首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
降雨及施氮对水耕铁渗人为土土壤酸碱缓冲体系的影响   总被引:2,自引:0,他引:2  
以太湖地区典型水稻土——水耕铁渗人为土为供试材料,通过添加CaCO3和H2SO4培养及滴定的方法,研究不同pH降雨和施氮对土壤酸碱缓冲体系的影响。结果显示,土壤在添加CaCO3和H2SO4培养后进行不同量酸碱滴定,土壤在pH 4.0~7.5的突跃范围内与酸碱加入量呈显著的线性相关,表明该测定方法对供试土壤适用。同时施氮和降雨对土壤的酸化都有加速作用,各处理0-40 cm层土壤酸碱缓冲容量为1.91~2.20 cmol/kg,增加施氮量、降低降雨pH都降低土壤的酸碱缓冲容量,且土壤酸碱缓冲容量与盐基淋出量呈显著负相关关系,但不同酸度降雨对土壤酸度变化及酸碱缓冲容量变化影响主要为0-20 cm层,而对20-40 cm层影响较小;而施氮除影响土壤pH及酸碱缓冲容量的0-20 cm层外,还影响到20-40 cm层。表明研究土壤处在以盐基离子为主的酸碱缓冲体系,在此体系下,施氮或氮沉降对土体的影响比酸沉降更为深入。  相似文献   

2.
不同pH降雨淋溶对原状水稻土土壤酸化的影响   总被引:3,自引:2,他引:1  
采用原状土柱定时定量淋溶的方法,用pH为2.5,4.5和6.5的模拟降雨淋溶了太湖地区典型的水稻土-黄泥土.淋溶量为5 L/柱,研究原状土柱土壤淋溶后酸碱性变化及盐基离子的淋洗规律.结果显示,不同pH降雨淋溶后,土壤仍处在初级缓冲体系,即阳离子缓冲体系,但大量的盐基离子被淋溶出土体,淋出液的pH都在7.4以上,各淋溶处理淋出量最大的是Ca2+,淋出率最高的则为Mg2+,Na+和K+淋出量明显小于前两者,K+淋出量则最小,各处理间的各盐基离子的淋出量随淋溶液pH的降低而上升.淋溶后的土柱土壤pH和酸碱缓冲容量都出现下降,与淋溶前土壤相比,PH 2.5的处理0-10 cm土层和10-20 cm土层,土壤pH下降0.65,0.30个单位;PH 4.5的模拟降水处理降幅分别为0.42,0.04个单位;PH 6.5的模拟降水降幅为0.08,0.15个单位,各处理20-40 cm土层的pH则受模拟降雨的影响较小;同时采用酸碱滴定法测定了初级缓冲体系下各处理土壤的酸碱缓冲容量,结果显示0-10 cm土层,土壤酸碱缓冲容量降幅最大,和试验前处理土壤对应的土层相比,pH2.5,4.5,6.5的降雨处理降幅分别为31.83%,19.58%,15.59%,各pH 2.5,4.5,6.5的降雨处理10-20 cm土层降幅分别为23.93%,14.73%,7.17%.而各降雨处理20-40 cm土层降幅都小于5%.研究表明,虽然模拟半年度不同pH降雨淋溶处理下,大量盐基离子从土体表层被置换淋洗,导致表层土壤pH的降低,相比之下,不同pH的模拟降雨对土壤的酸化作用随pH的降低而上升.虽然淋溶后各处理土壤仍处在初级缓冲体系,但其表层土壤酸碱缓冲容量的下降必将加速土壤的进一步酸化.  相似文献   

3.
模拟酸雨对果园土壤主要形态酸变化的影响研究   总被引:1,自引:0,他引:1  
采用室内淋溶的方法研究了模拟酸雨对果园土壤pH(H2O)、pH(KCl)、交换性酸(EA)、交换性铝(EAl)、可滴定酸度(BNC)等各形态酸的变化影响,并依据淋溶前后各形态酸的含量评价了土壤酸度的变化。试验结果表明:以土壤pH(H2O)值作为供试土壤酸化指标,pH≤4.5的模拟酸雨淋溶促进了土壤酸化,而pH≥5.5的酸雨淋溶缓冲了土壤的酸化;以土壤pH(KCl)值、交换性酸(EA)、交换性铝(EAl)或可滴定酸度(BNC)作为土壤酸化的指标,pH2.5的酸雨淋溶促进了土壤酸化,而pH≥3.5的淋溶处理缓冲了土壤的酸化,土壤酸度减弱。  相似文献   

4.
采用廉价易得并且无污染的有机废弃物、无机矿物为包膜材料对尿素进行包膜,试制出2种环境友好型包膜尿素(FU和YU),通过"静态吸收"法和"土柱淋溶"法研究2种包膜尿素的氨气挥发规律及养分释放特征。结果表明:在低施氮量和高施氮量条件下,2种肥料处理均能不同程度地减少氨气挥发损失和氮素淋溶损失,与Ur处理相比,FU和YU处理氨挥发量最高减少21.22%和38.00%。随着淋溶时间的增加,各处理淋溶液pH逐渐降低,且Ur下降幅度最大,YU最小,呈现YUFUUr的趋势。Ur电导率由最高值1.17mS/cm降至0.06mS/cm,降低幅度最大,YU在3种处理中趋势最为平缓,降低幅度最小。FU和YU处理的氮素初期溶出率较Ur处理在高施氮量下减少9.39%和15.60%,在低施氮量下减少4.65%和7.12%。与普通尿素相比,在淋溶第1天YU处理铵态氮的淋溶速率分别降低22.43%(低施氮量)和24.80%(高施氮量),FU处理分别降低1.00%(低施氮量)和4.96%(高施氮量),随后降低幅度UrFUYU。在第8,9天开始出现硝态氮最大淋溶速率,且YU处理较Ur处理分别降低26.98%(低施氮量)和21.07%(高施氮量),FU处理较Ur处理分别降低6.98%(低施氮量)和8.95%(高施氮量),在淋溶后期包膜尿素的铵态氮、硝态氮的淋溶速率均有所增加,延长了有效氮的持续时间。2种环境友好型包膜尿素中以有机废弃物为包膜材料的实验效果最佳。  相似文献   

5.
不同施氮水平对深层包气带土壤氮素淋溶累积的影响   总被引:18,自引:6,他引:12  
为研究深层包气带土壤中氮素的迁移规律,采用田间小区试验,研究了不同施氮水平(142.5、285和427.5kg/hm2)对夏玉米种植期间0~500cm包气带土壤中氮素淋溶累积的影响。结果表明,不同施氮水平对NO3--N、NH4+-N和总氮有显著影响,施氮越多,NO3--N、NH4+-N和总氮在土壤中的淋溶累积也就越多,夏玉米生育期间土壤中氮素的淋溶累积含量随着夏玉米生长逐渐减少。在0~200cm土层中,收获后不同施肥水平土壤中NO3--N和总氮累积量随施氮量增加而增多,285kg/hm2施氮水平NH4+-N累积量最多,427.5kg/hm2施氮水平NH4+-N累积量最少,但相差不超过0.1kg/hm2,收获后土壤中氮素累积量有损失。夏玉米生育期间不同施氮水平对土壤NO3--N、NH4+-N和总氮的影响深度主要为0~145cm。粉砂壤土中氮素更易累积,砂质壤土中氮素较易随水分淋溶至下层。142.5kg/hm2施氮水平可有效减少NO3--N在土壤中的淋溶损失,降低土壤中NH4+-N和总氮的含量,对地下水构成的潜在污染风险最小。北京地区地下水埋深较深,NO3--N不易淋溶至地下水,但长期大量施用氮肥、田间土壤大孔隙的存在等会加速NO3--N向深层土壤迁移,对地下水水质构成威胁。  相似文献   

6.
酸雨对黄土磷的淋溶效应   总被引:1,自引:0,他引:1  
采用室内土柱模拟淋溶试验,分析了陕西省杨凌区3种土壤在5个酸雨梯度的侵蚀作用下,土壤磷的释放和迁移规律.结果表明,酸雨会使土壤受到一定程度的酸化,而土壤的酸化程度与酸雨的pH值、土壤的类型、土壤的pH值、阳离子交换量、有机质含量有关.土壤对酸雨的缓冲能力由大到小的顺序为:腐殖质层>母质层>黏化层.随着酸雨累积淋溶量的增加,土壤磷的释放总量呈增加趋势,但淋失率会下降.酸雨的pH值为5时土壤磷的累积淋失量最大,土壤磷的累积淋失量和淋失率顺序为:腐殖质层>黏化层>母质层.酸雨对腐殖质层的磷具有最强侵蚀效应.母质层和黏化层的酸化主要发生在土壤表层,而腐殖质层酸化主要发生在土壤底层,酸雨侵蚀后腐殖质层酸化最严重.长期的酸雨侵蚀会导致土壤磷流失,造成土壤养分贫瘠化.  相似文献   

7.
酸沉降影响下近20年来衡山土壤酸化研究   总被引:15,自引:0,他引:15       下载免费PDF全文
对不同时期采自衡山东坡垂直带谱上6个典型土壤剖面Ah层和AB层的样品分析,土壤酸化指标研究结果表明,近2 0年来,由于酸沉降的影响,由花岗岩风化物发育的各类土壤,都有不同程度的酸化,表现在pH值下降,交换性酸,尤其是交换性Al3 增加,交换性盐基总量减少,盐基饱和度下降,特别是土壤酸缓冲性能和土壤酸害容量降低。相比之下,山顶的常湿淋溶土和山麓的湿润富铁土酸化更明显,而山体中部的常湿富铁土酸化进程较慢,山体上部的常湿雏形土酸化进程更慢,表明土壤酸化除了与土壤酸沉降量有关外,还与土壤类型有关  相似文献   

8.
施氮对紫色土交换性酸及盐基饱和度的影响   总被引:2,自引:1,他引:1  
通过土柱淋溶模拟试验研究不同氮肥种类及施用水平对紫色土交换性酸(EA)和盐基饱和度(BS)的影响。结果表明:(1)经施氮淋溶后紫色土pH下降,且与施氮量成反比,同一施氮水平下,土壤pH下降表现为硫铵硝铵尿素。(2)施用不同种类氮肥,土壤交换性H+和交换性Al 3+的含量不同,同一施氮水平下,表现为硫铵硝铵尿素,且与施氮量呈正相关。(3)土壤中交换性H+和交换性Al 3+均随着交换酸总量的增加而增加。在施用尿素和硝铵时,土壤交换性酸主要由交换性Al 3+决定;而施用硫铵时,则由交换性H+和交换性Al 3+共同决定。(4)施氮后土壤交换性盐基总量较原土降低,其含量表现为Ca2+Mg2+K+Na+;盐基饱和度亦下降,且与施氮量呈负相关,在同一施氮水平上,不同氮肥表现为尿素硝铵硫铵。(5)紫色土pH随交换性酸(EA)的升高而降低,随交换性盐基(EB)总量的增加而升高,其中EA对pH的变化起主导作用。  相似文献   

9.
南方酸化红壤钾素淋溶对施石灰的响应   总被引:2,自引:1,他引:1  
为探究石灰施用的长期和短期效应对酸化红壤钾素的影响,依托始于1990年的国家红壤肥力与肥料效益监测长期定位试验,选取化肥氮磷配施(NP)、氮磷钾配施(NPK)、氮磷钾配施+半量秸秆还田(NPKS)及其增加常量石灰(NPL、NPKL、NPKSL)6个处理。室内土柱淋溶试验设置0 L、0.5 L、1 L和1.5 L石灰施用量,监测田间和淋溶后0 ~ 50 cm土层速效钾和缓效钾含量、pH及淋溶液中钾离子(K+)含量的变化。结果表明:1)施用石灰4年后,与NPKS、NPK、NP相比,各处理均增加了相应土层的缓效钾含量;NPKSL和NPL处理分别增加了0 ~ 40 cm和0~10 cm速效钾含量,增幅分别为2.06 % ~ 36.39 %和27.26 %。2)石灰施用量相同,各处理土壤累积K+淋溶量由大到小依次为NPKS处理、NPK处理和NP处理。施用石灰减少了NPKS和NPK处理淋溶液中累积K+含量,降幅为18.10 % ~ 57.70 %,且K+淋溶率也下降。3)施石灰提高了表层土壤pH;土壤中钾素盈余情况下,石灰当季施用量每增加1 000 kg·hm-2,K+淋溶损失率降低11.7%;施用石灰和施肥是显著影响平均淋溶K+量和K+累积淋溶量的主效应。可见,施用石灰的短期和长期效应均能提高表层土壤pH;减少速效钾在剖面的运移,增加剖面下层缓效钾的含量;土壤淋溶K+量、累积K+淋溶量和K+淋溶率均随土壤中速效钾含量的增加而增加,随施用石灰而降低。合理的石灰用量能够有效降低酸化红壤K+淋溶损失风险。  相似文献   

10.
土壤水分和氮添加对3种质地紫色土氮矿化及土壤pH的影响   总被引:12,自引:0,他引:12  
为正确认识土壤水分、质地和外源氮添加对紫色土氮矿化作用和土壤pH的影响,以西南地区典型的紫色土为研究对象,通过90d的室内恒温(25℃)好气培养,研究了3种质地(粘土、粉粘壤土和砂土)紫色土在不同含水量(55%,65%和75%田间持水量)和尿素氮添加水平(0mg/kg土和250mg/kg土.)条件下,土壤氮矿化作用和pH的变化。结果表明:前30d的累积矿化氮量可占培养期间(90d)的78.48%~91.55%,且各处理的土壤累积矿化氮量和净矿化速率均随着培养时间的延长而快速增加;第30~90d,土壤累积矿化氮量增长缓慢,净矿化速率迅速下降并趋于稳定。土壤累积矿化氮量和净矿化速率在各培养阶段均随土壤水分含量的增加而逐渐增大,其中75%WHC(75%田间持水量)和75%WHC+U(75%田间持水量+尿素)处理的矿化作用最强。土壤质地从一定程度上对土壤的矿化产生影响,但其影响并不显著。外源氮添加能促进土壤氮矿化,其净氮矿化量和净矿化速率在各培养阶段均极显著(p0.01)高于未加氮处理,分别为未施氮处理的1.68~4.56倍,0.60~6.47倍。外源氮添加使土壤pH显著下降,55%WHC+U、65%WHC+U和75%WHC+U处理分别下降了0.57,0.66,0.72个pH单位,土壤有酸化趋势。土壤pH值与土壤氮素净矿化速率呈极显著线性相关,净矿化速率对pH变化贡献巨大。总之,土壤含水量增加和外源氮添加均促进了土壤氮矿化,增加了土壤矿质氮含量,同时外源氮添加也加速了土壤pH下降,土壤有酸化趋势。  相似文献   

11.
石灰和双氰胺对红壤酸化和硝化作用的影响及其机制   总被引:4,自引:1,他引:3  
施用石灰是改良酸性土壤的重要措施,但其对土壤硝化作用的增强不仅加速土壤酸化,也增加硝态氮流失风险。传统的硝化抑制剂双氰胺(Dicyandiamide,DCD)能否在石灰改变pH的条件下始终有效抑制硝化是当前红壤区生产中亟需解决的问题。采用短期土壤培养试验,探讨了不同用量石灰与DCD配合施用对土壤酸化和硝化作用的影响及其机制。结果表明:施用一定量的石灰(≤4 g·kg–1)显著提高土壤pH,通过促进氨氧化细菌的生长以促进硝化作用。在不同pH条件下,DCD对红壤硝化过程均有显著抑制效果。在较高pH(pH 7.0~7.8)条件下,DCD主要通过降低氨氧化细菌的丰度以抑制硝化,而在低pH(pH<6.0)条件下,DCD对氨氧化古菌和氨氧化细菌的丰度均有抑制作用。此外,DCD通过抑制土壤硝化,显著提高了土壤pH。上述结果表明,适宜量(2~4 g·kg–1)的石灰和DCD结合施用不仅能够减缓红壤酸化,而且能够抑制硝化作用,降低硝态氮的潜在环境风险。  相似文献   

12.
草酸/草酸盐对森林暗棕壤的磷释放效应   总被引:6,自引:0,他引:6       下载免费PDF全文
崔晓阳  宋金凤 《土壤学报》2005,42(6):977-984
模拟森林凋落物淋洗液中的草酸/草酸盐浓度范围,设计了不同浓度草酸/草酸盐溶液一次性浸提和多次连续浸提系列实验,其中的草酸(阴离子)载荷量为0~200 mmol kg-1。结果表明,草酸能显著促进暗棕壤A1层(腐殖质层)磷的释放,土壤磷溶出量随草酸溶液浓度升高而线性增加;但对B层土壤磷的释放效应相对较弱,草酸浓度低于5mmol L-1时B层磷的释放不明显。pH 5.16草酸钠溶液比相同浓度的草酸溶液具有更高的解磷效率,在设置二者浓度为0.5~20.0 mmol L-1时,前者的解磷量是后者的1.51~2.98倍,推断草酸盐溶液或凋落物淋洗液中草酸(盐)类物质促进暗棕壤磷释放的主要机理在于草酸阴离子(C2O42-)配位反应。草酸盐对暗棕壤磷的释放效应具有一定累加性,土壤磷释放量主要由草酸阴离子累积载荷量决定,而与其加入方式(多次或一次性)关系不大;当以pH5.16草酸钠溶液加入时,土壤磷释放量Y(mgkg-1)与草酸阴离子累积载荷量X(mmol kg-1)间的回归方程为Y=-0.000 4X2 0.176 6X 0.425 3,R2=0.990 2。仅以凋落物层溶出的草酸(阴离子)量进行估计,由此增加的A1层土壤磷释放量达2.40 kg hm-2a-1,大约相当于中龄林年吸收磷量的1/3~1/5,因此其实际作用是不可忽视的。  相似文献   

13.
Previous work has shown that rice plants growing in reduced soil are able to solubilize P by inducing an acidification in the rhizosphere through H+ produced in Fe2+ oxidation by root–released O2, and by the direct release of H+ from the roots to balance excess intake of cations over anions. In this paper, equations for the diffusion and interaction of P and acid in soil are developed to predict the resultant increase in P uptake by the roots. Good agreement was obtained between the profiles of P and pH in the rhizosphere measured in the previous experiments, and those predicted using the equations with independently measured parameter values. The equations showed that solubilization accounted for over 80% of the P taken up. Measurements of the solubilization parameters in a range of reduced rice soils showed that H+ addition increased the quantity of P that could be desorbed per unit weight of soil and the concentration of P in solution, in all the soils tested. The quantity of P solubilized per unit H+ added at a given solution P concentration varied about 50–fold between soils, with a median of 11.9 mmol P per mol H+. The native soil solution P concentration varied 50–fold (median = 0.91 UM) and the soil pP buffer power (the quantity of P desorbed per unit decrease in –log of the P concentration in solution) varied 100–fold (median = 0.36 mmol kg?1 pP?1); the soil pH buffer power varied 7–fold (median = 0.075 mmol kg?1 pH?1). Calculations indicated that, in most of the soils tested, rice plants would depend upon solubilization for the bulk of their P.  相似文献   

14.

Purpose

Long-term manure applications can prevent or reverse soil acidification by chemical nitrogen (N) fertilizer. However, the resistance to re-acidification from further chemical fertilization is unknown. The aim of this study was to examine the effect of urea application on nitrification and acidification processes in an acid red soil (Ferralic Cambisol) after long-term different field fertilization treatments.

Materials and methods

Soils were collected from six treatments of a 19-year field trial: (1) non-fertilization control, (2) chemical phosphorus and potassium (PK), (3) chemical N only (N), (4) chemical N, P, and K (NPK), (5) pig manure only (M), and (6) NPK plus M (NPKM; 70 % N from M). In a 35-day laboratory incubation experiment, the soils were incubated and examined for changes in pH, NH4 +, and NO3 ?, and their correlations from urea application at 80 mg N kg?1(?80) compared to 0 rate (?0).

Results and discussion

From urea addition, manure-treated soils exhibited the highest acidification and nitrification rates due to high soil pH (5.75–6.38) and the lowest in the chemical N treated soils due to low soil pH (3.83–3.90) with no N-treated soils (pH 4.98–5.12) fell between. By day 35, soil pH decreased to 5.21 and 5.81 (0.54 and 0.57 unit decrease) in the NPKM-80 and M-80 treatments, respectively, and to 4.69 and 4.53 (0.43 and 0.45 unit decrease) in the control-80 and PK-80 treatments, respectively, with no changes in the N-80 and NPK-80 treatments. The soil pH decrease was highly correlated with nitrification potential, and the estimated net proton released. The maximum nitrification rates (K max) of NPKM and M soils (14.7 and 21.6 mg N kg?1 day?1, respectively) were significantly higher than other treatments (2.86–3.48 mg N kg?1 day?1). The priming effect on mineralization of organic N was high in manure treated soils.

Conclusions

Field data have shown clearly that manure amendment can prevent or reverse the acidification of the red soil. When a chemical fertilizer such as urea is applied to the soil again, however, soil acidification will occur at possibly high rates. Thus, the strategy in soil N management is continuous incorporation of manure to prevent acidification to maintain soil productivity. Further studies under field conditions are needed to provide more accurate assessments on acidification rate from chemical N fertilizer applications.  相似文献   

15.
A previous investigation of thechemical characteristics of precipitation in theWielkopolski National Park has shown its high acidity,which sometimes drops below pH 3.0. This paper dealswith the leaching of potassium and sodium ions by acidrain from typical soils of the study area. Laboratoryexperiments were conducted on undisturbed soil cores(15 cm in diameter, 50 cm high) with acid solutions of pH 3.0, pH 2.0 and with water of pH 5.6 (control). The sprinkling lasted 30 days simulating a rainfall of 400 mm. The eluates were analysed daily. Soil propertiesand forms of potassium and sodium were determinedbefore and after treatment. The investigations showthat quite significant amounts of K+ andNa+ can be leached from the soil: in the very acidtreatment (pH 2.0) about 4 mg K+ and 3 mgNa+ per kg of soil. The leaching of these elementswas smaller in the pH 3.0 and 5.6 treatments.Differences in the dynamics of the process are shownin the leaching curves. In the case of potassium theirshapes are smooth when pH is 5.6 and 3.0, while at pH2.0 the curves rise sharply. The leaching curves inthe case of sodium do not show sharp peaks, whichmeans that the leaching is slow and equalised.  相似文献   

16.
施磷对苦麦菜生长及土壤磷素淋失的影响   总被引:1,自引:0,他引:1  
利用网室土柱模拟试验, 研究了不同磷用量[0、0.05 g·kg-1(土)、0.10 g·kg-1(土)、0.20 g·kg-1(土)]对苦麦菜产量、磷素吸收和利用及土壤磷淋失的影响。结果表明, 施磷显著增加苦麦菜产量、促进植株对磷的吸收。苦麦菜产量在低磷水平[0.05 g·kg-1(土)]时最高, 为每个土柱186.29 g。随磷用量增加, 苦麦菜产量和磷肥利用率明显降低, 植株吸磷量无明显变化。施磷显著增加土壤磷淋失量, 且随磷用量增加, 不同形态磷淋失量均显著增加。同一磷处理颗粒磷淋失量高于溶解态磷。不同磷用量条件下土壤各形态磷的淋失率均低于0.1%。低量施磷条件下溶解态磷在施磷后第10 d 出现第1 次淋失高峰; 中量和高量施磷条件下溶解态磷在施磷后第10 d 和第40 d 分别出现2 次淋失高峰。土壤总磷和颗粒磷淋失高峰期在施磷后第40~50 d 出现。施肥后第60 d, 土壤总磷、溶解态磷和颗粒磷淋失浓度均明显降低。综合考虑苦麦菜产量、磷素吸收和利用及土壤磷淋失量等因素, 苦麦菜以0.05 g·kg-1(土)的施磷量为佳。  相似文献   

17.
Abstract

Selected chemical properties of an artificially acidified agricultural soil from northern Idaho were evaluated in a laboratory study. Elemental S and Ca(OH)2were used to manipulate the soil pH of a Latahco silt loam (fine‐silty, mixed, frigid Argiaquic Xeric Argialboll), which had an initial pH of 5.7. A 100 day incubation period resulted in a soil pH manipulation range of 3.3 to 7.0. Chemical properties evaluated included: N mineralization rate, extractable P, AI, Mn, Ca, Mg and K and CEC. N mineralization rate (assessed by anaerobic incubation) decreased with decreasing soil pH. Nitrification rate also decreased as NH4 +‐N accumulated under acid soil conditions. Sodium acetate extractable P was positively linearly correlated (R2= 0.87) with soil pH over the entire pH range evaluated. Potassium chloride extractable Al was less than 1.3 mg kg‐1of soil at pH values higher than 4.4. Consequently, potential Al toxicity problems in these soils are minimal. Extractable Mn increased with decreasing soil pH. Soil CEC, extractable Mg, and extractable K all decreased with increasing soil pH from 3.3 to 7.0. Extractable Ca levels were largely unaffected by changing soil pH. It is likely that the availability of N and P would be the most adversely affected parameters by soil acidification  相似文献   

18.
pH is known to be a primary regulator of nutrient cycling in soil. Increasing soil acidity in agricultural systems has the potential to slow down N cycling and reduce N losses from leaching thereby enhancing sustainability and reducing pollution. We conducted a field experiment to investigate the impact of acidity on N leaching in arable and grassland agricultural systems. The results showed that nitrate (NO3) concentrations in soil water were greater under arable than under grassland. Soil acidification significantly lowered NO3 concentrations in soil water over winter and spring under grassland, whilst in cereal plots a similar effect was only observed in spring. Our results suggest that soil acidification decreased nitrification causing an accumulation of NH4+ which was not subject to leaching. Dissolved organic nitrogen (DON) concentrations in soil water were significantly greater under arable than grassland. Soil acidification lowered concentrations of DON in soil water, usually to a greater extent in grassland than in arable plots. It was concluded that it may be possible to use careful soil pH management as a tool to control NO3 leaching without compromising the quality of drainage water, and that this may be more effective on grassland than on arable crops.  相似文献   

19.
中国南方黄泥田土壤中养分淋失严重,尤其是氮(N)和钾(K),不仅造成资源浪费和潜在环境威胁,还严重制约作物的可持续生产。采用室内土柱模拟培养,研究尿素(U)和尿素硝铵(UAN)中单独添加脲酶抑制剂N-丁基硫代磷酰三胺(NBPT)和硝化抑制剂2-氯-6-(三氯甲基)吡啶(CP),及两者配合施用对黄泥田土壤中K素淋溶特征的影响,探讨提高黄泥田供钾能力的施肥技术。不同氮肥种类淋溶液中,K~+平均浓度大小表现为UAN处理(103.0 mg·kg~(-1))高于U处理(93.9 mg·kg~(-1)),且抑制剂处理间存在明显差异。培养结束时(第72 d),UAN处理K~+淋失量较U处理高6.7%。U各处理淋溶液中K~+累积量大小表现为UU+NBPTU+NBPT+CPU+CPCK,其中U+NBPT、U+CP和U+NBPT+CP处理较U处理分别降低8.7%、20.2%和14.9%;UAN各处理淋溶液中K~+累积量表现为UANUAN+NBPTUAN+NBPT+CPUAN+CPCK,其中UAN+NBPT、UAN+CP和UAN+NBPT+CP处理较UAN处理分别降低6.0%、13.8%和9.2%。不同施肥处理K~+淋溶率表现为UANUAN+NBPTUUAN+NBPT+CPUAN+CPU+NBPTU+NBPT+CPU+CP。培养中期(第36 d),U和UAN处理肥际微域中土壤速效钾含量显著降低,而添加CP处理有效维持土壤中较高的速效钾含量。与单施NBPT相比,配施CP可以减少黄泥田土壤中NO_3~-淋溶,增加土壤晶格对K~+的固定,减轻K~+淋溶风险,有效时间超过72 d。对各处理淋溶液中K~+累积量(y)随NO_3~-累积量(x)的变化进行拟合,其中以线性方程(y=ax+b)和Elovich方程(y=alnx+b)的拟合度最高,且抑制剂处理间a、b值均存在明显差异。总之,在黄泥田土壤中单施CP,或与NBPT配施可以有效增加K~+吸附,降低土壤中K~+淋溶损失,减轻养分淋失风险,提高肥料利用率。  相似文献   

20.

Purpose

Few studies have examined the effects of biochar on nitrification of ammonium-based fertilizer in acidic arable soils, which contributes to NO3 ? leaching and soil acidification.

Materials and methods

We conducted a 42-day aerobic incubation and a 119-day weekly leaching experiment to investigate nitrification, N leaching, and soil acidification in two subtropical soils to which 300 mg N kg?1 ammonium sulfate or urea and 1 or 5 wt% rice straw biochar were applied.

Results and discussion

During aerobic incubation, NO3 ? accumulation was enhanced by applying biochar in increasing amounts from 1 to 5 wt%. As a result, pH decreased in the two soils from the original levels. Under leaching conditions, biochar did not increase NO3 ?, but 5 wt% biochar addition did reduce N leaching compared to that in soils treated with only N. Consistently, lower amounts of added N were recovered from the incubation (KCl-extractable N) and leaching (leaching plus KCl-extractable N) experiments following 5 wt% biochar application compared to soils treated with only N.

Conclusions

Incorporating biochar into acidic arable soils accelerates nitrification and thus weakens the liming effects of biochar. The enhanced nitrification does not necessarily increase NO3 ? leaching. Rather, biochar reduces overall N leaching due to both improved N adsorption and increased unaccounted-for N (immobilization and possible gaseous losses). Further studies are necessary to assess the effects of biochar (when used as an addition to soil) on N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号