首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The objective of this research was to investigate the critical water content (θ c) and water stress coefficient (K s) of soybean plant under deficit irrigation. This research was conducted in a plastic house at the University of Lampung, Sumatra in Indonesia from June to September 2000. The water deficit levels were 0–20%, 20–40%, 40–60%, 60–80%, and 80–100% of available water (AW) deficit, arranged in Randomized Completely Block (RCB) design with four replications. The results showed that the soybean plant started to experience stress from week IV within 40–60% of AW deficit. The fraction of total available water (TAW) that the crop can extract from the root zone without suffering water stress (p) was 0.5 and θc was 0.305 m3 m−3. The values of K s at p=0.5 were 0.78, 0.86, 0.78, and 0.71 from week IV to week VII, respectively. The optimum yield of soybean plant with the highest yield efficiency was reached at 40–60% of AW deficit with an average K s value of 0.78; this level of deficit irrigation could conserve about 10% of the irrigation. The optimum yield of soybean plant was 7.9 g/pot and crop water requirement was 372 mm.  相似文献   

2.
As the challenges toward increasing water for irrigation become more prevalent, knowledge of crop yield response to water can facilitate the development of irrigation strategies for improving agricultural productivity. Experiments were conducted to quantify maize yield response to soil moisture deficits, and assess the effects of deficit irrigation (DI) on water productivity (water and irrigation water use efficiency, WUE and IWUE). Five irrigation treatments were investigated: a full irrigation (I1) with a water application of 60 mm and four deficit treatments with application depths of 50 (I2), 40 (I3), 30 (I4), and 20 mm (I5). On average, the highest grain yield observed was 1008.41 g m?2 in I1, and water deficits resulted in significant (p < .05) reduction within range of 6 and 33%. This reduction was significantly correlated with a decline in grain number per ear, 1000-grain weight, ear number per plant, and number of grain per row. The highest correlation was found between grain yield and grain number per ear. The WUE and IWUE were within range of 1.52–2.25 kg m?3 and 1.64–4.53 kg m?3, respectively. High water productivity without significant reduction in yield (<13%) for I2 and I3 compared to the yield in I1 indicates that these water depths are viable practices to promote sustainable water development. Also, for assessing the benefits of irrigation practices in the region crop water production functions were established. Maize yield response to water stress was estimated as .92, suggesting the environmental conditions are conducive for implementing DI strategies.  相似文献   

3.
Water-saving technologies that increase water productivity of rice are urgently needed to help farmers to cope with irrigation water scarcity. This study tested the ability of the ORYZA2000 model to simulate the effects of water management on rice growth, yield, water productivity (WP), components of the water balance, and soil water dynamics in north-west India. The model performed well as indicated by good agreement between simulated and measured values of grain yield, biomass, LAI, water balance components and soil water tension, for irrigation thresholds ranging from continuous flooding (CF) to 70 kPa soil water tension.Using weather data for 40 different rice seasons (1970-2009) at Ludhiana in Punjab, India, the model predicted that there is always some yield penalty when moving from CF to alternate wetting and drying (AWD). With an irrigation threshold of 10 kPa, the average yield penalty was 0.8 t ha−1 (9%) compared with CF, with 65% irrigation water saving, which increased to 79% at 70 kPa with a yield penalty of 25%. The irrigation water saving was primarily due to less drainage beyond the root zone with AWD compared to CF, with only a small reduction in evapotranspiration (ET) (mean 60 mm).There were tradeoffs between yield, irrigation amount and various measures of WP. While yield was maximum with CF, water productivity with respect to ET (WPET) was maximum (1.7 g kg−1) for irrigation thresholds of 0 (CF) to 20 kPa, and irrigation water productivity (WPI) increased to a maximum plateau (1.3 g kg−1) at thresholds ≥30 kPa.Because of the possibility of plant stress at critical stages known to be sensitive to water deficit (panicle initiation (PI) and flowering (FL)), treatments with additional irrigations were superimposed for 2 weeks at one or both of these stages within the 10, 20 and 30 kPa AWD treatments. Ponding for two weeks at FL was more effective in reducing the yield penalty with AWD than ponding at PI, but the biggest improvement was with ponding at both stages. This reduced the average yield loss from 9% (0.8 t ha−1) to 5% (0.5 t ha−1) for AWD with thresholds of 10 and 20 kPa. However, maximum WPI (1.1 g kg−1) was achieved with an irrigation threshold of 20 kPa combined with more frequent irrigation at FL only, but with a greater yield penalty (8%). Thus the optimum irrigation schedule depends on whether the objective is to maximise yield, WPET or WPI, which depends on whether land or water are most limiting. Furthermore, the optimum irrigation schedule to meet the short term needs of individual farmers may differ from that needed for sustainable water resource management.  相似文献   

4.
A field study was carried out from 1995 to 1997 in order to determine the effect of irrigation and water stress imposed at different development stages on vegetative growth, grain yield and other yield components of corn (Zea mays L.). The field trials were conducted on a silty loam Entisol soil, with Pioneer 3377 corn hybrid. A randomised complete block design with three replications was used. Four known growth stages of the plant were considered and a total of 16 (including rain fed) irrigation treatments were applied. The effect of irrigation or water stress at any stage of development on plant height, leaf area index, grain yield per hectare, as well number of ears per plant, grain yield per cob and 1000 kernels weight, were evaluated. Results of this 3-year study show that all vegetative and yield parameters were significantly affected by water shortage in the soil profile due to omitted irrigation during the sensitive tasselling and cob formation stages. Water stress occurring during vegetative and tasselling stages reduced plant height, as well as leaf area development. Short-duration water deficits during the rapid vegetative growth period caused 28–32% loss of final dry matter weight. Highest yields were observed in the fully irrigated control (VTCM) and the treatment which allowed water stress during the vegetative growth stage (TCM). Even a single irrigation omission during one of the sensitive growth stages, caused up to 40% grain yield losses during dry years such as 1996. Much greater losses of 66–93% could be expected as a result of prolonged water stress during tasselling and ear formation stages. Seasonal irrigation water amounts required for non-stressed production varied by year from 390 to 575 mm. Yield response factor (ky) values (unitless parameter) relating yield loss to water deficits) obtained for the first, second and third experimental years were determined to be 1.22, 1.36 and 0.81, respectively.  相似文献   

5.
《Field Crops Research》2002,78(1):51-64
The effects of differential irrigation and fertiliser treatments on the water use of potatoes (Solanum tuberosum L. cv. Desirée) were studied over 2 years in the hot dry climate of northeast Portugal. Total actual evapotranspiration (ETc) ranged from 150 to 320 mm in 1988, and from 190 to 550 mm in 1989 depending mainly on irrigation treatment, potential evaporation rates (ETp) and duration of the growing season. By comparison, the effects of nitrogen fertiliser on total water use were relatively small. Although nitrogen increased transpiration (larger leaf canopy), it reduced evaporation from the soil surface, in frequently irrigated plots, by similar amounts. As a result, in well-irrigated crops, the ETc/ETp ratio averaged 0.85 over the season, regardless of nitrogen level. Evaporation from the soil surface represented 15–25% of total water use by well-fertilised plants, but as much as 30–50% from the sparse stands of unfertilised crops. The proportion of water extracted from each depth increment of the silt-loam soil declined logarithmically, from the surface to 1.1 m depth, the maximum measured, for irrigated crops, and linearly when rain-fed. The ETc/ETp ratio fell below unity when 25–30% of the available water in the top metre had been depleted, equivalent to soil water deficits (SWDs) of 45–50 mm. By comparison, ETc declined to zero when 75–90% of the available water had been extracted, corresponding to actual deficits of 135–150 mm. Peak ETc rates reached 12–13 mm per day on days immediately following irrigation, nearly twice ETp (possibly due to the influence of advection) but then declined logarithmically with time to about 3 mm per day within 5 days. Using the same data, a companion paper reports the influence of climatic conditions on the yield responses to water of potato crops grown in the region.  相似文献   

6.
Plant responses to water deficit need to be monitored for producing a profitable crop as water deficit is a major constraint on crop yield. The objective of this study was to evaluate physiological responses of cotton (Gossypium hirsutum) to various environmental conditions under limited water availability using commercially available varieties grown in South Texas. Soil moisture and variables of leaf gas exchange were measured to monitor water deficit for various varieties under different irrigation treatments. Lint yield and growth variables were also measured and correlations among growth parameters of interest were investigated. Significant differences were found in soil moisture, leaf net assimilation (An), stomatal conductance (g), transpiration rate (Tr), and instantaneous water use efficiency (WUEi) among irrigation treatments in 2006 while no significant differences were found in these parameters in 2007. Some leaf gas exchange parameters, e.g., Tr, and leaf temperature (TL) have strong correlations with An and g. An and WUE were increased by 30–35% and 30–40%, respectively, at 600 μmol (CO2) m−2 s−1 in comparison with 400 μmol (CO2) m−2 s−1. Lint yield was strongly correlated with g, Tr, WUE, and soil moisture at 60 cm depth. Relative An, Tr, and TL started to decrease from FTSW 0.3 at 60 cm and FTSW 0.2 at 40 cm. The results demonstrate that plant water status under limited irrigation management can be qualitatively monitored using the measures of soil moisture as well as leaf gas exchange, which in turn can be useful for describing yield reduction due to water deficit. We found that using normalized An, Tr, and TL is feasible to quantify plant water deficit.  相似文献   

7.
滴灌量对冬小麦耗水特性和干物质积累分配的影响   总被引:2,自引:0,他引:2  
为给滴灌冬小麦高产栽培的水分管理提供理论依据,在播前足墒和越冬前灌水750 m33·hm-2的条件下分析了起身后不同滴灌量(2550、3150和3750 m3·hm-2,分别用W1、W2、W3表示)对冬小麦耗水及干物质积累、分配的影响.结果表明,随滴灌量的减少,冬小麦孕穗期至花后20 d的0~100 cm土层含水量明显降低,但土壤含水量沿毛管的横向差异增大,总耗水量减少,土壤贮水的消耗量明显增加;群体的叶面积指数和干物质积累量降低,尤其是远离毛管处下降更明显;开花前营养器官贮藏同化物向籽粒的转运量、运转率及对籽粒的贡献率增加,开花后干物质同化量和对籽粒的贡献率显著降低;籽粒产量降低,灌溉水利用效率呈增加趋势.3个处理中,W2的水分利用效率最高,产量与W3差异不显著.在本试验条件下,起身后滴灌冬小麦的适宜灌溉定额为3150~3750 m3·hm2.  相似文献   

8.
Accurate forecasts of daily crop evapotranspiration (ETc) are essential for real-time irrigation management and water resource allocation. This paper presents a method for the short-term forecasting of ETc using a single-crop coefficient approach and public weather forecasts. Temperature forecasts with a 7-day lead time in 2013–2015 were retrieved and entered into a calibrated Hargreaves–Samani model to compute daily reference evapotranspiration (ET0) forecasts, while crop coefficient (Kc) empirical values were estimated from both observed ETc value and calculated ET0 values using the Penman–Monteith equation for the period of 2010–2012. Daily ETc forecasts of irrigated double-cropping rice were determined for three growing seasons during the period of 2013–2015 and were compared with ETc values measured by the weighing lysimeters at the Jiangxi experimental irrigation station in southeastern China. During the early rice season, the average mean absolute error (MAE) and root-mean-square-error (RMSE) values of ETc forecasts ranged from 0.95 to 1.06 mm day?1 and from 1.18 to 1.31 mm day?1, respectively, and the average correlation coefficient (R) ranged from 0.39 to 0.54; for late rice, the average MAE and RMSE values ranged from 1.01 to 1.09 mm day?1 and from 1.32 to 1.40 mm day?1, respectively, and the average R value ranged from 0.54 to 0.58. There could be three factors responsible for errors in ETc forecasts, including temperature forecast errors, Kc value errors and neglected meteorological variables in the HS model, including wind speed and relative humidity. In addition, ETc was more sensitive to changes in temperature than Kc. The overall results indicated that it is appropriate to forecast ETc with the proposed model for real-time irrigation management and water resource allocation.  相似文献   

9.
Employing locally adapted plants together with irrigation scheduling based on developmental stage in semi-arid and arid regions may provide an opportunity to optimize irrigation efficiency, and water savings in regions where water resources are limited. To investigate this water saving potential, the final seed yield and quality of two local plant species were investigated under water deficit conditions over two growing seasons (2003, 2004) in the northeast of Iran. In this study, black cumin (Nigella sativa L.) which is used locally as an anti-microbial and isabgol (Plantago ovata Forsk.) which is used as an anti-diabetic plant were exposed to four different irrigation regimes. Weekly irrigation was the control, and the three treatments based on developmental stage for both species were termination of irrigation at blooming (folded flowers), flowering, and seed formation. Isabgol seed yield was lower for all of the water deficit treatments compared to control, but black cumin showed tolerance to water deficit except when irrigation was terminated at seed formation. The lowest seed yield was obtained when irrigation was stopped at the blooming stage, and the number of seeds per plant was the main yield component affected. One thousand seed weight for both species was relatively stable across all irrigation treatments, and higher seed yield was consistent with higher straw yield and plant height. Our results did not show any reduction in oil concentration for black cumin or mucilage percentage for isabgol across all water deficit treatments.  相似文献   

10.
The uncertainty of monsoon rainfall and the decreasing availability of irrigation water, as a result of climate change, and high water demand of other sectors have resulted to wide adoption of alternate wetting and drying (AWD) technique especially in irrigated lowland rice production to overcome water scarcity. However, under climate change circumstances, AWD can be optimized when taking advantage of favorable water seasonality conditions to increase crop yield and irrigation water use efficiency. Therefore, a field trial was conducted to find suitable water depth for reducing rice irrigation water use by combining four different water depth treatments (T2cm, T3cm, T4cm, and T5cm) with rainfall through a randomized complete block design having 3 replications. Water depths were applied weekly from transplanting to heading. The results showed that water stress at vegetative stage decreased plant height and tillers number between 7 and 33 % at panicle initiation, followed by total and partial growth recovery. In addition, panicle number per hill showed a 53–180 % decrease at the heading stage. Severe water stress induced by the lowest water treatment significantly reduced yield components between 15 and 52 % at harvest. It was found that weekly application of 3 cm water depth combined with rainfall improved AWD effectiveness, and yielded the highest beneficial water productivity with less yield expenses.  相似文献   

11.
《Field Crops Research》1995,40(2):87-94
Maize (Zea mays L.) grain yield is particularly sensitive to water deficits that coincide with the tasseling-silking period, causing marked reductions in grain number. More knowledge about crop responses to water supply is required, however, to explain the causes of kernel number reductions under the mild stresses characteristic of humid regions. The objectives of this study were to: (i) quantify crop evapotranspiration, Ec, and its relationship with shoot biomass production, grain yield, and kernel number; and (ii) determine the impact on final kernel number of supplying fresh pollen to silks whose appearance is delayed by water deficits at silking. Field experiments were conducted at Balcarce (37°45′S, 130 m) during 1988/89 and 1989/90 with two sowing dates (6 weeks apart) to provide differences in evaporative demand. Plastic covers were placed on the ground of water-deficit plots to generate a 40-day period of lowered water supply bracketing silking. Control plots received rain plus additional furrow irrigation in order to keep the ratio between crop (c) and potential (Ep) Penman evapotranspiration greater than 0.9. Plant water status indicators revealed differences between treatments, but failed to reflect soil water status. Water deficit reduced plant height, maximum leaf area index, and shoot biomass. Shoot biomass accumulation was correlated with Ec, but higher water-use efficiencies (WUE) were found for the water-stress treatments. Grain yield was correlated to kernels m−2 (r = 0.88; 6 d.f.), and both grain yield and kernels m−2 were related to Ec during the treatment period, resulting in reductions of 4.7 grains m−2 and 17.7 kg ha−1 for each mm reduction in Ec. The number of kernels per ear did not improve when fresh pollen was applied to late appearing silks, suggesting that ovaries which failed to expose their silks synchronously with pollen shedding were deleteriously affected by water stress.  相似文献   

12.
A field experiment was conducted during 2001-2003 to evaluate the effect of water stress on the yield and yield components of four rice cultivars commonly grown in Mazandaran province, Iran. In northern Iran irrigated lowland rice usually experiences water deficit during the growing season include of land preparation time, planting, tillering stage, flowering and grain filing period. Recently drought affected 20 of 28 provinces in Iran; with the southeastern, central and eastern parts of the country being most severely affected. The local and improved cultivars used were Tarom, Khazar, Fajr and Nemat. The different water stress conditions were water stress during vegetative, flowering and grain filling stages and well watered was the control. Water stress at vegetative stage significantly reduced plant height of all cultivars. Water stress at flowering stage had a greater grain yield reduction than water stress at other times. The reduction of grain yield largely resulted from the reduction in fertile panicle and filled grain percentage. Water deficit during vegetative, flowering and grain filling stages reduced mean grain yield by 21, 50 and 21% on average in comparison to control respectively. The yield advantage of two semidwarf varieties, Fajr and Nemat, were not maintained under drought stress. Total biomass, harvest index, plant height, filled grain, unfilled grain and 1000 grain weight were reduced under water stress in all cultivars. Water stress at vegetative stage effectively reduced total biomass due to decrease of photosynthesis rate and dry matter accumulation.  相似文献   

13.
Effluent lagoons on dairy farms can overflow and potentially pollute adjacent land and associated water bodies. An alternative solution to effluent disposal is needed by dairy operators in island environments. An attractive win‐win alternative is to recycle nutrients from this resource through effluent irrigation for forage grass production that minimizes environmental pollution. This study assessed biomass production and nutrient removal by, and high application rates to, tropical grasses that were subsurface drip‐irrigated with dairy effluent. Four grass species – Banagrass (Pennisetum purpureum K. Schumach.), California grass (Brachiaria mutica (Forssk.) Stapf.), Stargrass (Cynodon nlemfuensis Vanderyst) and Suerte grass (Paspalum atratum Swallen) – were subsurface (20–25 cm) drip‐irrigated with effluent at two rates based on potential evapotranspiration (ETp) at the site (Waianae, Hawaii) ?2·0 ETp (16 mm d?1 in winter; 23 mm d?1 in summer) and 0·5 ETp (5 mm d?1 in winter; 6 mm d?1 in summer). Treatments were arranged in an augmented completely randomized design. Brachiaria mutica and P. purpureum had the highest dry‐matter yield (43–57 t ha?1 year?1) and nutrient uptake especially with the 2·0 ETp irrigation rate (1083–1405 kg ha?1 year?1 N, 154–164 kg ha?1 year?1 P, 1992–2141 kg ha?1 year?1 K). Average removal of nutrients by the grasses was 25–94% of the applied nitrogen, 11–82% of phosphorus and 2–13% of the potassium. Average values of crude protein (90–160 g kg?1), neutral detergent fibre (570–620 g kg?1) and acid detergent fibre (320–360 g kg?1) were at levels acceptable for feeding to lactating cattle. Results suggest that P. purpureum and B. mutica irrigated with effluent effectively recycled nutrients in the milk production system.  相似文献   

14.
Models can play an important role in agricultural planning and management. Thermal time accumulation is a common way of describing phenological development in crop models, but the sensitivity of this concept to water stress is rarely quantified. The effect of pre-anthesis droughts on the timing of anthesis and physiological maturity was assessed for quinoa (Chenopodium quinoa Willd.) var. ‘Santa Maria’, with the help of two field experiments (2005–2006 and 2006–2007) in the central Bolivian Altiplano. Various treatments with different sowing dates and irrigation applications were considered. To evaluate the effect of drought stress on crop development, drought stress during the first 60 days after sowing was assessed with three different stress indicators: the number of days that the soil water content of the root zone was above a threshold, the average relative transpiration, and the sum of daily actual transpiration, standardized for reference evapotranspiration (∑(Ta/ET0)). The best indicator to quantify the effect of pre-anthesis drought stress on phenological development was ∑(Ta/ET0) cumulated until 60 days after sowing. This indicator showed a significant logarithmic relation with the time to anthesis and time to physiological maturity. Correlations of the drought stress indicator with thermal time accumulation were better than with calendar time accumulation. Due to an effect of post-anthesis droughts, the correlations of the drought stress indicator with the time to anthesis were stronger than with the time to physiological maturity. It was also demonstrated that deficit irrigation can contribute to a better agricultural planning due to a better control of the phenological development of quinoa. The proposed relations can be used for modeling phenological development of quinoa in drought prone regions and for efficient deficit irrigation planning.  相似文献   

15.
在移动式防雨棚条件下.采用子母盆栽土培法和池栽微区试验相结合的方法,以冬小麦品种93中6为试验材料进行了调亏灌溉(Regulated deficit irrigation,RDI)试验研究,旨在了解调亏灌溉对小麦不同生育阶段生长动态、蒸腾速率(Tr)、光合速率(Pn)、光合产物积累与分配以及最终籽粒产量和水分利用效率(WUE)的影响,寻求适宜的调亏生育阶段(时期)和调节亏水度,为建立冬小麦RDI模式及其配套优化农艺方案提供理论依据。结果表明,适时适度的水分调亏显著抑制Tr,而Pn下降不明显;复水后Pn又具有超补偿效应,光合产物具有起补偿积累,且有利于向籽粒运转与分配;抑制营养生长,促进生殖生长。冬小麦调亏灌溉的适宜时段为三叶~返青,调亏度为40%FC(Field water capacity,FC)~60%FC,历时约55d;平均比对照增产0.88%~8.25%,节水12.80%~18755%,水分利用效率提高15.96%~32.98%。通过三因子正交旋转组合设计综合分析试验资料,分别建立了经济产量(Y)及水分利用效率(WUE)的数学模型。对模型的解析结果表明,当实施RDI时,可适当提高作物群体指标,并与施肥等其它农艺技术相结合,可以补偿RDI的负面效应。对所建数学模型进行目标联合仿真寻优,获得不同决策目标下RDI与农艺技术结合的优化方案。  相似文献   

16.
This study was carried out to determine the effect of water stress on five different generative stages of soybeans and to evaluate the CROPGRO-soybean model under semi-arid climatic conditions. The study was conducted at the Faculty of Agricultural Engineering, Harran University research field in 2003 and 2004 growing seasons. Plants received full irrigation during vegetative stages, after which it was cut off at different reproductive stages (treatments): R1-2, beginning of flowering and full bloom; R3, beginning of pod; R4, full pod; R5, beginning of seed; and R6, full seed. The control treatment was full irrigation throughout. Observed yields ranged from 1955 (R6) to 3684 kg ha−1 (control) in 2003, and from 1867 (R6) to 3952 kg ha−1 (control) in 2004, respectively. Generally, in both of the years any water stress imposed on soybeans in three different generative stages (R3, R5, and R6) resulted in substantial yield reduction compared with full irrigation; yield reduction was greatest at the R6 stage. Biomass and 1000 seed weight also showed significant difference. Overall, CROPGRO-soybean simulated parameters from all treatments were higher compared with observed ones. Although simulated yield results were close to measured ones, they could not track observed yield patterns. Generally, the CROPGRO-soybean simulation model failed to satisfactorily mimic observed soybean yield, biomass, and 1000 seed weight and therefore it is suggested not to be used for similar scenarios and climatic conditions.  相似文献   

17.
《Plant Production Science》2013,16(3):277-285
Abstract

The effects of rewatering after different periods of soil drought stress on the photosynthetic capacity of Leymus chinensis in pots were investigated. The plants were subjected to short-term (10-d), moderate-term (20-day) and long-term (30-d) drought each followed by rewatering. Control plants were well watered during the experimental periods. The long-term water stress without rewatering decreased the chlorophyll content, Chl a/b ratio, carbonic anhydrase (CA) activity, net photosynthetic rate (A), and leaf area compared with the control. Rewatering increased the ratio of Chl a/b, CA activity and A, but decreased the leaf area and ion leakage from the cut leaf pieces. The long-term water stress without rewatering reduced the maximal efficiency of PSII (Fv/Fm), the actual quantum yield (Φp), and photochemical quenching (qp), but these values were increased by rewatering to more than the control level, though non-photochemical quenching (qN) was decreased as compared with the control. This implied that long-term drought aggravated PSII, but rewatering improved it. The net CO2-exchange rate showed similar diurnal changes in all treatments, but the rate in the morning was lower in long-term drought (before rewatering) than in the other treatments. These results suggest the photosynthesis of Leymus chinensis may be well adapted to episodical soil drought.  相似文献   

18.
Drought is a major factor limiting yield improvement of mung bean (Vigna radiata (L.) Wilczek) in the sub-humid, dry and intermediate zones of Sri Lanka. Therefore, the objective of this study was to analyze the yield response of mung bean to irrigation at various phenological stages in terms of radiation interception, radiation-use efficiency and harvest index. Four field experiments were carried out at two sites (Maha-Illuppallama and Kundasale) during the short, dry yala season over two years (1995 and 1996). The life cycle of mung bean was divided into three stages: vegetative (from germination to appearance of first flower); flowering (from appearance of first flower to 75% pod initiation); and pod-filling (from 75% pod initiation to maturity). Eight irrigation treatments were defined as all possible combinations of irrigation during the three stages. Maximum potential soil water deficits (PSWD) ranging from 127 to 376 mm developed as a result of keeping different combinations of stages unirrigated. Maximum LAI (Lm) and the fraction of incoming radiation intercepted (F) increased significantly with the number of stages irrigated. Specifically, treatments which included irrigation during the vegetative stage achieved large Lm and F. Radiation-use efficiency (RUE), maximum total biomass (Wm), harvest index (HI) and seed yield (Y) also showed a significant positive response to the number of stages irrigated. However, all the above parameters were significantly greater in treatments which included irrigation during the pod-filling and flowering stages. The treatment which received irrigation only during the vegetative stage had significantly lower RUE, Wm, HI and Y despite having higher Lm and F. Therefore, irrigation is critical during pod-filling and flowering stages mainly because of the higher LAI during these periods and, consequently, the greater demand for water. Lack of irrigation during these critical stages resulted in the development of significant PSWD with adverse effects on photosynthesis and consequently decreased RUE. Moreover, water stress during flowering and pod-filling stages significantly reduced pod initiation and pod growth rates and thereby reduced HI. It is concluded that to maximize mung bean yields in the dry season of the sub-humid zones of Sri Lanka, irrigation should extend across all phenological stages, specially the pod-filling stage.  相似文献   

19.
Genetic gains of cultivated peanut (Arachis hypogaea L.) have increased harvest index and disease tolerance, resulting in improved yield potential and broad-range adaptability of peanut cultivars to United States (U.S.) peanut production regions. Although this strategy has been successful, future yield increases may require peanut cultivars specifically adapted to environmental and management systems of a particular production region. Irrigation is one major management factor that varies across U.S. production regions and influences yield stability. Therefore, peanut germplasm selection for developing specifically adapted cultivars depends on knowledge of genotypic (G) pod yield responses to irrigation (M) across contrasting environmental (E) conditions (G × E × M interaction). The objectives of this 2-year study were to characterize germplasm by: (i) examining genotypic pod yield response to irrigation at locations in Florida and Texas; and (ii) estimating the genotypic pod yield performance and stability using genotype plus genotype-by-environment interaction (GGE) biplots. At the Florida location, genotypes New Mexico Valencia C (NMVC), COC 041, and Chico responded positively to increasing water application, whereas FloRun? ‘107?, C76 16, and FlavorRunner 458 responded negatively. Genotypes C76 16, ICGS 76, Chico, and ICGV 86015 had pod yields greater than the population mean. The genotype ICGS 76 had both high pod yields and stability. Pod yields of Chico were greater at the southwest locations, whereas ICGV 86015 had greater pod yields at the southeast locations. These results demonstrate a range in adaptability of distinct peanut genotypes that can be used in breeding programs for developing improved cultivars.

Abbreviations: G × E: genotype-by-environment interaction; G × E × M: genotype-by-environment-by-management interaction; G × M: genotype-by-management interaction; NMVC: New Mexico Valencia C; TWRPET: total water received as a percentage of ETo  相似文献   

20.
Crop growth is related to radiation‐use efficiency (RUE), which is influenced by the nitrogen (N) status of the crop, expressed at canopy level as specific leaf N (SLN) or at plant level as N nutrition index (NNI). To determine the mechanisms through which N affects dry‐matter (DM) production of forage kale, results from two experiments (N treatment range 0–500 kg ha?1) were analysed for fractional radiation interception (RI), accumulated radiation (Racc), RUE, N uptake, critical N concentration (Nc), NNI and SLN. The measured variables (DM, RI and SLN) and the calculated variables (NNI, Racc and RUE) increased with N supply. RUE increased from 0·74 and 0·89 g MJ?1 IPAR for the control treatments to 1·50 and 1·95 g MJ?1 IPAR under adequate N and water in both experiments. This represented an increase in RUE of 52–146% for the range of N treatments used in both experiments, whilst Racc increased by 9–17%, compared with the control treatments. Subsequently, the total DM yield of kale increased from 6·7 and 8 t DM ha?1 for the control treatments to ≥ 19 t DM ha?1 when ≥150 kg N ha?1 was applied. The DM yields for the 500 kg N ha?1 treatments were 25·5 and 27·6 t DM ha?1 for the two experiments. RUE increased linearly with SLN, at an average rate of 0·38 g DM MJ?1 IPAR per each additional 1 g N m?2 leaf until a maximum RUE of 1·90 g MJ?1 IPAR was reached in both experiments. There were no changes in RUE with SLN of > 2·6 g m?2 and NNI >1, implying luxury N uptake. RUE was the most dominant driver of forage kale DM yield increases in response to SLN and NNI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号