首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A long-term (30 years) soybean–wheat experiment was conducted at Hawalbagh, Almora, India to study the effects of organic and inorganic sources of nutrients on grain yield trends of rainfed soybean (Glycine max)–wheat (Triticum aestivum) system and nutrient status (soil C, N, P and K) in a sandy loam soil (Typic Haplaquept). The unfertilized plot supported 0.56 Mg ha−1 of soybean yield and 0.71 Mg ha−1 of wheat yield (average yield of 30 years). Soybean responded to inorganic NPK application and the yield increased significantly to 0.87 Mg ha−1 with NPK. Maximum yields of soybean (2.84 Mg ha−1) and residual wheat (1.88 Mg ha−1) were obtained in the plots under NPK + farmyard manure (FYM) treatment, which were significantly higher than yields observed under other treatments. Soybean yields in the plots under the unfertilized and the inorganic fertilizer treatments decreased with time, whereas yields increased significantly in the plots under N + FYM and NPK + FYM treatments. At the end of 30 years, total soil organic C (SOC) and total N concentrations increased in all the treatments. Soils under NPK + FYM-treated plots contained higher SOC and total N by 89 and 58% in the 0–45 cm soil layer, respectively, over that of the initial status. Hence, the decline in yields might be due to decline in available P and K status of soil. Combined use of NPK and FYM increased SOC, oxidizable SOC, total N, total P, Olsen P, and ammonium acetate exchangeable K by 37.8, 42.0, 20.8, 30.2, 25.0, and 52.7%, respectively, at 0–45 cm soil layer compared to application of NPK through inorganic fertilizers. However, the soil profiles under all the treatments had a net loss of nonexchangeable K, ranging from 172 kg ha−1 under treatment NK to a maximum of 960 kg ha−1 under NPK + FYM after 30 years of cropping. Depletion of available P and K might have contributed to the soybean yield decline in treatments where manure was not applied. The study also showed that although the combined NPK and FYM application sustained long-term productivity of the soybean–wheat system, increased K input is required to maintain soil nonexchangeable K level.  相似文献   

2.
Enrichment of soil organic carbon (SOC) stocks through sequestration of atmospheric CO2 in agricultural soils is important because of its impacts on adaptation to and mitigation of climate change while also improving crop productivity and sustainability. In a long‐term fertility experiment carried out over 27 y under semiarid climatic condition, we evaluated the impact of crop‐residue C inputs through rainfed fingermillet (Eleusine coracana [L.] Gaertn.) cropping, fertilization, and manuring on crop yield sustainability and SOC sequestration in a Alfisol soil profile up to a depth of 1 m and also derived the critical value of C inputs for maintenance of SOC. Five treatments, viz., control, farmyard manure (FYM) 10 Mg ha–1, recommended dose of NPK (50 : 50 : 25 kg N, P2O5, K2O ha–1), FYM 10 Mg ha–1 + 50% recommended dose of NPK, and FYM 10 Mg ha–1 + 100% recommended dose of NPK imposed in a randomized block design replicated four times. Application of FYM alone or together with mineral fertilizer resulted in a higher C input and consequently built up a higher C stock. After 27 y, higher profile SOC stock (85.7 Mg ha–1), C build up (35.0%), and C sequestration (15.4 Mg C ha–1) was observed with the application of 10 Mg FYM ha–1 along with recommended dose of mineral fertilizer and these were positively correlated with cumulative C input and well reflected in sustainable yield index (SYI). For sustenance of SOC level (zero change due to cropping) a minimum quantity of 1.13 Mg C is required to be added per hectare per annum as inputs. While the control lost C, the application of mineral fertilizer served to maintain the priori C stock. Thus, the application of FYM increased the C stock, an effect which was even enhanced by additional amendment of mineral fertilizer. We conclude that organic amendments contribute to C sequestration counteracting climate change and at the same time improve soil fertility in the semiarid regions of India resulting in higher and more stable yields.  相似文献   

3.
Post‐methanation effluent (PME) generated through bio‐methanation of distillery effluent, a foul‐smelling, dark colored by‐product of distillery industries, is applied to arable land in some areas near the vicinity of the distillery industries as an amendment. The PME contains considerable amount of organic matter and salt besides its high plant‐nutrient content. The present investigation was conducted for three years during 1999–2002 on soybean‐wheat cropping sequence to evaluate the effect of graded levels of post‐methanation effluent (PME) on soil physical properties and crop productivity in a deep Vertisol of central India. Six application doses of PME viz. S2.5+W0: 2.5 cm PME applied to soybean and wheat on residual nutrition, S2.5+W1.25: 2.5 cm PME to soybean and 1.25 cm to wheat, S5.0+W0: 5 cm PME to soybean and wheat on residual nutrition, S5.0+W2.5: 5.0 cm PME to soybean and 2.5 cm to wheat, S10.0+W0: 10 cm PME to soybean and wheat on residual nutrition, and S10.0+W5.0: 10.0 cm PME to soybean and 5.0 cm to wheat, were compared with 100% recommended NPK+FYM ? 4 Mg ha–1 and control (no fertilizer, manure or PME). The application of PME increased the organic carbon content and electrical conductivity of the soil compared to control and 100% NPK+FYM treatment. The organic C content was maximum in S10.0+W5.0 (11.2 g kg–1) and minimum in control (5.2 g kg–1). Electrical conductivity increased from 0.47 dS m–1 in control to 1.58 dS m–1 in highest dose of PME (S10.0+W5.0). The PME treatments have not affected the soil pH. The application of PME showed a significant improvement in the physical properties of the soil. The mean weight diameter (MWD), percent water‐stable aggregation (% WSA), saturated hydraulic conductivity (Ksat), and water retention (WR) at 0.033 MPa suction were significantly (P < 0.05) more while bulk density (BD) and penetration resistance was significantly less in PME‐treated plots than that of control. The MWD showed a linear and positive relationship (r = 0.89**) with the soil organic C. Soybean recorded significantly higher seed yield at all PME treatments than control. Highest average soybean yield (2.39 Mg ha–1) was recorded in S10.0+W0 but yield decreased significantly in S10.0+W5.0 (2.08 Mg ha–1). In wheat, all the PME‐treated plots except S2.5+W0 yielded significantly higher than control while the 100% NPK+FYM treatment yielded (3.46 Mg ha–1) at par with the S10.0+W5.0 (4.0 Mg ha–1) and S5.0+W2.5 (3.66 Mg ha–1). Fresh application of PME to wheat resulted in significant improvement in grain yield over that grown on residual fertility. Thus, application of PME to arable land, as an amendment, could be considered as a viable option for the safe disposal of this industrial waste.  相似文献   

4.
A long‐term fertilizer experiment, over 27 years, studied the effect of mineral fertilizers and organic manures on potassium (K) balances and K release properties in maize‐wheat‐cowpea (fodder) cropping system on a Typic Ustochrept. The treatments consisted of control, 100% nitrogen (100% N), 100% nitrogen and phosphorus (100% NP), 50% nitrogen, phosphorus, and potassium (50% NPK), 100% nitrogen, phosphorus, and potassium (100% NPK), 150% nitrogen, phosphorus, and potassium (150% NPK), and 100% NPK+farmyard manure (100% NPK+FYM). Nutrients N, P, and K in 100% NPK treatment were applied at N: 120 kg ha—1, P: 26 kg ha—1, and K: 33 kg ha—1 each to maize and wheat crops and N: 20 kg ha—1, P: 17 kg ha—1, and K: 17 kg ha—1 to cowpea (fodder). In all the fertilizer and manure treatments removal of K in the crop exceeded K additions and the total soil K balance was negative. The neutral 1 N ammonium acetate‐extractable K in the surface soil (0—15 cm) ranged from 0.19 to 0.39 cmol kg—1 in various treatments after 27 crop cycles. The highest and lowest values were obtained in 100% NPK+FYM and 100% NP treatments, respectively. Non‐exchangeable K was also depleted more in the treatments without K fertilization (control, 100% N, and 100% NP). Parabolic diffusion equation could describe the reaction rates in CaCl2 solutions. Release rate constants (b) of non‐exchangeable K for different depth of soil profile showed the variations among the treatments indicating that long‐term cropping with different rates of fertilizers and manures influenced the rate of K release from non‐exchangeable fraction of soil. The b values were lowest in 100% NP and highest in 100% NPK+FYM treatment in the surface soil. In the sub‐surface soil layers (15—30 and 30—45 cm) also the higher release rates were obtained in the treatments supplied with K than without K fertilization indicating that the sub‐soils were also stressed for K in these treatments.  相似文献   

5.
The aim of this study was to understand impacts of long-term (43 years) fertilization on soil aggregation, N accumulation rates and δ15N in surface and deep layers in an Alfisol. Soil samples from seven treatments were analysed for N stocks, aggregate-associated N in 0–30 cm and the changes in δ15N in 0–90 cm depths. The treatments were: unfertilized control (control); recommended N dose (N); recommended N and phosphorus doses (NP); recommended N, P and potassium doses (NPK); 150% of recommended N, P and K doses (150% NPK); NPK + 10 Mg FYM ha?1 (NPK + FYM) and NPK + 0.4 Mg lime ha?1 (NPK + L). Results revealed that plots under NPK + FYM had ~39% higher total N concentrations than NPK + L in 0–30 cm soil layers. In NPK + L, macro-aggregates had 35 and 11% and microaggregates had 20 and 9% lower δ15N values than NPK + FYM in 0–15 and 15–30 cm soil layers, respectively. However, plots receiving NPK + FYM had ~39% greater deep soil (30–90 cm) N accumulation than NPK + L. These results would help understanding N supplying capacity by long-term fertilization and assist devising N management strategies in sub-tropical acidic Alfisols.  相似文献   

6.
Climate, soil physical–chemical characteristics, land management, and carbon (C) input from crop residues greatly affect soil organic carbon (SOC) sequestration. According to the concept of SOC saturation, the ability of SOC to increase with C input decreases as SOC increases and approaches a SOC saturation level. In a 12‐year experiment, six semi‐arid cropping systems characterized by different rates of C input to soil were compared for ability to sequester SOC, SOC saturation level, and the time necessary to reach the SOC saturation level. SOC stocks, soil aggregate sizes, and C inputs were measured in durum wheat monocropping with (Ws) and without (W) return of aboveground residue to the soil and in the following cropping systems without return of aboveground residue to soil: durum wheat/fallow (Wfall), durum wheat/berseem clover, durum wheat/barley/faba bean, and durum wheat/Hedysarum coronarium. The C sequestration rate and SOC content were lowest in Wfall plots but did not differ among the other cropping systems. The C sequestration rate ranged from 0.47 Mg C ha−1 y−1 in Ws plots to 0.66 Mg C ha−1 y−1 in W plots but was negative (−0.06 Mg C ha−1 y−1) in Wfall plots. Increases in SOC were related to C input up to a SOC saturation value; over this value, further C inputs did not lead to SOC increase. Across all cropping systems, the C saturation value for the experimental soil was 57.7 Mg ha−1, which was reached with a cumulative C input of 15 Mg ha−1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
ABSTRACT

The performance of DNDC (DeNitrification-DeComposition) and RothC (Rothamsted Carbon model) in simulating soil organic carbon (SOC) storage in soils under rice (Oryza sativa L.) – wheat (Triticum aestivum L.), maize (Zea mays L.) – wheat and cotton (Gossypium hirsutum L.) – wheat cropping systems was evaluated on field and regional scale. Field experiments consisted of N, NP, NK, PK, NPK, FYM, N + FYM, NPK + FYM, and control (UF) treatments. DNDC and RothC over-estimated SOC storage by 0.35–1.16 Mg C ha?1 (6–21%) in surface layer with manure application, compared with inorganic fertilizer treatments by 1.01–1.16 Mg C ha?1 (14–18%). Although RothC only slightly over-estimated SOC stocks, DNDC provided a better match for measured versus simulated SOC stocks (R 2 = 0.783*, DNDC; 0.669*, RothC, p < .05). Model validation on independent datasets from long-term studies on rice–wheat (R 2 = 0.935**, DNDC; R 2 = 0.920**, RothC, p < .01) and maize–wheat (R 2 = 0.895** for DNDC and R 2 = 0.967** for RothC, p < .01) systems showed excellent agreement between measured and simulated SOC stocks. On a regional scale, change in SOC storage under Scenario 1 (NPK) was significant up to 8 years of simulation, with no change thereafter. In Scenario 2 (NPK + FYM), DNDC simulated SOC storage after 10 years was 2.0, 0.4, and 1.4 Mg C ha?1 in three systems, respectively. Amount of C sequestered in silt + clay fraction varied between 0.31 and 0.97 kg C 10 years?1 (Mg silt + clay)?1 under Scenario 1, and between 0.78 and 2.67 kg C 10 years?1 (Mg silt + clay)?1 under Scenario 2.  相似文献   

8.
A computational exercise was undertaken to quantify the percent N derived from atmosphere %Ndfa) in soybean and consequent N benefit from biological N2‐fixation process annually accrued to the soil by the soybean crop using average annual N‐input/‐output balance sheet from a 7 yr old soybean‐wheat continuous rotational experiment on a Typic Haplustert. The experiment was conducted with 16 treatments comprised of combinations of four annual rates of farmyard manure (FYM ? 0, 4, 8, and 16 t ha–1) and four annual rates of fertilizer N (? 0, 72.5, 145, and 230 kg N ha–1) applications. The estimated N contributed through residual biomass of soybean (RBNS) consisting of leaf fall, root, nodules, and rhizodeposition varied in the ranges of 7.02–16.94, 11.65–28.83, 3.31–8.91, and 11.3–23.8 kg N ha–1 yr–1, respectively. A linear relationship was observed between RBNS and harvested biomass N (HBNS) of soybean in the form of RBNS = 0.461 × HBNS – 20.67 (r = 0.989, P < 0.01), indicating that for each 100 kg N assimilated by the harvested biomass of soybean, 25.4 kg N was added to the soil through residual biomass. The Ndfa values ranged between 13% and 81% depending upon the annual rates of application of fertilizer N and FYM. As per the main effects, the %Ndfa declined from 76.4 to 26.0 with the increase in annual fertilizer‐N application from 0 to 230 kg N ha–1, whereas %Ndfa increased from 40.8 to 65.8 with the increase in FYM rates from 0 to 16 t ha–1, respectively. The N benefit from biological N2 fixation accrued to the soil through residual biomass of soybean ranged from 7.6 to 53.7 kg N ha–1 yr–1. The treatments having %Ndfa values higher than 78 showed considerable annual contribution of N from N2 fixation to the soil which were sufficient enough to offset the quantity of N removed from the soil (i.e., native soil N / FYM‐N / fertilizer‐N) with harvested biomass of soybean.  相似文献   

9.
Nitrate leaching, overall N balance, and organic‐C build‐up in a semi‐arid agro‐ecosystem in NW India was estimated from the results of a long‐term manurial trial with farmyard manure (FYM) and mineral‐N fertilizer in operation since 1967 at the Research Farm of CCS Haryana Agricultural University, Hisar, India. The model LEACHN was calibrated for the wheat‐growing period November 2000 to April 2001 and the leaching of nitrate during this period was predicted to 48 kg N ha–1 without mineral‐N fertilization and 59 kg N ha–1 with addition of 120 kg mineral‐N fertilizer, both with the addition of 15 t ha–1 FYM. The N balance for the simulation period showed that the 120 kg N ha–1–mineral N fertilization compared to zero mineral N, both plus FYM, resulted in only slightly higher crop uptake, leaching losses, and NH3 volatilization, and a negligible increase of N in organic matter. The largest amount remains as an additional build‐up of mineral N in the profile (84.3 kg N ha–1) which is prone to losses as ammonia or nitrate. The model was used to simulate organic‐C build‐up with FYM and a decrease of organic C without FYM for a period of 33 y (1967–2000). The simulated C build‐up to about 0.1 g kg–1 agreed very well with the measured values and showed that additional mineral‐N fertilization will not have any significant effect on organic‐C content. Simulations with the assumption of no FYM application showed a gradual decrease of organic C from its starting value of 0.046 g kg–1 in 1967 down to almost half of this. This agreed well with the observed organic‐C values of 0.028 g kg–1 as measured for unmanured plots.  相似文献   

10.
Changes in grain yields and soil organic carbon (SOC) from a 26 y dryland fertilization trial in Pingliang, Gansu, China, were recorded. Cumulative C inputs from straw and root and manure for fertilizer treatments were estimated. Mean wheat (Triticum aestivum L.) yields for the 18 y ranged from 1.72 t ha–1 for the unfertilized plots (CK) to 4.65 t ha–1 for the plots that received manure (M) annually with inorganic N and P fertilizers (MNP). Corn (Zea mays L.) yields for the 6 y averaged 2.43 and 5.35 t ha–1 in the same treatments. Yields declined with year except in the CK for wheat. Wheat yields for N only declined with time by 117.8 kg ha–1 y–1 that was the highest decrease among all treatments, and that for NP declined by 84.7 kg ha–1 y–1, similar to the declines of 77.4 kg ha–1 y–1 for the treatment receiving straw and N annually and P every second year (SNP). Likewise, the corn yields declined highly for all treatments, and the declined amounts ranged from 108 to 258 kg ha–1 y–1 which was much higher than in wheat. These declined yields were mostly linked to both gradual dry weather and nutrients depletion of the soil. The N only resulted in both P and K deficiency in the soil, and soil N and K negative balances in the NP and MNP were obvious. Soil organic carbon (SOC) in the 0–20 cm soil layer increased with time except in the CK and N treatments, in which SOC remained almost stable. In the MNP and M treatments, 24.7% and 24.0% of the amount of cumulative C input from organic sources remained in the soil as SOC, but 13.7% of the C input from straw and root in the SNP, suggesting manure is more effective in building soil C than straw. Across the 26 y cropping and fertilization, annual soil‐C sequestration rates ranged from 0.014 t C ha–1 y–1 for the CK to 0.372 t C ha–1 y–1 for the MNP. We found a strong linear relationship (R2 = 0.74, p = 0.025) between SOC sequestration and cumulative C input, with C conversion–to–SOC rate of 16.9%, suggesting these dryland soils have not reached an upper limit of C sequestration.  相似文献   

11.
Soil organic matter (SOM) contributes to the productivity and physical properties of soils. Although crop productivity is sustained mainly through the application of organic manure in the Indian Himalayas, no information is available on the effects of long-term manure addition along with mineral fertilizers on C sequestration and the contribution of total C input towards soil organic C (SOC) storage. We analyzed results of a long-term experiment, initiated in 1973 on a sandy loam soil under rainfed conditions to determine the influence of different combinations of NPK fertilizer and fertilizer + farmyard manure (FYM) at 10 Mg ha−1 on SOC content and its changes in the 0–45 cm soil depth. Concentration of SOC increased 40 and 70% in the NPK + FYM-treated plots as compared to NPK (43.1 Mg C ha−1) and unfertilized control plots (35.5 Mg C ha−1), respectively. Average annual contribution of C input from soybean (Glycine max (L.) Merr.) was 29% and that from wheat (Triticum aestivum L. Emend. Flori and Paol) was 24% of the harvestable above-ground biomass yield. Annual gross C input and annual rate of total SOC enrichment were 4852 and 900 kg C ha−1, respectively, for the plots under NPK + FYM. It was estimated that 19% of the gross C input contributed towards the increase in SOC content. C loss from native SOM during 30 years averaged 61 kg C ha−1 yr−1. The estimated quantity of biomass C required to maintain equilibrium SOM content was 321 kg ha−1 yr−1. The total annual C input by the soybean–wheat rotation in the plots under unfertilized control was 890 kg ha−1 yr−1. Thus, increase in SOC concentration under long-term (30 years) rainfed soybean–wheat cropping was due to the fact that annual C input by the system was higher than the required amount to maintaining equilibrium SOM content.  相似文献   

12.
A long‐term fertilization experiment with monoculture corn (Zea mays L.) was established in 1980 on a clay‐loam soil (Black Soil in Chinese Soil Classification and Typic Halpudoll in USDA Soil Taxonomy) at Gongzhuling, Jilin Province, China. The experiment aimed to study the sustainability of grain‐corn production on this soil type with eight different nitrogen (N)‐, phosphorus (P)‐, and potassium (K)–mineral fertilizer combinations and three levels (0, 30, and 60 Mg ha–1 y–1) of farmyard manure (FYM). On average, FYM additions produced higher grain yields (7.78 and 8.03 Mg ha–1) compared to the FYM0 (no farmyard application) treatments (5.67 Mg ha–1). The application of N fertilizer (solely or in various combinations with P and K) in the FYM0 treatment resulted in substantial grain‐yield increases compared to the FYM0 control treatment (3.56 Mg ha–1). However, the use of NP or NK did not yield in any significant additional effect on the corn yield compared to the use of N alone. The treatments involving P, K, and PK fertilizers resulted in an average 24% increase in yield over the FYM0 control. Over all FYM treatments, the effect of fertilization on corn yield was NPK > NP = NK = N > PK = P > K = control. Farmyard‐manure additions for 25 y increased soil organic‐matter (SOM) content by 3.8 g kg–1 (13.6%) in the FYM1 treatments and by 7.8 g kg–1 (27.8%) in the FYM2 treatments, compared to a 3.2 g kg–1 decrease (11.4%) in the FYM0 treatments. Overall, the results suggest that mineral fertilizers can maintain high yields, but a combination of mineral fertilizers plus farmyard manure are needed to enhance soil organic‐matter levels in this soil type.  相似文献   

13.
Productivity of rainfed finger millet in semiarid tropical Alfisols is predominantly constrained by erratic rainfall, limited soil moisture, low soil fertility, and less fertilizer use by the poor farmers. In order to identify the efficient nutrient use treatment for ensuring higher yield, higher sustainability, and improved soil fertility, long term field experiments were conducted during 1984 to 2008 in a permanent site under rainfed semi-arid tropical Alfisol at Bangalore in Southern India. The experiment had two blocks—Farm Yard Manure (FYM) and Maize Residue (MR) with 5 fertilizer treatments, namely: control, FYM at 10 t ha?1, FYM at 10 t ha?1 + 50% NPK [nitrogen (N), phosphorus (P), potassium (K)], FYM at 10 t ha?1 + 100% NPK (50 kg N + 50 kg P + 25 kg K ha?1) and 100% NPK in FYM block; and control, MR at 5 t ha?1, MR at 5 t ha?1 + 50% NPK, MR at 5 t ha?1 + 100% NPK and 100% NPK in MR block. The treatments differed significantly from each other at p < 0.01 level of probability in influencing finger millet grain yield, soil N, P, and K in different years. Application of FYM at 10 t ha?1 + 100% NPK gave a significantly higher yield ranging from 1821 to 4552 kg ha?1 with a mean of 3167 kg ha?1 and variation of 22.7%, while application of maize residue at 5 t ha?1 + 100% NPK gave a yield of 593 to 4591 kg ha?1 with a mean of 2518 kg ha?1 and variation of 39.3% over years. In FYM block, FYM at 10 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.45%), available N (204 kg ha?1), available P (68.6 kg ha?1), and available K (107 kg ha?1) over years. In maize residue block, application of MR at 5 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.39%), available soil N (190 kg ha?1), available soil P (47.5 kg ha?1), and available soil K (86 kg ha?1). The regression model (1) of yield as a function of seasonal rainfall, organic carbon, and soil P and K nutrients gave a predictability in the range of 0.19 under FYM at 10 t ha?1 to 0.51 under 100% NPK in FYM block compared to 0.30 under 100% NPK to 0.67 under MR at 5 t ha?1 application in MR block. The regression model (2) of yield as a function of seasonal rainfall, soil N, P, and K nutrients gave a predictability in the range of 0.11 under FYM at 10 t ha?1 to 0.52 under 100% NPK in FYM block compared to 0.18 under MR at 5 t ha?1 + 50% NPK to 0.60 under MR at 5 t ha?1 application in MR block. An assessment of yield sustainability under different crop seasonal rainfall situations indicated that FYM at 10 t ha?1 + 100% NPK was efficient in FYM block with a maximum Sustainability Yield Index (SYI) of 41.4% in <500 mm, 64.7% in 500–750 mm, 60.2% in 750–1000 mm and 60.4% in 1000–1250 mm rainfall, while MR at 5 t ha?1 + 100% NPK was efficient with SYI of 29.6% in <500 mm, 50.2% in 500–750 mm, 40.6% in 750–1000 mm, and 39.7% in 1000–1250 mm rainfall in semi-arid Alfisols. Thus, the results obtained from these long term studies incurring huge expenditure provide very good conjunctive nutrient use options with good conformity for different rainfall situations of rainfed semiarid tropical Alfisol soils for ensuring higher finger millet yield, maintaining higher SYI, and maintaining improved soil fertility.  相似文献   

14.
Understanding rhizodeposited carbon (C) dynamics of winter wheat (Triticum aestivum L.) is important for improving soil fertility and increasing soil C stocks. However, the effects of nitrogen (N) fertilization on photosynthate C allocation to rhizodeposition of wheat grown in an intensively farmed alkaline soil remain elusive. In this study, pot‐grown winter wheat under N fertilization of 250 kg N ha?1 was pulse‐labeled with 13CO2 at tillering, elongation, anthesis, and grain‐filling stages. The 13C in shoots, roots, soil organic carbon (SOC), and rhizosphere‐respired CO2 was measured 28 d after each 13C labeling. The proportion of net‐photosynthesized 13C recovered (shoots + roots + soil + soil respired CO2) in the shoots increased from 58–64% at the tillering to 86–91% at the grain‐filling stage. Likewise, the proportion in the roots decreased from 21–28% to 2–3%, and that in the SOC pool increased from 1–2% to 6–7%. However, the 13C respired CO2 allocated to soil peaked (17–18%) at the elongation stage and decreased to 6–8% at the grain‐filling stage. Over the entire growth season of wheat, N fertilization decreased the proportion of net photosynthate C translocated to the below‐ground pool by about 20%, but increased the total amount of fixed photosynthate C, and therefore increased the below‐ground photosynthate C input. We found that the chase period of about 4 weeks is sufficient to accurately monitor the recovery of 13C after pulse labeling in a wheat–soil system. We conclude that N fertilization increased the deposition of photoassimilate C into SOC pools over the entire growth season of wheat compared to the control treatment.  相似文献   

15.
The field study was conducted in April 2006 in a long-term fertilization experiment that was set up in 1983. The aims of this study are to compare the weediness in plots with nitrogen–phosphorus–potassium (NPK), NPK + farmyard manure (FYM), and NPK + stalk treatments and to study the effect of increasing N doses on the weeds and winter wheat plants. The bifactorial test was arranged in a split-plot design with three replications. The treatments were the following: 0, 50, 100, 150, and 200 kg ha?1 N, 100 kg ha?1 phosphorus pentoxide (P2O5), and 100 kg ha?1 potassium oxide (K2O). Three weed species were dominant in the experiment: Veronica hederifolia, Consolida regalis, and Stellaria media. The NPK treatment resulted in the smallest average weed cover. The significantly greatest weed cover was found on the plots treated with NPK + FYM, but the greatest biomass production of winter wheat was measured also in the NPK + FYM treatment, which resulted in a good crop competition. The weed cover was increased proportionally by the rising N doses. The effect of increasing N rates was positive on the winter wheat biomass and on wheat competition to the weeds. Results of our study show that we can manage weeds better using favorable plant nutrition.  相似文献   

16.
Based on a long-term finger millet-groundnut rotation study conducted for 24-years during 1992–2015 under Alfisols at Bangalore, organic and inorganic fertilizer effects on soil organic carbon (SOC) sequestration and sustainability of yield were assessed. Field experiments were conducted with T1:Control; T2:FYM@ 10t ha?1; T3:FYM@ 10t ha?1 + 50% NPK; T4:FYM@ 10t ha?1 + 100% NPK, and T5:100% recommended NPK in same plot every year. T5 comprised of 50 kg N, 50 kg P2O5 and 25 kg K2O ha?1 for finger millet and 25 kg N, 50 kg P2O5 and 25 kg K2O ha?1 for groundnut. Sustainability yield index of treatments was assessed using measurements made on variability of yield over years. The amount of carbon sequestered was assessed to identify a superior treatment for improving soil quality. Balanced use of 100% NPK+ FYM for maintenance of SOC at antecedent level with biomass-C of 1.62 Mg C ha?1 year?1 was feasible for sustaining production under semi-arid Alfisols.  相似文献   

17.
The present investigation was carried out to evaluate the effect of integrated nutrient management (INM) on crop yield sustainability and soil quality in a long-term trial initiated during the wet season of 1971 under a humid subtropical climate. Over 41 years of study, 100% nitrogen, phosphorus, and potassium (NPK) + farm yard manure (FYM) at 15 t ha?1 recorded the most sustainable grain yields. Optimal and superoptimal NPK fertilizers gave quite similar crop yields to that of 100% NPK + FYM at 15 t ha–1 up to two decades but thereafter yields declined sharply due to emergence of zinc (Zn) deficiency. The sustainable yield index (SYI) values indicated that wheat yields were more sustainable than rice. Soil organic carbon and available N, P, K, and Zn in the control plot decreased the most, whereas 100% NPK + FYM at 15 t ha–1 improved available N, P and K, maintained soil organic carbon, and decreased Zn over initial levels. Grain yield and SYI were more significantly correlated with Soil Organic Carbon (SOC). Continuous application of FYM contributed the maximum Soil Quality Index (SQI) (0.94), followed by Zn.  相似文献   

18.
Data from a 49-year-long organic–mineral fertilization field experiment with a potato–maize–maize–wheat–wheat crop rotation were used to analyse the impact of different fertilizer variations on yield ability, soil organic carbon content (SOC), N and C balances, as well as on some characteristic energy balance parameters. Among the treatments, the fertilization variant with 87 kg ha?1 year?1 N proved to be economically optimal (94% of the maximum). Approximately 40 years after initiation of the experiment, supposed steady-state SOC content has been reached, with a value of 0.81% in the upper soil layer of the unfertilized control plot. Farmyard manure (FYM) treatments resulted in 10% higher SOC content compared with equivalent NPK fertilizer doses. The best C balances were obtained with exclusive mineral fertilization variants (?3.8 and ?3.7 t ha?1 year?1, respectively). N uptake in the unfertilized control plot suggested an airborne N input of 48 kg ha?1 year?1. The optimum fertilizer variant (70 t ha?1 FYM-equivalent NPK) proved favourable with a view to energy. The energy gain by exclusive FYM treatments was lower than with sole NPK fertilization. Best energy intensity values were obtained with lower mineral fertilization and FYM variants. The order of energy conversion according to the different crops was maize, wheat and potato.  相似文献   

19.
Asiatic cotton (Gossypium arboreum) is mostly grown in the rainfed regions of India. However, little is known about the effects of nutrient‐management practices on plant growth and fruiting pattern of Asiatic cotton. Therefore, plant growth and fruiting pattern under four nutrient‐management treatments, N, NPK, FYM (10 Mg ha–1), and INM (integrated nutrient management: a combination of NPK and FYM) were quantified during 2000–01 to 2002–03 (years 16 to 18 of a long‐term field experiment). Plants of the INM and FYM treatments were taller (68.4–149.5 cm) and had more main stem nodes per plant (30.5–44.5) as compared to N and NPK treatments. In treatment N, the shortest plants (50.9–83.6 cm) and the least number of fruiting structures were produced. Plants of the INM and FYM treatments accumulated more squares and bolls. Maximum boll production was 10–19 days earlier with the manure‐amended than the N and NPK treatments. Treatment N had the lowest seed cotton yield (639–790 kg ha–1), because of small boll size (1.48–1.73 g) and few open bolls. Seed cotton yield followed the trend: NPK (815–1278 kg ha–1) < INM (776–1551 kg ha–1) < FYM (902–1593 kg ha–1). Water stress and nutrient deficiencies (P and Zn in the N and Zn in the NPK treatments) as a consequence of nutrient depletion over the years may have decreased seed cotton yields in treatments that received mineral fertilizer alone in comparison with manure‐amended treatments. On a long‐term basis, FYM application should therefore form an integral part of nutrient recommendation.  相似文献   

20.
A long-term field experiment (1984–2011), was conducted on a Calcic Haploxeralf from semi-arid central Spain to evaluate the combined effect of three treatments: farmyard manure (FYM), straw and control without organic amendments (WOA) and five increasing rates of mineral N on: (1) some energetic parameters of crop production, and (2) the effect of the different treatments on soil organic carbon (SOC) and total N stocks. Crop rotation included spring barley, wheat and sorghum. The energy balance variables considered were net energy produced (energy output minus energy input), the energy output/input ratio and energy productivity (crop yield per unit energy input). Results showed small differences between treatments. Total energy inputs varied from 9.86 GJ ha?1 year?1 (WOA) to 11.14 GJ ha?1 year?1 in the FYM system. For the three crops, total energy inputs increased with increasing rates of mineral N. Energy output was slightly lower in the WOA (33.40 GJ ha?1 year?1) than in the two organic systems (37.34 and 34.96 GJ ha?1 year?1 for FYM and straw respectively). Net energy followed a similar trend. At the end of the 27-year period, the stocks of SOC and total N had increased noticeably in the soil profile (0–30 cm) as a result of application of the two organic amendments. Most important SOC changes occurred in the FYM plots, with mean increases in the 0–10 cm depth, amounting an average of 9.9 Mg C ha?1 (667 kg C ha?1 year?1). Increases in N stocks in the top layer were similar under FYM and straw and ranged from 0.94 to 1.55 Mg N ha?1. By contrast, simultaneous addition of increasing rates of mineral N showed no significant effect on SOC and total N storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号