首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
We report on the observation of a highly degenerate, strongly interacting Fermi gas of atoms. Fermionic lithium-6 atoms in an optical trap are evaporatively cooled to degeneracy using a magnetic field to induce strong, resonant interactions. Upon abruptly releasing the cloud from the trap, the gas is observed to expand rapidly in the transverse direction while remaining nearly stationary in the axial direction. We interpret the expansion dynamics in terms of collisionless superfluid and collisional hydrodynamics. For the data taken at the longest evaporation times, we find that collisional hydrodynamics does not provide a satisfactory explanation, whereas superfluidity is plausible.  相似文献   

2.
We report on the Bose-Einstein condensation of potassium atoms, whereby quantum degeneracy is achieved by sympathetic cooling with evaporatively cooled rubidium. Because of the rapid thermalization of the two different atoms, the efficiency of the cooling process is high. The ability to achieve condensation by sympathetic cooling with a different species may provide a route to the production of degenerate systems with a larger choice of components.  相似文献   

3.
A Fermi gas of atoms with resonant interactions is predicted to obey universal hydrodynamics, in which the shear viscosity and other transport coefficients are universal functions of the density and temperature. At low temperatures, the viscosity has a universal quantum scale ? n, where n is the density and ? is Planck's constant h divided by 2π, whereas at high temperatures the natural scale is p(T)(3)/?(2), where p(T) is the thermal momentum. We used breathing mode damping to measure the shear viscosity at low temperature. At high temperature T, we used anisotropic expansion of the cloud to find the viscosity, which exhibits precise T(3/2) scaling. In both experiments, universal hydrodynamic equations including friction and heating were used to extract the viscosity. We estimate the ratio of the shear viscosity to the entropy density and compare it with that of a perfect fluid.  相似文献   

4.
We have measured the heat capacity of an optically trapped, strongly interacting Fermi gas of atoms. A precise addition of energy to the gas is followed by single-parameter thermometry, which determines the empirical temperature parameter of the gas cloud. Our measurements reveal a clear transition in the heat capacity. The energy and the spatial profile of the gas are computed using a theory of the crossover from Fermi to Bose superfluids at finite temperatures. The theory calibrates the empirical temperature parameter, yields excellent agreement with the data, and predicts the onset of superfluidity at the observed transition point.  相似文献   

5.
We report the observation of a one-dimensional (1D) Tonks-Girardeau (TG) gas of bosons moving freely in 1D. Although TG gas bosons are strongly interacting, they behave very much like noninteracting fermions. We enter the TG regime with cold rubidium-87 atoms by trapping them with a combination of two light traps. By changing the trap intensities, and hence the atomic interaction strength, the atoms can be made to act either like a Bose-Einstein condensate or like a TG gas. We measure the total 1D energy and the length of the gas. With no free parameters and over a wide range of coupling strengths, our data fit the exact solution for the ground state of a 1D Bose gas.  相似文献   

6.
Fermi liquid theory, the standard theory of metals, has been challenged by a number of observations of anomalous metallic behavior found in the vicinity of a quantum phase transition. The breakdown of the Fermi liquid is accomplished by fine-tuning the material to a quantum critical point by using a control parameter such as the magnetic field, pressure, or chemical composition. Our high-precision magnetization measurements of the ultrapure f-electron-based superconductor β-YbAlB(4) demonstrate a scaling of its free energy that is indicative of zero-field quantum criticality without tuning in a metal. The breakdown of Fermi liquid behavior takes place in a mixed-valence state, which is in sharp contrast with other known examples of quantum critical f-electron systems that are magnetic Kondo lattice systems with integral valence.  相似文献   

7.
A standard notion of quantum mechanics is that all particles, elementary or composite, must fall into one of two fundamental categories: fermions or bosons. However, it has recently been discovered that there can be quantum particles which are neither fermions nor bosons. Such particles (anyons) can only occur in two spatial dimensions-yet this does not rule out their existence, for they are found as elementary excitations in confined, quasi-two-dimensional condensed-matter systems and may occur in other systems as well. An overview of the argument for the existence of anyons is presented, along with a discussion of their role in condensed-matter physics.  相似文献   

8.
In a superconductor, the ratio of the carrier density, n, to its effective mass, m*, is a fundamental property directly reflecting the length scale of the superfluid flow, the London penetration depth, λ(L). In two-dimensional systems, this ratio n/m* (~1/λ(L)(2)) determines the effective Fermi temperature, T(F). We report a sharp peak in the x-dependence of λ(L) at zero temperature in clean samples of BaFe(2)(As(1)(-x)P(x))(2) at the optimum composition x = 0.30, where the superconducting transition temperature T(c) reaches a maximum of 30 kelvin. This structure may arise from quantum fluctuations associated with a quantum critical point. The ratio of T(c)/T(F) at x = 0.30 is enhanced, implying a possible crossover toward the Bose-Einstein condensate limit driven by quantum criticality.  相似文献   

9.
We report a high Curie-temperature ferromagnet, CaB2C2. Although the compound has neither transition metal nor rare earth ions, the ferromagnetic transition temperature Tc is about 770 Kelvin. Despite this high T(c), the magnitude of the ordered moment at room temperatures is on the order of 10(-4) Bohr magneton per formula unit. These properties are rather similar to those of doped divalent hexaborides, such as Ca(1-x)La(x)B6. The calculated electronic states also show similarity near the Fermi level between CaB2C2 and divalent hexaborides. However, there is an important difference: CaB2C2 crystallizes in a tetragonal structure, and there are no equivalent pockets in the energy bands for electrons and holes-in contrast with CaB6. Thus, the disputed threefold degeneracy, specific to the cubic structure, in the energy bands of divalent hexaborides turns out not to be essential for high-temperature ferromagnetism. It is the peculiar molecular orbitals near the Fermi level that appear to be crucial to the high-Tc ferromagnetism.  相似文献   

10.
We used radio-frequency spectroscopy to study pairing in the normal and superfluid phases of a strongly interacting Fermi gas with imbalanced spin populations. At high spin imbalances, the system does not become superfluid even at zero temperature. In this normal phase, full pairing of the minority atoms was observed. Hence, mismatched Fermi surfaces do not prevent pairing but can quench the superfluid state, thus realizing a system of fermion pairs that do not condense even at the lowest temperature.  相似文献   

11.
A tunable kondo effect in quantum dots   总被引:1,自引:0,他引:1  
A tunable Kondo effect has been realized in small quantum dots. A dot can be switched from a Kondo system to a non-Kondo system as the number of electrons on the dot is changed from odd to even. The Kondo temperature can be tuned by means of a gate voltage as a single-particle energy state nears the Fermi energy. Measurements of the temperature and magnetic field dependence of a Coulomb-blockaded dot show good agreement with predictions of both equilibrium and nonequilibrium Kondo effects.  相似文献   

12.
Fermi gases, collections of fermions such as neutrons and electrons, are found throughout nature, from solids to neutron stars. Interacting Fermi gases can form a superfluid or, for charged fermions, a superconductor. We have observed the superfluid phase transition in a strongly interacting Fermi gas by high-precision measurements of the local compressibility, density, and pressure. Our data completely determine the universal thermodynamics of these gases without any fit or external thermometer. The onset of superfluidity is observed in the compressibility, the chemical potential, the entropy, and the heat capacity, which displays a characteristic lambda-like feature at the critical temperature T(c)/T(F) = 0.167(13). The ground-state energy is 3/5ξN E(F) with ξ = 0.376(4). Our measurements provide a benchmark for many-body theories of strongly interacting fermions.  相似文献   

13.
Guo Y  Zhang YF  Bao XY  Han TZ  Tang Z  Zhang LX  Zhu WG  Wang EG  Niu Q  Qiu ZQ  Jia JF  Zhao ZX  Xue QK 《Science (New York, N.Y.)》2004,306(5703):1915-1917
We have fabricated ultrathin lead films on silicon substrates with atomic-scale control of the thickness over a macroscopic area. We observed oscillatory behavior of the superconducting transition temperature when the film thickness was increased by one atomic layer at a time. This oscillating behavior was shown to be a manifestation of the Fabry-Perot interference modes of electron de Broglie waves (quantum well states) in the films, which modulate the electron density of states near the Fermi level and the electron-phonon coupling, which are the two factors that control superconductivity transitions. This result suggests the possibility of modifying superconductivity and other physical properties of a thin film by exploiting well-controlled and thickness-dependent quantum size effects.  相似文献   

14.
Because of the long Fermi wavelength of itinerant electrons, the quantum limit of elemental bismuth (unlike most metals) can be attained with a moderate magnetic field. The quantized orbits of electrons shrink with increasing magnetic field. Beyond the quantum limit, the circumference of these orbits becomes shorter than the Fermi wavelength. We studied transport coefficients of a single crystal of bismuth up to 33 tesla, which is deep in this ultraquantum limit. The Nernst coefficient presents three unexpected maxima that are concomitant with quasi-plateaus in the Hall coefficient. The results suggest that this bulk element may host an exotic quantum fluid reminiscent of the one associated with the fractional quantum Hall effect and raise the issue of electron fractionalization in a three-dimensional metal.  相似文献   

15.
Radio-frequency techniques were used to study ultracold fermions. We observed the absence of mean-field "clock" shifts, the dominant source of systematic error in current atomic clocks based on bosonic atoms. This absence is a direct consequence of fermionic antisymmetry. Resonance shifts proportional to interaction strengths were observed in a three-level system. However, in the strongly interacting regime, these shifts became very small, reflecting the quantum unitarity limit and many-body effects. This insight into an interacting Fermi gas is relevant for the quest to observe superfluidity in this system.  相似文献   

16.
PbSeTe-based quantum dot superlattice structures grown by molecular beam epitaxy have been investigated for applications in thermoelectrics. We demonstrate improved cooling values relative to the conventional bulk (Bi,Sb)2(Se,Te)3 thermoelectric materials using a n-type film in a one-leg thermoelectric device test setup, which cooled the cold junction 43.7 K below the room temperature hot junction temperature of 299.7 K. The typical device consists of a substrate-free, bulk-like (typically 0.1 millimeter in thickness, 10 millimeters in width, and 5 millimeters in length) slab of nanostructured PbSeTe/PbTe as the n-type leg and a metal wire as the p-type leg.  相似文献   

17.
We report the characterization of defects in individual metallic single-walled carbon nanotubes by transport measurements and scanned gate microscopy. A sizable fraction of metallic nanotubes grown by chemical vapor deposition exhibits strongly gate voltage-dependent resistance at room temperature. Scanned gate measurements reveal that this behavior originates from resonant electron scattering by defects in the nanotube as the Fermi level is varied by the gate voltage. The reflection coefficient at the peak of a scattering resonance was determined to be about 0.5 at room temperature. An intratube quantum dot device formed by two defects is demonstrated by low-temperature transport measurements.  相似文献   

18.
We report the production of matter-wave solitons in an ultracold lithium-7 gas. The effective interaction between atoms in a Bose-Einstein condensate is tuned with a Feshbach resonance from repulsive to attractive before release in a one-dimensional optical waveguide. Propagation of the soliton without dispersion over a macroscopic distance of 1.1 millimeter is observed. A simple theoretical model explains the stability region of the soliton. These matter-wave solitons open possibilities for future applications in coherent atom optics, atom interferometry, and atom transport.  相似文献   

19.
Observation of bose-einstein condensation in a dilute atomic vapor   总被引:2,自引:0,他引:2  
A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled. The condensate fraction first appeared near a temperature of 170 nanokelvin and a number density of 2.5 x 10(12) per cubic centimeter and could be preserved for more than 15 seconds. Three primary signatures of Bose-Einstein condensation were seen. (i) On top of a broad thermal velocity distribution, a narrow peak appeared that was centered at zero velocity. (ii) The fraction of the atoms that were in this low-velocity peak increased abruptly as the sample temperature was lowered. (iii) The peak exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.  相似文献   

20.
We studied fermionic pairing in an ultracold two-component gas of 6Li atoms by observing an energy gap in the radio-frequency excitation spectra. With control of the two-body interactions through a Feshbach resonance, we demonstrated the dependence of the pairing gap on coupling strength, temperature, and Fermi energy. The appearance of an energy gap with moderate evaporative cooling suggests that our full evaporation brought the strongly interacting system deep into a superfluid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号