首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Grazing behavior of rangeland beef cattle differing in biological type   总被引:1,自引:0,他引:1  
Grazing behavior exhibited by different biological types (breed groups) of lactating beef cows was evaluated during the summers of 1985 (Trial 1) and 1986 (Trial 2). Animals grazed native Montana foothill grassland. In Trial 1, breed groups consisted of Hereford (HH), 50% Angus-50% Hereford (AH), 50% Simmental-50% Hereford (SH), and 75% Simmental-25% Hereford (3S1H) with six cows per breed group. Daily grazing hours were 11.8 +/- .2, 12.3 +/- .2, 11.6 +/- .2, and 11.6 +/- .5 h/d for HH, AH, SH, and 3S1H, respectively. There was a tendency for AH cows to graze longer than HH and SH cows (P = .10). Bite rates were 52.7 +/- 1.5, 56.2 +/- 1.5, 53.2 +/- 1.4, and 59.0 +/- 1.6 bites/min for HH, AH, SH, and 3S1H, respectively. The AH and 3S1H cows had higher bite rates (P less than .05) than the HH and SH cows. Means for distance traveled were 3.1 +/- .2, 3.4 +/- .2, 4.0 +/- .2, and 2.8 +/- .2 km/d for HH, AH, SH and 3S1H, respectively. The SH cows tended to travel farther (P less than .10) than cows of other breed groups. The AH traveled farther than the 3S1H but did not differ from the HH. In Trial 2, breed groups were Hereford (HH), Tarentaise-Hereford (TH), Tarentaise-Simmental-Hereford (T(SH], and Charolais-Simmental-Hereford (C(SH]; each group included six lactating cows. Means for bite rate were 56.9 +/- 1.1, 58.7 +/- 1.1, 60.9 +/- 1.0, and 59.0 +/- 1.1 bites/min for HH, TH, T(SH), and C(SH), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Two studies were conducted to evaluate the effectiveness of low-moisture blocks (LMB) and conventional dry mixes (CDM) for supplementing minerals to cattle on rangeland and to modify grazing patterns. In study 1, cows were fed LMB or CDM on moderate or difficult foothill terrain in Montana during autumn and winter. Cows consumed more CDM in moderate terrain than difficult terrain, but intake of LMB was similar in both terrain types. Using global positioning system (GPS) telemetry data, visits to supplements were defined as collared cow positions within 10 m of placement sites. More cows visited LMB (74%) than CDM (56%). More cows visited supplements (LMB and CDM pooled) when placed in moderate rather than difficult terrain. Cows spent more nonresting time within 100 and 200 m of LMB than CDM. In study 2, CDM and LMB designed to supplement minerals (LMB-M) were compared when cows were also fed LMB designed to supplement protein (LMB-P). Comparisons were made with cows grazing rangeland and with cows fed hay. Intake of LMB-P and CDM was less when cows grazed rangeland than when they were fed hay. Cows consumed less LMB-P when LMB-M was available. More cows visited LMB-M than CDM, and cows visited LMB-M more frequently than CDM. The LMB formulations designed to supplement minerals work well with formulations designed to supplement protein. Both LMB and CDM met estimated deficits of minerals in the forage based on supplement intake (g·day-1) and forage evaluations, but cows visited LMB more consistently than CDM. Low-moisture blocks appear to be more attractive to cows than CDM and should be more useful to modify grazing patterns on rangeland.  相似文献   

3.
Five experiments evaluated the effects of supplemental Ca salts of PUFA on reproductive function of Bos indicus beef cows. In Exp. 1, nonlactating and multiparous grazing cows (n = 51) were assigned to receive (as-fed basis) 0.1 kg of a protein-mineral mix + 0.1 kg of ground corn per cow/d, in addition to 0.1 kg per cow/d of 1) Ca salts of PUFA (PF), 2) Ca salts of SFA (SF), or 3) kaolin (control). Treatments were offered from d 0 to 20 of the estrous cycle. No treatment effects were detected on serum progesterone concentrations (P = 0.83), day of luteolysis (P = 0.86), or incidence of short cycles (P = 0.84). In Exp. 2, nonlactating and multiparous grazing cows (n = 43) were assigned to receive PF, SF, or control from d 0 to 8 of the estrous cycle. On d 6, all cows received (intramuscularly) 25 mg of PGF(2α). No treatment effects were detected on serum progesterone concentrations on d 6 (P = 0.37), and incidence (P = 0.67) or estimated time of luteolysis (P = 0.44). In Exp. 3, twenty-seven lactating and multiparous grazing cows, approximately 30 to 40 d postpartum, were assigned to receive PF or control for 10 d beginning at the first postpartum ovulation. No treatment effects were detected (P = 0.85) on incidence of short cycles. In Exp. 4, lactating and multiparous grazing cows (n = 1,454), approximately 40 to 60 d postpartum, were assigned to receive 1 of the 7 treatments for 28 d after timed AI (TAI; d 0): 1) control from d 0 to 28, 2) SF from d 0 to 14 and then control, 3) PF from d 0 to 14 and then control, 4) SF from d 0 to 21 and then control, 5) PF from d 0 to 21 and then control, 6) SF from d 0 to 28, and 7) PF from d 0 to 28. Cows receiving PF for more than 21 d after TAI had greater (P < 0.01) pregnancy to TAI compared with all other treatments combined (50.4 vs. 42.4%, respectively). In Exp. 5, lactating and multiparous grazing cows (n = 501), approximately 40 to 60 d postpartum, were assigned to receive 1 of the 4 treatments for 21 d after TAI (d 0): 1) PF from d 0 to 14 and then control, 2) control from d 0 to 6 and then PF, 3) control from d 0 to 13 and then PF, and 4) PF from d 0 to 21. Cows receiving PF after d 14 of the experiment had greater (P = 0.02) pregnancy to TAI compared with cows not receiving PF during the same period (46.8 vs. 33.1%, respectively). In summary, supplemental Ca salts of PUFA during the expected time of luteolysis increased pregnancy to TAI in beef cows.  相似文献   

4.
Effect of milk yield (MY) on biological efficiency and gross margin as an indicator of profit potential of beef production from birth to slaughter was determined. Data included 9 yr of spring-born single male calves. Biological efficiency was calculated as carcass weight/total feed energy intake, including nonlactating and lactating intakes of cow and creep and feedlot intakes of calf. Slaughter end point was finish constant at 9 mm of fat thickness. Gross margin was determined as returns minus feed costs. Three breeding systems were analyzed: purebred Hereford (HE), large rotational (LR), and small rotational (SR). Analyses were performed separately by breeding system when differences in the effect of MY among breeding systems were significant. Increased MY was associated with increased preweaning gain (P < .001), increased weight at start of feedlot trial (P < .001), and increased hot carcass weight (P < .05). No significant (P > .10) effect of MY on age at slaughter or on carcass weight per day of age at slaughter was found. Increased MY was associated with increased cow lactating energy intake (P < .10) and negatively associated with calf creep intake (P < .01). No effects of MY on intake of the cow during the nonlactating period, calf feedlot intake, or total feed intake were found. Increased MY was associated with a reduction in backfat thickness of the cow during the lactating period (P < .01) with no change in body weight. In the subsequent nonlactating period, increasing MY was associated with increased backfat thickness (P < .10) and body weight (P < .05). No effect of MY on change in backfat or weight of cow from calving to the end of the next nonlactating period was found. No effect of MY on biological efficiency to slaughter was detected. Milk yield was positively associated with gross margin from birth to slaughter (P < .05); results were similar when cow feed prices were reduced by 30%. Increased MY was associated with increased biological efficiency to weaning in HE (P < .01) and SR (P < .10), with no effect found in LR. When feeding cows to requirements, milk yield has a positive effect on the profit potential of beef production from birth to slaughter.  相似文献   

5.
Lupines (Lupinus spp.) are widespread range plants that are often toxic to livestock. Some reports suggest that naïve, younger animals might consume more lupine than more experienced, older cattle. Further, lactational stress might alter forage selection, and lactating cows might eat more lupine than nonlactating cows. Thus, the objectives of these trials were to examine the influence of experience and lactation on lupine intake. Both study areas were near Ritzville, Washington, on rangeland dominated by cheatgrass or downy brome (Bromus tectorum L.), with abundant velvet lupine (Lupinus leucophyllus Dougl.). During the first trial, six naïve and six experienced Hereford cows were grazed together for 25 d during summer. There was no difference (P > 0.5) in consumption of lupine by naïve and experienced cows. Consumption peaked at 10%–14% of daily bites. During the second trial, six lactating and six nonlactating cows grazed a lupine-infested pasture for 18 d. There was no difference (P > 0.6) in consumption between lactating and dry cows. Lupine consumption gradually increased and peaked at 10%–15% of the diets. Our results suggest that experience and lactation status are probably minor considerations in livestock management schemes to reduce losses to lupine.  相似文献   

6.
Cow and calf performance was determined in a 2-yr, 2 x 2 factorial, grazing experiment using Coastal or Tifton 85 (T85) replicated Bermudagrass pastures (4 pastures each; each pasture 4.86 ha), without or with aeschynomene creep-grazing paddocks (n = 4, 0.202 ha each, planted in May of each year, 13.44 kg/ha). On June 10, 2004, and June 8, 2005, 96 winter-calving beef "tester" cows and their calves were grouped by cow breed (9 Angus and 3 Polled Hereford/group), initial cow BW (592.9 +/- 70.1 kg, 2-yr mean), age of dam, calf breed (Angus, Polled Hereford, or Angus x Polled Hereford), calf sex, initial calf age (117 +/- 20.1 d, 2-yr mean), and initial calf BW (161.3 +/- 30.4 kg) and were randomly assigned to pastures. Additional cow-calf pairs and open cows were added as the forage increased during the season. Forage mass was similar for all treatment pastures (P > 0.70; 2-yr mean, 6,939 vs. 6,628 kg/ha, Coastal vs. T85; 6,664 vs. 6,896 kg/ha, no creep grazing vs. creep grazing). Main effect interactions did not occur for performance variables (P > 0.10; 2-yr means), and year affected only the initial and final BW of the calves and cows. The 91-d tester calf ADG was greater for calves grazing T85 than Coastal (0.94 vs. 0.79 kg; P < 0.01), and for calves creep grazing aeschynomene compared with calves without creep grazing (0.90 vs. 0.82 kg; P < 0.03). Calf 205-d adjusted weaning weights were increased for calves grazing T85 compared with Coastal (252.9 vs. 240.3 kg; P < 0.01) and for calves with access to creep grazing (249.9 vs. 243.3 kg; P < 0.05). The IVDMD of esophageal masticate from pastures had a forage x creep grazing interaction (P < 0.05; Coastal, no creep grazing = 57.4%; Coastal, creep grazing = 52.1%; T85, no creep grazing = 59.1%; T85, creep grazing = 60.0%), and IVDMD was greater (P < 0.05) for T85 than for Coastal pastures. Cows were milked in August 2004, and in June and August 2005, with variable milk yields on treatments, but increased milk protein (P < 0.05) for cows grazing T85 compared with Coastal pastures in August each year, contributing to increased calf gains on T85 pastures. These results complement previous research with T85 and indicate increased forage quality and performance of cattle grazing T85 pastures. Calf gains on T85 pastures and for calves on creep-grazed aeschynomene paddocks were high enough to influence the efficiency of cow-calf operations.  相似文献   

7.
The objective of this study was to compare an introduced warm-season perennial grass (plains bluestem, Bothriochloa ischaemum) to native tallgrass prairie for cow-calf production. Three systems were used, two based on tallgrass prairie with two different forms of protein supplementation and one based on plains bluestem as the primary forage. The systems were as follows: 1) native tallgrass prairie with pelleted oilseed meal as the winter protein supplement (native-control); 2) native tallgrass prairie with limited access to wheat pasture as the winter protein supplement (native-wheat); and 3) plains bluestem with limited access to wheat pasture as the protein supplement (bluestem-wheat). Oilseed meal protein supplements were fed twice weekly. Cows grazing wheat pasture were allowed 6 h of grazing twice weekly. Ninety-nine cows per year were used over the 3-yr study. Cows were sired by either Charolais, Gelbvieh, Angus, or Hereford bulls out of commercial Angus-Hereford dams. Calves were sired by Simmental bulls. Calving and weaning rate increased over time but did not differ among systems or breed types. System did not influence the size or body condition score of cows or the performance of calves, but changes in the weight and condition scores of cows were greater on either native system than on the bluestem-wheat system. Cows from Charolais and Gelbvieh bulls were taller (P < 0.05), and heavier (P < 0.05), and weaned heavier (P < 0.05) calves than cows from Angus or Hereford bulls. The weight of cows on the bluestem-wheat system tended to decrease over time, whereas cows grazing on the native systems tended to gain weight over time. The native-control system was the most profitable system based on cow production. If excess hay produced from the bluestem-wheat system was sold as a cash crop, then this system was the most profitable. In general, we conclude that limit-grazing wheat pasture is a viable alternative to oilseed meal as protein supplement for wintering dry cows. Although the bluestem system had 2.5 times the carrying capacity of the native prairie systems, increased productivity was offset by increased production costs. All systems were equal on a cow basis for providing nutrients for the cow-calf production system.  相似文献   

8.
Energy metabolism in lactating beef heifers   总被引:1,自引:0,他引:1  
To obtain measurements of energy balance in lactating beef cows, respiration calorimetry and digestion trials were conducted using seven lactating (613 kg BW) and three nonlactating (598 kg BW) Hereford x Angus heifers fed a pelleted 75% alfalfa:25% concentrate diet. Five measurements of energy balance were obtained at 6- to 7-wk intervals beginning 6 to 10 wk postpartum in lactating heifers and at 6-wk intervals in nonlactating heifers. Milk yield was measured using a combination of weigh-suckle-weigh and machine milking to adapt heifers to milking by machine without the use of oxytocin. Heifers were milked only by machine during measurements of energy balance. Weekly milk yield averages ranged from 8.2 kg/d at wk 5 postpartum to 3.2 kg/d at wk 32 postpartum. When scaled to BW(.75), the regression of NE1 on ME intake and the regression of ME intake on NE1 were remarkably similar to previously published regressions for measurements obtained from lactating Holstein-Friesian cows. The average daily maintenance energy requirement from these regressions was 503 kJ ME/kg BW(.75), a value similar to the average value reported previously for lactating Holstein-Friesian cows (488 kJ/kg (BW.75)). This is in contrast to numerous published comparisons of the maintenance requirements of cattle breed types in the nonlactating state and current NRC standards for estimating maintenance energy requirements of beef and dairy cattle. The results of the present study suggest that when expressed on the basis of BW(.75) the efficiency of utilization of incremental ME above maintenance for milk and tissue energy (i.e., NE1) is similar among lactating Hereford x Angus heifers and lactating Holstein-Friesian cows. The breeds differ in terms of their propensity for milk yield and the resulting partition of ME between milk synthesis and tissue energy retention.  相似文献   

9.
Phagocytes, macrophages and neutrophils, were obtained from lacteal secretions of lactating (n = 13) and nonlactating cows (n = 14). Secretions from nonlactating cows were collected at 7 and 14 days after cessation of lactation. Phagocytes were incubated in vitro with Staphylococcus aureus or Escherichia coli, and function was assessed by fluorescent microscopy of cell suspensions stained with acridine orange and crystal violet. A greater percentage of macrophages from nonlactating cow secretions collected on day 14 phagocytized bacteria than did those collected on day 7. A greater percentage of macrophages from nonlactating cow secretions collected on days 7 and 14 phagocytized bacteria than did neutrophils obtained from the same secretions. A similar percentage of phagocytes from nonlactating cow secretions phagocytized bacteria, compared with phagocytes from lactating cow secretions. Results indicated that the intramammary macrophage may be most important in defense of the mammary gland during the early nonlactating period, because it was more phagocytic than the neutrophil and was more active at 14 days than at 7 days into the nonlactating period.  相似文献   

10.
The objectives of this research were to determine the influence of protein supplementation frequency on cow performance, grazing time, distance traveled, maximum distance from water, cow distribution, DMI, DM digestibility, harvest efficiency, percentage of supplementation events frequented, and CV for supplement intake for cows grazing low-quality forage. One hundred twenty pregnant (60 +/- 45 d) Angus x Hereford cows (467 +/- 4 kg BW) were used in a 3 x 3 Latin square design for one 84-d period in each of three consecutive years. Cows were stratified by age, BCS, and BW and assigned randomly to one of three 810-ha pastures. Treatments included an unsupplemented control (CON) and supplementation every day (D; 0.91 kg, DM basis) or once every 6 d (6D; 5.46 kg, DM basis) with cottonseed meal (CSM; 43% CP, DM basis). Four cows from each treatment (each year) were fitted with global positioning system collars to estimate grazing time, distance traveled, maximum distance from water, cow distribution, and percentage of supplementation events frequented. Collared cows were dosed with intraruminal n-alkane controlled-release devices on d 28 for estimation of DMI, DM digestibility, and harvest efficiency. Additionally, Cr2O3 was incorporated into CSM on d 36 at 3% of DM for use as a digesta flow marker to estimate the CV for supplement intake. Cow BW and BCS change were greater (P < or = 0.03) for supplemented treatments compared with CON. No BW or BCS differences (P > or = 0.14) were noted between D and 6D. Grazing time was greater (P = 0.04) for CON compared with supplemented treatments, with no difference (P = 0.26) due to supplementation frequency. Distance traveled, maximum distance from water, cow distribution, DMI, DM digestibility, and harvest efficiency were not affected (P > or = 0.16) by protein supplementation or supplementation frequency. The percentage of supplementation events frequented and the CV for supplement intake were not affected (P > or = 0.58) by supplementation frequency. Results suggest that providing protein daily or once every 6 d to cows grazing low-quality forage increases BW and BCS gain, while decreasing grazing time. Additionally, protein supplementation and supplementation frequency may have little to no effect on cow distribution, DMI, and harvest efficiency in the northern Great Basin.  相似文献   

11.
In each of two experiments, 120 pregnant beef cows were stratified by body condition score, BW, breed, and age, randomly divided into six groups of 20, and assigned to one of six 5.1-ha bermudagrass (Cynodon dactylon [L.] Pers.) pastures (two replicates/ treatment) in early January to evaluate the use of winter-annual pasture as a supplement. All cows in Exp. 1 and 2 had ad libitum access to bermudagrass/dallisgrass (Paspalum dilatatum Poir.) hay plus three treatments: 1) a concentrate-based supplement fed 3 d/wk, 2) limit grazing on winter-annual pasture 2 d/wk (7 hr/ d; 0.04 ha x cow(-1) x grazing d(-1)), or 3) limit grazing on winter-annual pasture 3 d/wk (7 hr/d; 0.04 ha x cow(-1) x grazing d(-1)) sod-seeded into a portion of the pasture until mid-May. The seeded portion of pastures in Exp. 1 was planted with a mixture of wheat (Triticum aestivum L.) and rye (Secale cereale L.), but annual ryegrass (Lolium multiflorum Lam.) was added to the seed mixture in Exp. 2. In mid-May, cows were blocked by treatment and the previous sorting factors, randomly assigned to six new groups of 20, and placed on the six perennial pastures until calves were weaned. Groups of cows were exposed to a bull for 60 d beginning in mid-May. In Exp. 1 and 2, limit-grazing winter-annual pasture compared to the concentrate-based supplement or limit grazing 2 vs 3 d/wk did not affect (P > 0.15) cow BW. In Exp. 1, cows limit grazed on winter-annual pasture had a lower (P = 0.05) body condition score than cows fed the concentrate-based supplement in the early spring. However, in Exp. 2, cows limit grazed on winter-annual pasture had higher (P < or = 0.07) body condition score than cows fed the concentrate-based supplement. The conception rate of cows in Exp. 1 and 2 did not differ (P > 0.22) between cows fed concentrate-based supplements and cows limit grazed on winter-annual pasture. In Exp. 2, cows limit grazed 2 d/wk tended to have a greater (P = 0.10) conception rate than cows limit grazed 3 d/wk. In Exp. 1 and 2, birth weight, total gain, BW, and ADG of calves were not affected (P > 0.15) by treatment. We conclude that wheat and rye pasture is a marginal supplement for lactating beef cows. However, cows limit grazed 2 d/wk on winter-annual pasture of wheat, rye, and annual ryegrass as a supplement maintained BW and body condition score as well as cows fed the concentrate-based supplement. But, grazing pasture 3 vs 2 d/wk did not seem to affect performance of cows.  相似文献   

12.
Milk yield from 273 Angus- and Hereford-sired cows and preweaning performance of their calves were used to determine how accurately milk EPD of Angus and Hereford sires predicted milk production of crossbred daughters and subsequent calf performance. Mean milk EPD (kg) for high Angus (HA), low Angus (LA), high Hereford (HH), and low Hereford (LH) bulls (n = 41) selected as sires were +8.7, -6.2, +7.6, and -4.8, respectively. Cows calved in spring or fall from 1992 to 1997 and yielded a total of 660 records. Twenty-four-hour milk production of the cows was estimated by two weigh-suckle-weigh measurements at monthly intervals. The statistical model included breed, milk EPD level, sire of cow within breed and milk EPD level, year, season, cow age, calf sire, sex, and all two- and three-way interactions. Means were obtained for monthly milk production, total milk production, time and yield of peak production, monthly calf weights, monthly cow weights and body condition scores (1 through 9), and calf birth and weaning data. The least squares means for 24-h milk production (kg) of HA, LA, HH, and LH with P-values for high vs low, across breeds, were, respectively, as follows: mo 1: 6.9, 5.9, 7.1, and 5.7 (P < 0.01); mo 2: 7.2, 6.1, 6.9, and 5.7 (P < 0.01); mo 3: 6.1, 5.1, 5.1, and 4.3 (P = 0.01); mo 4: 6.1, 4.9, 4.9, and 4.8 (P = 0.01); mo 5: 4.8, 4.0, 4.2, and 3.8 (P = 0.01); mo 6: 4.7, 3.4, 3.2, and 3.0 (P < 0.01); and mo 7: 3.7, 2.5, 3.0, and 3.0 (P = 0.05). Least squares means for total milk (kg) were 911.4, 729.6, 758.0, and 664.2 (P < 0.01); for yield at peak (kg/d) were 7.0, 5.7, 6.1, and 5.2 (P < 0.01); for birth weight (kg) were 37.1, 37.9, 38.3, and 38.8 (P = 0.31); for 205-d weight (kg) were 237.3, 218.2, 222.2, and 214.1 (P < 0.01); for final cow weight (kg) were 482.4, 505.4, 509.5, and 511.7 (P = 0.11); and for final cow BCS were 4.9, 5.3, 5.1, and 5.2 (P < 0.01). The correlations of total production with the monthly productions were 0.52, 0.56, 0.52, 0.54, 0.35, 0.37, and 0.31 (P < 0.01) and were 0.12 with birth weight, 0.45 with 205-d weight, -0.12 with final cow weight, and -0.26 with final cow body condition score (all P < 0.01). Daughters of high-milk EPD sires produced more milk and weaned heavier calves than those of low-milk EPD sires at the expense of body condition. These results suggest that sire milk EPD are sufficiently associated with milk yield and calf performance to be useful tools in genetic improvement of preweaning performance.  相似文献   

13.
Supplement placement can be used to manipulate livestock grazing patterns. The objective of this case study was to compare the effect of low-moisture blocks (LMB) and range cake (barley-based cylindrical cubes, 2 cm in diameter, and 2 to 8 cm long) supplementation on cattle grazing patterns in Montana foothill rangeland. One group of nonlactating cows (n = 79) was fed cake 3 times per week (1.8 kg · cow−1 · feeding−1), and the other group (n = 81) had continuous access to LMB in separate pastures using a crossover design. Movement patterns of cows were recorded with global positioning system collars during four periods (2 wk · period−1) during autumn. Range cake was fed on accessible areas, and LMB were placed in higher and steeper terrain. Intake of LMB averaged (mean ± SE) 318 ± 50 g · d−1. Cows fed LMB (8.07° ± 0.20°) were observed on steeper slopes (P = 0.08) than cows fed range cake (6.96° ± 0.19°). Forage utilization decreased as slope increased to a greater degree when range cake was fed than when LMB was fed (P = 0.001). Cows spent more time (P = 0.05) within 100 m of LMB (274 ± 23 min · d−1) than at range cake feeding sites (67 ± 24 min · d−1). Strategic placement of LMB on high, steep terrain appears to be a more practical and effective approach than traditional hand-feeding range cake on intermediate terrain to improve uniformity of cattle grazing on rugged rangeland.  相似文献   

14.
Although Se is essential for antioxidant and thyroid hormone function, factors influencing its requirement are not well understood. A survey and two experiments were conducted to determine the influence of cattle breed and age on selenoprotein activity and the effect of maternal Se supplementation on cow and calf selenoprotein activity and neonatal thyroid hormone production. In our survey, four cowherds of different ages representing three breeds were bled to determine the influence of breed and age on erythrocyte glutathione peroxidase activity (RBC GPX-1). All females were nonlactating, pregnant, and consumed total mixed diets (Holstein) or grazed pasture (Angus and Hereford). In our survey of beef breeds, yearlings had greater average RBC GPX-1 activity than mature cows. In Exp. 1, neonatal Holstein heifers (n = 8) were bled daily from 0 to 6 d of age to determine thyroid hormone profile. An injection of Se and vitamin E (BO-SE) was given after the initial bleeding. Thyroxine (T4) and triiodothyronine (T3) concentrations were greatest on d 0 and decreased (P < 0.05) continuously until d 5 postpartum (156.13 to 65.88 and 6.69 to 1.95 nmol/L, d 0 to 5 for T4 and T3, respectively). Reverse T3 concentrations were 3.1 nmol/L on d 0 and decreased (P < 0.05) to 0.52 nmol/ L by d 5. In Exp. 2, multiparous Hereford cows were drenched weekly with either a placebo containing 10 mL of double-deionized H2O (n = 14) or 20 mg of Se as sodium selenite (n = 13). After 2 mo of treatment, Se-drenched cows had greater (P < 0.01) plasma concentrations than control cows (84.92 vs. 67.08 ng/mL), and at parturition, they had plasma Se concentrations twofold greater than (P < 0.05) control cows (95.51 vs. 47.14 ng Se/mL). After 4 mo, cows receiving Se had greater (P < 0.05) RBC GPX-1 activity than controls; this trend continued until parturition. Colostrum Se concentration was twofold greater (P < 0.05) in Se-drenched cows than control cows (169.97 vs. 87.00 ng/mL). Calves born to cows drenched with Se had greater (P < 0.05) plasma Se concentration, RBC GPX-1, and plasma glutathione peroxidase activity on d 0 compared with calves born to control cows. By d 7, no differences in plasma glutathione peroxidase activity in calves were observed. Maternal Se supplementation did not influence calf thyroid hormone concentrations. Selenium provided by salt and forages is not adequate for cattle in Se-deficient states.  相似文献   

15.
Strategic application of an anthelmintic was tested during the 1982 grazing season as part of the continued study of the epidemiology of beef cattle parasitism in central Missouri. Forty Hereford and Hereford X Simmental cow/calf pairs were assigned to 2 treatment groups. The 20 cow/calf pairs in group 1 were nonmedicated controls. After calving in mid-March, the 20 cows in group 2 were drenched with a 10% suspension of the anthelmintic fenbendazole (10 mg/kg of body weight). Ten cow/calf pairs were placed on each of four 20-acre fescue or orchard grass pastures in mid-May. Cows and calves in treatment group 2 were drenched with the 10% fenbendazole suspension (5 mg/kg) in mid-July. Body weights and fecal specimens were obtained monthly. Nematode egg counts in cow and calf fecal specimens collected monthly were significantly (P less than 0.05) lower in treatment group 2 than in treatment group 1. Numbers of larvae cultured for speciation revealed that Ostertagia ostertagi was the predominant nematode species. Developmental arrest of O ostertagi was found to be significantly (P less than 0.05) greater than zero from mid-May to mid-July. An important significant difference (P less than 0.01) was shown in body weights of calves, with the calves in treatment group 2 having a higher mean weight gain of 22.5 kg in adjusted 205-day weaning weights, and a higher mean daily gain of 0.11 kg. Weight maintenance of cows was not affected significantly by anthelmintic treatment. Nematode egg counts in monthly cow and calf fecal specimens were not significantly different between those animals on different pastures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study with grazing beef cows on the range was designed to explore the possibility of determining incremental energy expenditure (EE) in standing, traveling, and grazing relative to that in lying down, by means of continuous monitoring of EE, location, and activity by the heart-rate method, with Global Positioning System (GPS) collars, and by motion sensors in the GPS collars, respectively. Cows were observed on Mediterranean foothill rangeland covered with herbaceous vegetation through 4 seasons of the year. There were 2 stocking rate treatments, and 14 statistical models were evaluated, including one that was a stepwise model. Total daily EE (TEE) was affected by many interdependent factors apart from activity, including season, stocking rate, herbage quality, standing biomass, and reproductive state of the cow. Each model included all activity variables, plus some of the other factors. Across seasons and treatments TEE, in kJ/(kg of BW(0.75) . d), ranged from 469 in densely stocked, nonlactating cows in June to 1,092 in sparsely stocked, lactating cows in April. The cows' daily vertical and horizontal movements ranged from 75 to 174 m and from 1.5 to 4.2 km, respectively. Within a day, time spent traveling (without grazing) ranged from 0 to 32 min, and grazing time ranged from 4.4 to 12.1 h. Cows spent less time grazing (P < 0.001) in the summer, when herbage quality was low, than in winter and spring. Relative to the baseline EE while lying down, the daily increment incurred by grazing ranged from 13 to 48 kJ/(kg of BW(0.75) . d), and that incurred by grazing, standing, and traveling combined ranged from 38 to 74 kJ/(kg of BW(0.75) . d) or 5.8 to 11.4% of TEE. In conclusion, the estimates of activity costs yielded by 11 of the models were similar to one another, whereas those yielded by the stepwise model and the remaining 2 models were 20% smaller. The cost of grazing activity was estimated to be 6.14 J/(kg of BW(0.75) . m), and that of locomotion during grazing was 6.07 J/(kg of BW(0.75) . m), which agree with values obtained for animals and humans by means of a treadmill. The experimental and statistical approach tested here yielded fairly reliable estimations of energy costs of activities in grazing cows.  相似文献   

17.
Two gestating cow winter grazing trials and two lactating cow drylot trials were conducted to evaluate the use of a slowly degraded protein source in corn plant diets for mature beef cows. Gestating beef cows grazing cornstalks were supplemented with .86 kg/(cow.d) of a 20% crude protein equivalent (CPE) pellet (DM basis). In Trial 1 cows fed diets containing 80% dehydrated alfalfa meal (high DEHY) gained more weight (P less than .05) than those fed diets containing 40% dehydrated alfalfa meal (low DEHY) or urea but not more than the cows fed soybean meal (SBM); however, no differences among treatments were observed in Trial 2. Four lactation diets composed of ground corncobs and corn silage were supplemented with either urea, SBM, or two levels of dehydrated alfalfa meal (DEHY) as N sources. The same amount of supplemental N was fed in both trials, consisting of .31 kg of natural protein for the SBM and low DEHY treatments or .42 kg for high DEHY. Ammoniated corncobs replaced 35% of the ground corncobs in Trial 4. Diets were calculated to contain (DM basis) 55% TDN and 9% CPE in Trial 3 and 11% CPE in Trial 4. In Trial 3, lactating cows supplemented with DEHY gained more weight (P less than .10) than those fed the urea supplement but not more than those fed SBM. Gains by cows fed the urea- and SBM-supplemented diets were not different (P greater than .10). Cow weight gains in Trial 4 were not affected by type of protein supplementation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The objective of this study was to test the combined effect of offstream water and trace mineral salt on cattle distribution in a riparian meadow and its adjacent uplands. From July 15 to August 26, 1996 and 1997, three treatments were each randomly assigned to one pasture in each of three blocks. Sixty cow/calf pairs were then randomly allotted to the grazed pastures. The treatments included 1) stream access and access to offstream water and trace-mineral salt (off-stream), 2) stream access and no access to offstream water or trace-mineral salt (no-offstream), and 3) ungrazed control. The response of cattle was measured through visual observations of cattle distribution, grazing activity and travel distance, cow/calf performance, and fecal deposit distribution. Distribution patterns of the cattle, measured as the distance of cattle from the stream, was characterized by a time of day x treatment x time in grazing period x year interaction (P < 0.05). No-offstream cattle began the day further from the stream than offstream cattle but consistently moved closer to the stream after the morning grazing period (0600 to 0900). Differences in distribution patterns between the two treatments were more pronounced early in the grazing period than late in the grazing period. Grazing activity, fecal deposit distribution, and travel distance of cattle were not affected by the presence of offstream water and trace-mineral salt. Cows and calves with offstream water and trace-mineral salt gained 11.5 kg and 0.14 kg/d more, respectively, than no-offstream cows and calves averaged across years (P < 0.05). Overall, cattle distribution patterns and cow/calf performance were influenced by the presence of offstream water and trace-mineral salt. Changes in distribution were most pronounced early in the grazing season.  相似文献   

19.
Glucose delivery and uptake by the mammary gland are a rate-limiting step in milk synthesis. It is thought that insulin-independent glucose uptake decreases in tissues, except for the mammary gland, and insulin resistance in the whole body increases following the onset of lactation. To study glucose metabolism in peak-, late-, and nonlactating cows, the expression of erythrocyte-type glucose transporter (GLUT1) and the insulin-responsive glucose transporter (GLUT4) in the mammary gland, adipose tissue, and muscle were assessed by Western blotting and real-time PCR. Our results demonstrated that the mammary gland of lactating cows expressed a large amount of GLUT1, whereas the mammary gland of nonlactating cows did not (P < 0.05). On the other hand, adipose tissue of late and nonlactating cows expressed a large amount of GLUT1, whereas the adipose tissue of peak-lactating cows did not (P < 0.05). There were no significant differences in the abundance of GLUT4 mRNA in adipose tissue and muscle, whereas GLUT4 mRNA was not detected in the mammary gland. The plasma insulin concentration was greater (P < 0.05) in nonlactating cows than in peak- and late-lactating cows. The results of the present study indicate that in lactation, GLUT1 expression in the mammary gland and adipose tissue is a major factor for insulin-independent glucose metabolism, and the expression of GLUT4 in muscle and adipose tissue is not an important factor in insulin resistance in lactation; however, the plasma insulin concentration may play a role in insulin-dependent glucose metabolism. Factors other than GLUT4 may be involved in insulin resistance.  相似文献   

20.
The objective of this study was to determine whether digesta kinetics, energy intake (EI, kcal ME intake x kg(-.75) x d(-1)), grazing behavior, or body temperature differed by breed, lactational state, or season of the year among cattle presumed to vary in adaptability to the subtropics. Two-year-old lactating and nonlactating Brahman x Angus (BA; n = 5, n = 5), Tuli x Angus (TA; n = 5, n = 4), and Angus (A; n = 4, n = 4) cows were used. During both early (ES) and late summer (LS), lactating cattle vs nonlactating cattle had greater gastrointestinal tract load (CM2) and EI (P < .01), although passage rate did not differ (P > .48). During LS, lactating cattle had decreased early morning rectal temperatures (P < .05) and spent more time grazing during the day compared with nonlactating cattle (P < .001). Among breeds, A had the largest CM2 (P < .01 compared with BA and P = .068 compared with TA) and accumulated the greatest heat during the day (P < .05). Due to greater daytime shading (P < .01) and less daytime grazing (P < .05), A had lower (P < .05) early morning and comparable (P > .26) late afternoon rectal temperatures compared with BA and TA. With data pooled over both grazing trials, BA cattle had the smallest CM2 (P < .01), and in ES they spent the least amount of time in the shade (P < .001). The TA spent more time in the shade than did BA (P < .001) during ES and less during LS (P < .001) and had similar (P > .28) early morning rectal temperatures compared with BA during ES and LS. During LS, TA spent more time in the sun and less time in the shade than did either A or BA (P < .001). During ES, EI did not differ among breeds (P > .50). During LS, EI for lactating A was greater than for BA and TA (P < .05), and EI for nonlactating BA was less than for A and TA (P < .05). Bite rate per minute for lactating cattle during ES was reduced (P < .03) by increased body condition score. Tuli x Angus cattle appear to be comparable to BA with respect to heat adaptation. It appears that EI demands are greater in a hot environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号