x 10(6) atmospheres. They report five different pressure-density points and claim that their data can be explained by assuming that the transition to the metallic phase occurs at a pressure of 2.8 x 10(6) atmospheres, with a density change from 1.08 to 1.3 g/cm(3). Using the flux compression techniques described earlier in this article, Hawke et al. [see (30, 31)] have obtained a pressure-density point at 1.5 x 10(6) atmospheres and 1.0 g/cm(3), which is also not inconsistent with a predicted equation of state of metallic hydrogen (49). In view of the experimental uncertainties, none of the pressure-density data can yet be used conclusively to establish the transition's existence. Hawke and his co-workers are presently engaged in measurements of the electrical conductivity of the compressed hydrogen. Observation of a significant conductivity at the proposed transition pressure would be a more definitive test of a metallic transition. In addition, two lower pressure-density points have been obtained for deuterium by the Los Alamos group, by means of the flux compression methods described earlier in this article. One point agrees to within experimental error with a slight extrapolation of Stewart's data (50). The second point is at a pressure of 65+/- 3 x 10(3) atmospheres with a density of 0.71 +/- 0.10 g/cm(3). The data are tentative, and efforts are under way to obtain more data points at both higher and lower pressures.  相似文献   

17.
Kang WN  Kim HJ  Choi EM  Jung CU  Lee SI 《Science (New York, N.Y.)》2001,292(5521):1521-1523
We fabricated high-quality c axis-oriented epitaxial MgB2 thin films using a pulsed laser deposition technique. The thin films grown on (1 i 0 2) Al2O3 substrates have a transition temperature of 39 kelvin. The critical current density in zero field is approximately 6 x 10(6) amperes per cubic centimeter at 5 kelvin and approximately 3 x 10(5) amperes per cubic centimeter at 35 kelvin, which suggests that this compound has potential for electronic device applications, such as microwave devices and superconducting quantum interference devices. For the films deposited on Al2O3, x-ray diffraction patterns indicate a highly c axis-oriented crystal structure perpendicular to the substrate surface.  相似文献   

18.
Structural information on nanometer-sized gold particles has been limited, due in part to the problem of preparing homogeneous material. Here we report the crystallization and x-ray structure determination of a p-mercaptobenzoic acid (p-MBA)-protected gold nanoparticle, which comprises 102 gold atoms and 44 p-MBAs. The central gold atoms are packed in a Marks decahedron, surrounded by additional layers of gold atoms in unanticipated geometries. The p-MBAs interact not only with the gold but also with one another, forming a rigid surface layer. The particles are chiral, with the two enantiomers alternating in the crystal lattice. The discrete nature of the particle may be explained by the closing of a 58-electron shell.  相似文献   

19.
In situ neutron diffraction experiments show that at pressures above 2 kilobars, cubic zirconium tungstate (ZrW2O8) undergoes a quenchable phase transition to an orthorhombic phase, the structure of which has been solved from powder diffraction data. This phase transition can be reversed by heating at 393 kelvin and 1 atmosphere and involves the migration of oxygen atoms in the lattice. The high-pressure phase shows negative thermal expansion from 20 to 300 kelvin. The relative thermal expansion and compressibilities of the cubic and orthorhombic forms can be explained in terms of the "cross-bracing" between polyhedra that occurs as a result of the phase transition.  相似文献   

20.
Results from in situ x-ray diffraction experiments with a DIA-type cubic anvil apparatus (SAM 85) reveal that MgSiO(3) perovskite transforms from the orthorhombic Pbnm symmetry to another perovskite-type structure above 600 kelvin (K) at pressures of 7.3 gigapascals; the apparent volume increase across the transition is 0.7%. Unit-cell volume increased linearly with temperature, both below (1.44 x 10(-5) K(-1)) and above (1.55 x 10(-5) K(-1)) the transition. These results indicate that the physical properties measured on the Pbnm phase should be used with great caution because they may not be applicable to the earth's lower mantle. A density analysis based on the new data yields an iron content of 10.4 weight percent for a pyrolite composition under conditions corresponding to the lower mantle. All current equation-of-state data are compatible with constant chemical composition in the upper and lower mantle; thus, these data imply that a chemically layered mantle is unnecessary, and whole-mantle convection is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号