首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.

BACKGROUND

The efficacy of pre‐emergence herbicides within fields is spatially variable as a consequence of soil heterogeneity. We quantified the effect of soil organic matter on the efficacy of two pre‐emergence herbicides, flufenacet and pendimethalin, against Alopecurus myosuroides and investigated the implications of variation in organic matter for weed management using a crop–weed competition model.

RESULTS

Soil organic matter played a critical role in determining the level of control achieved. The high organic matter soil had more surviving weeds with higher biomass than the low organic matter soil. In the absence of competition, surviving plants recovered to produce the same amount of seed as if no herbicide had been applied. The competition model predicted that weeds surviving pre‐emergence herbicides could compensate for sublethal effects even when competing with the crop. The ED50 (median effective dose) was higher for weed seed production than seedling mortality or biomass. This difference was greatest on high organic matter soil.

CONCLUSION

These results show that the application rate of herbicides should be adjusted to account for within‐field variation in soil organic matter. The results from the modelling emphasised the importance of crop competition in limiting the capacity of weeds surviving pre‐emergence herbicides to compensate and replenish the seedbank. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

2.
Weed species loss due to intensive agricultural land use has raised the need to understand how traditional cropland management has sustained a diverse weed flora. We evaluated to what extent cultivation practices and environmental conditions affect the weed species composition of a small‐scale farmland mosaic in Central Transylvania (Romania). We recorded the abundance of weed species and 28 environmental, management and site context variables in 299 fields of maize, cereal and stubble. Using redundancy analysis, we revealed 22 variables with significant net effects, which explained 19.2% of the total variation in species composition. Cropland type had the most pronounced effect on weed composition with a clear distinction between cereal crops, cereal stubble and maize crops. Beyond these differences, the environmental context of croplands was a major driver of weed composition, with significant effects of geographic position, altitude, soil parameters (soil pH, texture, salt and humus content, CaCO3, P2O5, K2O, Na and Mg), as well as plot location (edge vs. core position) and surrounding habitat types (arable field, road margin, meadow, fallow, ditch). Performing a variation partitioning for the cropland types one by one, the environmental variables explained most of the variance compared with crop management. In contrast, when all sites were combined across different cropland types, the crop‐specific factors were more important in explaining variance in weed community composition.  相似文献   

3.
BACKGROUND: The development of controlled‐release formulations of alachlor to extend the period of weed control was studied. This extended duration reduces the need for high herbicide application rates that could lead to environmental contamination. For this purpose, the influence of formulation, as well as the influence of soil characteristics, on alachlor efficacy and persistence in soil of a commercial formulation (CF) and different ethylcellulose microencapsulated formulations (MEFs) was evaluated. RESULTS: Higher alachlor rates yielded an enhanced initial herbicidal activity. The prolonged release of alachlor provided by the MEFs resulted in a higher herbicidal efficacy and a longer period of weed control compared with the effects of CF in the two soils tested (at 40 days after treatment, oat growth inhibition for CF and MEFs was 1.96% and 93.5% respectively). Soil characteristics strongly influenced alachlor efficacy and weed control by MEFs. The highest alachlor efficacy and persistence were observed in the soil with lowest microbial activity and clay and organic matter content. CONCLUSIONS: The use of MEFs can be advantageous because they permit the maintenance of the desired concentration of the herbicide in the soil for longer periods of weed control. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
During the last decade, maize has become the crop with the second largest acreage in Germany. Therefore, agricultural advisors and the plant protection sector are interested in an overview of the weed species composition in maize fields, their determining factors and trends. From 2001 to 2009, a weed survey was conducted in 1460 maize fields throughout Germany. Data on crop management and soil characteristics were collected via farmer questionnaires. Principal component analysis and redundancy analysis were used to analyse patterns in weed species composition. The late spring and summer germinating species Chenopodium spp., Echinochloa crus‐galli and Solanum nigrum occurred with high densities and frequencies, but their occurrence was determined by different factors. Other frequent weed species were those that typically accompany autumn‐sown crops. The variation in species composition was significantly related to environmental factors (9.1% explained variance), particularly geographical latitude and precipitation, and management factors (4.7% explained variance), particularly crop sequence. The relative importance of these factors seems universal, when compared with surveys in other crops and regions. The factor ‘year’ was of minor importance (0.9% explained variance). Over the 9‐year period, no changes in weed species composition could be determined. The results suggest that despite the limited impact of crop management on weed species composition, farmers can use crop sequence to suppress individual species. The survey furthermore sets a baseline against which future changes can be measured in a landscape of rapidly changing agricultural land use.  相似文献   

5.
BACKGROUND: Earthworm casts are a worldwide problem on golf courses and sports fields when they disrupt the playability, aesthetics and maintenance of closely mowed playing surfaces. Currently, no pesticides are labeled for earthworms in the United States. Tea seed pellets (TSPs), a saponin‐rich byproduct of Camellia oleifera Abel oil manufacture, were tested for expelling earthworms and reducing casts on creeping bentgrass turf. The fate of expelled worms, methods for removing them and impacts on pest and beneficial arthropods were also evaluated. RESULTS: Application of TSPs at 2.93 kg 100 m?2, followed by irrigation, quickly expelled earthworms from the soil. A single application reduced casts by 80–95% for at least 5 weeks. Mowing or sweeping removed expelled earthworms from putting green surfaces. Most expelled earthworms burrowed down when transferred to untreated turf, but few survived. Bioassay‐guided fractionation confirmed the vermicidal activity results from a mix of saponins. TSPs did not reduce the abundance of beneficial soil arthropods, nor did they control black cutworms or white grubs in treated turf. CONCLUSION: TSPs are an effective botanical vermicide that could be useful for selectively managing earthworm casts on closely mowed turfgrass. They might also be used to suppress earthworms in grassy strips alongside runways to reduce bird strike hazard at airports. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
Atmospheric emission of the soil fumigant 1,3‐dichloropropene (1,3‐D) is of environmental concern because of its toxicity and carcinogenicity. Thiosulfate fertilizers have been found to rapidly transform 1,3‐D in soil to non‐volatile ions which are less toxic. We investigated the use of surface application of ammonium thiosulfate (ATS) for reducing 1,3‐D volatilization. In packed soil columns, emission of 1,3‐D applied by sub‐surface injection decreased with increasing ATS application rate and the amount of water used for delivering ATS. When ATS was applied in 9 mm water at 64 g m−2, total 1,3‐D emission was reduced by 61%. The reduction was 89% when ATS was applied at 193 g m−2. Bioassays showed that ATS application did not affect the effectiveness of 1,3‐D for controlling citrus nematodes. In field plots where a 1,3‐D emulsified formulation was applied via sub‐surface drip, surface spray of ATS reduced 1,3‐D emissions by 50%, and by 71% when the surface was also covered with polyethylene film. ATS application had no effect on the efficacy of root‐knot nematode control or tomato yields. These results suggest that surface application of thiosulfate fertilizers may be a feasible and effective strategy for minimizing 1,3‐D emissions. © 2000 Society of Chemical Industry  相似文献   

7.
Cover crops are increasingly being used for weed suppression and to enhance the sustainability of agro‐ecosystems. However, the suitability of cover crops for weed suppression in integrated and organic conservation tillage systems is still poorly investigated. Therefore, a 2‐year field study at eight sites was conducted to test the weed suppressive potential of six legume‐based cover crops, with the aim to reduce herbicide input or mechanical weed management interventions. In all experiments, cover crops were directly sown after cereals before next year's main crop (grain maize or sunflower). The presence of cover crops caused a 96% to 100% reduction of weed dry matter at the four sites managed under integrated production, while effects were lower at the four sited managed under organic production, ranging from 19% to 87%. Cover crops that covered soil quickly and which produced much dry matter had the best weed suppressive potential. However, their weed suppressing effect was difficult to predict, as it depended on the year of the investigation, experimental site, cover crop species, the speed of soil cover in autumn and the density of the resulting mulch layer in spring. The study demonstrated that cover crops are a useful tool to suppress weeds under integrated and organic conservation tillage practices. Our recommendation for supporting weed management in conservation tillage systems is to use locally adapted cover crops that have rapid establishment, good soil coverage and high dry matter production. However, additional weed management measures are required for reliable weed control under on‐farm conditions.  相似文献   

8.
有机管理对民勤绿洲土壤质量和小麦产量品质的影响   总被引:4,自引:0,他引:4  
通过测定不同年限有机管理田小麦产量、品质和土壤养分、酶活性及微生物数量,研究有机管理对石羊河下游土壤质量和小麦生产的影响。结果发现,连续实施有机管理可以显著提高土壤有机质、速效磷、速效钾含量,提高土壤碱性磷酸酶活性,显著增加土壤细菌、放线菌数量,三年有机管理农田土壤有机质、碱解氮、速效磷、速效钾含量相比传统管理农田分别提高了49.70%、28.63%、190.08%、122.89%;连续三年有机管理使小麦籽粒蛋白质含量增加了20.98%、赖氨酸含量提高了41.86%,产量提高了7.25%。可见,在民勤绿洲区实施有机管理有利于提高土壤肥力,能稳定小麦产量,并显著提高营养品质。  相似文献   

9.
Galinsoga quadriradiata and Galinsoga parviflora are very troublesome weeds in many organic vegetable crops in Europe. A very straightforward method to keep Galinsoga infestations under control is by targeting the Galinsoga seedbank. To identify cropping systems able to reduce the seedbank size in vegetable‐based cropping systems, the relationships between the seedbank size of Galinsoga species and prevailing soil/crop management practices and pedo‐hydrological conditions were investigated. Hereto, the seedbank of the 0–20 cm topsoil layer was sampled in 50 organic vegetable fields and analysed according to the seedling emergence method. Field history data were collected for the past 5 years, and physical, chemical and microbial soil quality was determined. Galinsoga quadriradiata was the most frequent and abundant Galinsoga species in the weed seedbank. The genus Galinsoga was present in 90% of the soil weed seedbanks of organic vegetable fields but displayed wide variation in abundance. Smallest Galinsoga seedbanks were found in fields that were predominantly tilled with non‐inversion implements or rotationally ploughed, and continuously cropped with competitive crops during the entire growing season (April 15‐November 15). Contrary to G. quadriradiata, seedbank size of G. parviflora was closely related to soil organic carbon content and sand fraction. Remarkably, soils with a low level of easily plant‐available phosphorus and concomitant high activity of arbuscular mycorrhizae had smaller G. quadriradiata seedbanks. To reduce Galinsoga infestations, fields should preferably be tilled without soil inversion, fertilised with organic amendments with low content of readily plant‐available phosphorus and cropped with competitive crops all season long.  相似文献   

10.
Plant eradication is difficult, particularly in remote, protected areas. The Southern Ocean Islands are very isolated and highly protected, but the flora contains many alien plants. Small restricted populations have been eradicated, but eradication of established species has proven difficult. A better understanding of the efficacy of control methods at sub‐Antarctic temperatures and their off‐target impacts may increase eradication success. With interest in controlling non‐native Poa annua in the region, we aimed to determine if physical and chemical methods can control P. annua (the sub‐Antarctic biotype) in sub‐Antarctic conditions and examined their impact on native plants. We quantified the effectiveness of physical control methods on P. annua in situ on sub‐Antarctic Macquarie Island through field‐based experiments and assessed their selectivity on P. annua compared with native grasses. We also quantified the effectiveness of several herbicides on P. annua at sub‐Antarctic temperatures and assessed their selectivity on native grasses. Of the four physical disturbance methods tested, none effectively reduced P. annua cover as one‐off treatments. Of the herbicide treatments, glyphosate and trifloxysulfuron sodium were effective and were less damaging to native grass species, indicating potential selectivity. Physical control was of limited effectiveness, but did not affect native species richness. An integrated weed management programme utilising the strategic use of selective herbicides with follow‐up chemical and physical intervention may balance control and biodiversity outcomes. This research highlights the importance of site‐specific testing of control methods and understanding off‐target impacts of control when managing alien plant species in protected areas.  相似文献   

11.
12.
Biofumigation may be a promising tool for depletion of persistent weed seedbanks/bud banks. This technique is based on the incorporation of chopped glucosinolate‐rich plant biomass into the soil, upon which isothiocyanates with herbicidal properties are released. To gain acceptance by farmers and foster its implementation, the biofumigation process should be further optimised. This study elucidated the impact of biological (species), technical (burial depth, ground cover) and pedohydrological (temperature and moisture content) factors on efficacy of Brassica juncea biofumigation under (semi‐)natural conditions. In a first experiment (field experiment), seeds and vegetative propagules of various weed species were buried at different depths and exposed to different doses of fresh fine‐chopped B. juncea biomass in the presence or absence of a plastic ground cover. In a second experiment (container experiment), buried seeds of ten species were subjected to biofumigation at diverging soil organic matter content, soil moisture content and soil temperature. In a third experiment (dose–response Petri dish bioassay), unburied seeds of eight species were subjected to various doses of rehydrated B. juncea powder. Biofumigation efficacy was determined by analysing viability of treated and untreated propagules. In general, efficacy of biofumigation increased with decreasing burial depth and increasing B. juncea dose. Biofumigation was highly effective (mortality >85%) against small‐seeded species but less effective (mortality 0%–20%) against hard‐seeded and large‐seeded species at 200 t ha?1. Vegetative propagules of Sonchus arvensis, Equisetum arvense and Convolvulus sepium were highly sensitive (mortality >90%) to biofumigation. Efficacy was most pronounced under moist warm incubation conditions, in the presence of a plastic ground cover.  相似文献   

13.
In Europe, sugar beet is often produced in a 3‐year rotation with cereals, leaving stubble fields fallow from cereal harvest until primary tillage in autumn in the year prior to sugar beet production. The weed flora on such fields could include host plants of Heterodera schachtii that is one of the most important pests of sugar beet. Crop sequences with non‐hosts and cover cropping with resistant cruciferous hosts during this period have been crucial for its management. Availability of resistant and tolerant sugar beet cultivars could entice growers to forego cover cropping, exacerbating weed problems during the fallow period. The objective of this study was to determine the reproductive potential of H. schachtii on weeds that develop during this period. Under glasshouse conditions, reproduction on 39 plant species was compared with that on oilseed radish and sugar beet of differing nematode host status. In 2 years in field microplots, 18 previously tested species were grown in H. schachtii‐infested soil during the typical fallow period at 60 plants m?2, and nine of these species were also grown at 180 plants m?2. There were variable results between years after 8 weeks of growth, but most weeds allowed lower reproduction (<10%) than the susceptible sugar beet; only Stellaria media at 180 plants m?2 and Thlaspi arvense at both plant densities increased nematodes. Such weed densities may seldom occur under commercial conditions; thus, weed management for nematological considerations during the stubble period may have limited importance.  相似文献   

14.
Since the introduction of rice production in Japan, lowland areas have been managed for rice production with the purpose of better rice growth, as well as lesser weed infestation. Rice is cropped every year in lowland fields by repeated cultivation of a single crop, with high yields and without soil sickness usually being observed in upland fields. This is probably because the irrigation water supplies various nutrients for healthy rice growth and the drainage washes out and removes harmful factors. However, until recently, the wet or flooded conditions of lowland fields in the Asian monsoon region never have allowed humans to cultivate useful summer crops, except rice or some aquatic plants. Therefore, the management of lowland areas in the Asian monsoon region has been significantly different from European field management, where crop rotation has been the traditional standard practice. Paddy weeds are aquatic plants or hygrophytes that have adapted to lowland fields. Traditionally, tillage and puddling were practiced seasonally in lowland fields on a regular schedule every year. Rice cultivation technology was developed and supported by regional irrigation systems that created stable environments for typical paddy weeds to complete their life cycle. After the introduction of chemical weed control, rice fields became very severe habitats for these paddy weeds, where they could not grow and reproduce without strategies for survival under herbicide exposure. Even so, many of the traditional paddy weeds survived because of their accumulated or uneradicated seed banks, although several aquatic plants were listed as endangered or threatened species. The important weed species changed, sometimes rapidly and sometimes slowly, depending both on their reproductive system and their biological response towards field management and weed control systems. Very recently, the level of perennial weeds, herbicide‐resistant weeds, and weedy rice has increased in paddy fields that are highly dependent on herbicide use. In addition, several hygrophyte species have invaded paddy fields. In order to address these issues, the improvement and application of integrated weed management methods are expected to be critical.  相似文献   

15.
An artificial soil test was used to assess the toxicity of five insecticides, used for turfgrass pest management, to earthworms of the Pheretima group (Megascolecidae). The effects of cyfluthrin, carbaryl, chlorpyrifos, fipronil and imidacloprid on earthworm mortality, earthworm biomass and individual earthworm mass, were assessed. Carbaryl and chlorpyrifos had a significant greater effect on earthworm mortality than cyfluthrin, seven days after the application of the insecticides. No other significant earthworm mortality was found. None of the insecticides had a significant influence on earthworm biomass. Cyfluthrin initially reduced individual earthworm mass, but not biomass, more than the other insecticides. Carbaryl reduced biomass more than the other insecticides for all the assessments. Carbaryl, imidacloprid and cyfluthrin had a larger negative effect than the control, fipronil and chlorpyrifos on individual earthworm mass in the 14 and 21 day assessments. © 2000 Society of Chemical Industry  相似文献   

16.
烟嘧磺隆的微生物降解研究进展   总被引:2,自引:2,他引:0  
烟嘧磺隆属磺酰脲类除草剂,因其对玉米安全,对一年生和多年生禾本科杂草及部分阔叶杂草、莎草科杂草高效而在玉米田广泛应用,但其在土壤中的残留则易对后茬敏感作物产生药害。微生物对烟嘧磺隆的降解有望成为修复污染土壤的有效措施。文章从烟嘧磺隆的使用及危害,可降解烟嘧磺隆的微生物种类及降解特性、降解途径、降解酶及其编码基因等方面进行了综述。目前有关烟嘧磺隆微生物降解的研究多集中于其降解菌的筛选、降解特性及降解途径等方面,对于其微生物降解过程中起关键作用的酶和基因方面的研究仍较少,因此未来的研究趋势将主要体现在降解复合菌系的培养、降解微生物的环境生态学、降解基因以及降解酶制剂等方面。  相似文献   

17.
Surfactants can improve postemergence herbicide efficacy and reduce the amount of herbicide required to obtain weed control. The effect of surfactants on the efficacy of herbicides is complicated and depends on the interaction among the plant, surfactant, and herbicide. The effects of surfactants on the efficacy of clodinafop‐propargyl and/or tribenuron‐methyl on wild oat (Avena ludoviciana) and wild mustard (Sinapis arvensis) under greenhouse conditions were investigated. In addition, the surface tension of aqueous solutions of the surfactants and surfactants + herbicides was determined. Significantly lower surface tension values were obtained with the aqueous solutions of citofrigate (Citogate plus Frigate) alone and with the herbicides used in this study. The citofrigate surfactant lead to the greatest enhancement of clodinafop‐propargyl and/or tribenuron‐methyl efficacy and the effect was species‐dependent. The efficacy of clodinafop‐propargyl and/or tribenuron‐methyl in the presence of surfactants in controlling wild oat was higher than for wild mustard. The foliar activity of the tested herbicides rose with increasing surfactant concentrations. The tank mixture of clodinafop‐propargyl and tribenuron‐methyl showed a synergistic effect in controlling wild oat and wild mustard. The synergistic effect in controlling wild mustard was greater than for wild oat.  相似文献   

18.
Countries in the Middle Eastern and North African(MENA) region are among the most water-scarce regions in the world, and their dryland soils are usually poor in organic carbon content(<0.5%). In this study, we summarize examples of how people in the few oases of the MENA region overcome environmental challenges by sustainably managing economically important date production. On the basis of the limited studies found in the existing literature, this mini-review focuses on the role of traditional soil organic matter amendments beneath the soil surface as a key tool in land restoration. We conclude that soil organic matter amendments can be very successful in restoring soil water and preventing the soil from salinization.  相似文献   

19.
20.
Seed‐attacking microorganisms have an undefined potential for management of the weed seedbank, either directly through inundative inoculation of soils with effective pathogenic strains, or indirectly by managing soils in a manner that promotes native seed‐decaying microorganisms. However, research in this area is still limited and not consistently successful because of technological limitations in identifying the pathogens involved and their efficacy. We suggest that these limitations can now be overcome through application of new molecular techniques to identify the microorganisms interacting with weed seeds and to decipher their functionality. However, an interdisciplinary weed management approach that includes weed scientists, microbiologists, soil ecologists and molecular biologists is required to provide new insights into physical and chemical interactions between different seed species and microorganisms. Such insight is a prerequisite to identify the best candidate organisms to consider for seedbank management and to find ways to increase weed seed suppressive soil communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号