首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root traits of six different crops grown on residual soil moisture in the post–rainy season in the High Barind Tract (HBT) of Bangladesh were investigated to better understand their adaptation to this moisture‐limited environment. Deep‐rooting chickpea is the currently favored rainfed crop grown after rainy‐season rice in the HBT, but it is necessary to identify alternative crops to chickpea in order to avoid buildup of pests and diseases. Averaged over 2 y, barley (1.72 Mg ha–1) produced significantly more grain than chickpea (1.4 Mg ha–1) which, in turn, yielded better than linseed (1.0 Mg ha–1), wheat (0.93 Mg ha–1), and mustard (0.77 Mg ha–1). Lentil did not produce any grain at all. Grain yield for all crops increased as total root length increased above a threshold value of 0.05 to 0.1 km m–2. In general, grain yield increased as the proportion of total root produced below 60 cm depth increased, although barley also had thin roots that could more effectively extract soil moisture. Expression of root traits varied considerably between seasons, which was attributable to the different rainfall patterns and bulk‐density characteristics of the soil profile in the 2 years of the study. Although favorable root traits, particularly rooting ability below 60 cm, are a prerequisite for acceptable yield levels of crops grown on residual soil moisture in the HBT, it is recognized that farmers' choice of a post‐rice crop will depend on its economic return or food‐security value.  相似文献   

2.
Summary Soil solarization greatly reduced the native chickpea Rhizobium population. With inoculation, it was possible to increase the population of the Rhizobium in solarized plots. In the 1st year, 47% nodulation was obtained with chickpea inoculant strain IC 59 when introduced with a cereal crop 2 weeks after the soil solarization and having a native Rhizobium count of <10 g-1 soil, and only 13% when introduced 16 weeks after solarization at the time the chickpeas were sown, with 2.0×102 native rhizobia g-1 soil. In the non-solarized plots inoculated with 5.6×103 native rhizobia g-1 soil, only 6% nodulation was obtained with the inoculant. In the succeeding year, non-inoculated chickpea was grown on the same plots without any solarization or Rhizobium inoculation. The treatment that showed good establishment of the inoculant strain in year 1 formed 68% inoculant nodules. Other treatments indicated a further reduction in inoculant success, from 1%–13% to 1%–9%. Soil solarization thus allowed an inoculant strain to successfully displace the high native population in the field and can serve as a research tool to compare strains in the field, irrespective of competitive ability. In year 1, Rhizobium inoculation of chickpea gave increased nodulation and increased plant growth 20 and 51 days after sowing, and increased dry matter, grain yield, and grain protein yield at maturity. These beneficial effects of inoculation on plant growth and yield were not measured in the 2nd year.Submitted as Journal Article No. JA 945 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh 502 324, India  相似文献   

3.
A two‐year field experiment was conducted to determine if using mixed strains of Rhizobium inoculant and starter nitrogen (N) fertilizer could improve yield and nodulation of four common bean varieties on a Vertisol at Alemaya, Ethiopia. A granular mixed inoculant of CIAT isolates 384, 274, and 632 and a starter N fertilizer at a rate of 23 kg N ha‐1 (50 kg urea ha‐1) were applied separately at planting. Inoculation with mixed strains and starter N fertilizer gave a significantly higher grain yield, nodule number, and dry matter yield for most varieties used. Both grain yield and dry matter yield showed a significant correlation (r=0.93 and r=0.87; P<0.05 for grain yield and dry matter yield, respectively, for 1991 crop season and r=0.90 and r=0.86; P<0.05 for grain yield and dry matter yield, respectively, for 1992 crop season) with nodule number. It is recommended that resource‐poor farmers adopt the practice of using a Rhizobium inoculant or starter N to improve common bean yields in the Hararghe highlands, Ethiopia.  相似文献   

4.
Abstract

A field experiment was conducted during two consecutive growing seasons (2013 and 2014) to evaluate the effects of inoculations with Rhizobium and Azotobacter on the growth and yield of two chickpea (Cicer arietinum L.) varieties under saline (5.8 dS m?1) arid condition. The single treatment of either Rhizobium or Azotobacter exhibited to promote the growth of chickpea to some level, however, co-inoculation produced more effects and increased the shoot dry weight (30.3 and 26.4%), root dry weight (17.5 and 26.3%), nodule number (79.1 and 43.8 piece per plant), nitrogen content in roots (9.62 and 10.9%), in shoots (12.6 and 8.3%) and seed protein (7.1 and 4.3%) in both Flip06-102 and Uzbekistan-32 chickpea varieties compared to the control. Our studies showed that the highest yield response of 429 (27.9%) and 538 (23.9%) kg?ha?1 over the control was revealed by the co-inoculation with Rhizobium and Azotobacter inoculants in Flip 06-102 and Uzbekistan-32, respectively. A new introduced Flip 06-102 chickpea variety was more salt tolerant and had higher root nodulation than the local Uzbekistan-32 chickpea variety. Nitrogen (N), phosphorus (P), and potassium (K) contents in the shoots and roots were significantly (p?Rhizobium plus Azotobacter could be applied to improve the vegetative growth and yield of chickpea and to alleviate the effects of salt stress.  相似文献   

5.
Fusarium wilt, caused by Fusarium oxysporum Schlechtend.: f. sp. ciceris (Padwick) Matuo & K. Sato, is a major production problem in many countries. A study was conducted to develop an integrated management of Fusarium wilt of chickpea using genotypes, sowing dates (January as early sowing and March/April as spring sowing) and fungicide seed treatments under natural infested plots in research plots and farmers’ fields 2007–2009 cropping seasons. In most cases, sowing date and fungicides did not affect disease parameters and seed yield. Chickpea genotypes showed significant differences in seed yield but different responses for disease parameters. Averaged over locations and seasons, the rate of disease development was higher in early (0.035 units day?1) than spring (0.023 units day?1) sowing. Chickpea genotypes showed different responses in affecting rate of disease development and cumulative wilt incidence in early and late sowing periods. Higher mean seed yield (1.3 t ha?1) was recorded in early than late sowing (1.0 t ha?1) of chickpea. The average seed yield reduction due to spring sowing ranged from 9% to 60% and highest yield losses were observed in FLIP-97–706 and Ghab-3. This study showed that integrating January sowing with genotypes having good levels of resistance for Fusarium wilt and Ascochyta blight helps farmers to narrow chickpea yield gaps in Syria.  相似文献   

6.
Summary Chickpea cultivars (Cicer arietinum L.) and their symbiosis with specific strains of Rhizobium spp. were examined under salt stress. The growth of rhizobia declined with NaCl concentrations increasing from 0.01 to 2% (w : v). Two Rhizobium spp. strains (F-75 and KG 31) tolerated 1.5% NaCl. Of the 10 chickpea cultivars examined, only three (Pusa 312, Pusa 212, and Pusa 240) germinated at 1.5% NaCl. The chickpea — Rhizobium spp. symbiosis was examined in the field, with soil varying in salinity from electrical conductivity (EC) 4.5 to EC 5.2 dSm-1, to identify combinations giving satisfactory yields. Significant interactions between strains and cultivars caused differential yields of nodules, dry matter, and grain. Four chickpea — Rhizobium spp. combinations, Pusa 240 and F-75 (660 kg ha-1), Pusa 240 and IC 76 (440 kg ha-1), Pusa 240 and KG 31 (390 kg ha-1), and Pusa 312 and KG 31 (380 kg ha-1), produced significantly higher grain yields in saline soil.  相似文献   

7.
The potential of feed-food double-cropping was evaluated at Ginchi, Ethiopia, for two years with the objective of evaluating herbage yields of fodder crops and the subsequent effects on grain yields of chickpea and grass pea. Early maturing oat (79Ab382 (TX) (80SA95); 79CP84 (Coker SR. res) 80SA130; SRCP X 80Ab2806; C7512/SRCP X 80Ab 2252 and CO X SRCP X 80Ab2291) and common vetch (Acc. No. 2490; Acc. No. 2742) were selected and planted on lands reserved for chickpea/grass pea at the start of the main rainy season. Following forage harvest, chickpea and grass pea were planted on all plots and control fallow plot (farmers’ practice). A randomized complete block design with three replicates was used. Vigor (potential growth), plant height, herbage yield of forage crops, and grain yields of chickpea and grass pea varied across years. Higher average herbage yield (3.36 t ha–1) was obtained from oat–common vetch mixtures compared to a fallow system (1.11 t ha–1). Moreover, grain yields of chickpea and grass pea grown as a double-crop following oat–common vetch were more or less similar to yields obtained under a fallow system except in the case of chickpea following T6 (oat SRCP X 80Ab2806 × Vicia sativa acc. No. 2742). From this study, it was concluded that double-cropping of early-maturing, improved forage crops and residual soil moisture-based planting of chickpea and grass pea could improve feed availability, and labor and land productivity.  相似文献   

8.
The effect of soil sterilization, and seed inoculation with three Rhizobium strains (3889, CP5b and IC 26) were studied on 5 chickpea (Cicer arietinum L.) genotypes (Jordan local, ILC 72 from Spain, ILC 484 from Turkey, C 235 from India, and ILC 1272 from U.S.A.). The main objective of the work was to investigate the effect of inoculation with different Rhizobium strains on yield, nodulation and other agronomic characteristics of different chickpea genotypes. Inoculation with Rhizobium resulted in a significant increase in grain yield for all genotypes tested. The average increase due to inoculation was 110% over the uninoculated control. Inoculation resulted in more nodules, greater nodule fresh weight and higher nitrogen uptake. The various Rhizobium strains differed in their effects. Genotypes responded differently to inoculation.  相似文献   

9.
Optimal potassium (K) fertilization is beneficial for oilseed‐rape (Brassica napus L.) yield and quality. However, the discrepancy between the high K demand of winter oilseed rape and low soil fertility and insufficient potassium input has limited the sustainable development of oilseed‐rape production. A series of on‐farm experiments in the key winter oilseed‐rape domains of China was conducted from 2004 to 2010 to evaluate K‐fertilizer management for winter oilseed rape. Currently, the average NH4OAc‐extractable K content in the 0–20 cm soil layer is 89.1 mg kg–1 indicative of “slight deficiency”. In addition, farmers in China usually fail to use sufficient K fertilizer in oilseed‐rape production, the average mineral‐potassium‐fertilizer input in 2010 being only 35 kg K ha–1, far lower than the recommended rate of potassium for winter oilseed rape. Adequate potassium fertilization significantly raises seed yield. The average yield‐increase rate for the major production regions due to K‐fertilizer application was 18.5%, and the average K fertilizer–use efficiency 36.1%. Based on the negative correlation between yield response to potassium fertilization and available soil K content, a soil‐K‐test index was established for winter oilseed rape with a threshold value for NH4OAc‐extractable soil K of 135 mg kg–1. When available soil K‐content is below this threshold value, more K fertilizer should be applied to achieve high seed yield and to increase soil fertility. The major challenge for K‐fertilizer management in winter oilseed‐rape production in China will be to guide farmers in the different regions in making reasonable use of K fertilizer through soil K‐testing technology in order to maintain both seed yield and soil fertility.  相似文献   

10.
The use of efficient bio-inoculants in chickpea is the best way to increase crop productivity under rainfed conditions. To assess the combined effect of bio-inoculants on crop yield, field experiments were conducted during Rabi seasons at Research Station, Punjab Agricultural University, Ballowal Saunkhri, Punjab, India. The application of different bio-inoculants significantly improved number of pods, grain and straw yield of chickpea over the un-inoculated treatment. The combined application of Rhizobium + PSB?+?AM fungi?+?azotobactor inoculums as seed treatment with 75% of recommended phosphorus produced highest grain yield. The nodule count, nodule weight, per cent root colonization of AM fungi and different enzymes activities in soil were also highest in combined bio-inoculants treatment. The present study concluded that combined application of bio-inoculants (Rhizobium, PSB, AM fungi and azotobactor) can save 25% of recommended phosphorus by sustaining the crop yield and improving the soil health.  相似文献   

11.
Low organic matter, poor fertility and erosion are common features of rain‐fed Alfisols in southern India. Build‐up of organic matter is crucial to maintain sustainable production on these soils. The possibility of on‐farm generation of legume biomass [horsegram; Macrotyloma uniflorum (Lam.) Verdc.] by using off‐season rainfall was examined in two field experiments involving sorghum and sunflower from 1994 to 2003. The effects of this incorporation were assessed on crop yields and soil properties for 10 years together with fertilizer application. Horsegram biomass ranging from 3.03–4.28 t ha?1 year?1 (fresh weight) was produced and incorporated in situ under different levels of fertilizer application. Annual incorporation improved the soil properties and fertility status of the soil, which resulted in improved yields of test crops. With biomass incorporation, mean organic carbon content improved by 24% over fallow. Microbial biomass carbon improved by 28% at site I. Long‐term biomass incorporation and fertilizer application resulted in the build‐up of soil nutrients compared with the fallow plots. Application of N and P alone resulted in a negative balance of soil K. A time‐scale analysis of yields showed that incorporation together with fertilizer application maintained a stable yield trend over a 10‐year period in sorghum, whereas fertilizer application alone showed a declining trend. At the end of 10 years of incorporation, the increase in grain yield because of incorporation was 28 and 18%, respectively, in sorghum and sunflower over fallow when no fertilizers were applied to rainy season crops. The incorporation effect was even larger in plots receiving fertilizer. The growing and incorporation of a post‐rainy season legume crop is a low‐cost simple practice that even small and marginal farmers can adopt in semi‐arid regions of the country. Widespread adoption of this practice, at least in alternate years, can restore the productivity of degraded soils and improve crop yields.  相似文献   

12.
Frontline demonstrations technology-transfer program (FLD-TTP) in pulses is a noble initiative of the government of India for higher technology adoption to bridge yield gaps. Thus, a study was conducted in Himachal Pradesh, India, on pulse productivity and profitability enhancement using proven technology besides yield gap analysis under FLD-TTP. Extension yield gaps varied by 485–550, 210–460, 470–640, 290–320, 494–600, and 277–512 kg ha?1 in blackgram (Vigna mungo), kidneybean (Phaseolus vulgaris), pigeonpea (Cajanus cajan), cowpea (Vigna sinensis), chickpea (Cicer arietinum), and lentil (Lens culinaris), respectively, in the current study. Greater technology gaps were registered in cowpea and chickpea and the least in kidneybean. It was inferred that by adopting improved pulse production technology, pulse productivity can be raised by 97–128, 39–82, 112–129, 59–65, 130–141, and 67–126% in blackgram, kidneybean, pigeonpea, cowpea, chickpea, and lentil, respectively. Improved technology package has also enhanced profitability and additional returns enhancing incremental benefit–cost ratio (1.25–7.21). Technology indexes in blackgram (34.3–34.7%), kidneybean (32–37.5%), pigeonpea (47–50.6%), cowpea (68.8–73%), chickpea (59–65%), and lentil (44.3–60.2%) revealed that demonstrated technology under FLD-TTP is quite feasible in prevailing farming situations in Himachal Pradesh, but it strongly emphasizes educating farmers intensively to adopt available technology. Improved technology has also raised water-use-efficiency in Kharif (0.89–1.32 kg ha?1 mm) and Rabi pulses (2.41–5.62 kg ha?1 mm). Overall, FLD-TTP has great potential to scale up pulse productivity and farmers’ livelihoods in Himachal Pradesh and collateral farming situations in the developing world to enhance agricultural production.  相似文献   

13.
Although common bean (Phaseolus vulgaris L.) has a good potential for N2 fixation, poor nodulation following inoculation, principally under field conditions, has led to increased nitrogen (N) fertilizer use in this crop. In the face of the negative environmental effects of N fertilizer, alternative methods have been studied to minimize the amount to be applied. In this sense, foliar application of molybdenum (Mo) has been cited as a promising method. Several papers show that high bean yields (1,500–2,500 kg ha‐1), may be obtained in the southeasten region of Brazil, when there is an application of N as side dressing or Mo spray 25 days after plant emergence. A field experiment was carried out to verify the effect of Mo foliar application on nitrogenase and nitrate reductase activities and on bean yield. Treatments included Rhizobium inoculation (with and without), foliar application of Mo (0 and 40 g ha‐1), N at planting (0 and 20 kg ha‐1) and N applied as side dressing (0 and 30 kg ha‐1). Molybdenum and N as side dressing were used 25 days after plant emergence. Molybdenum increased greatly the nitrogenase activity and extended the period of high nitrate reductase activity, with a consequent increase in total shoot N. Increase of nitrogenase activity did not depend on inoculation, showing that soil native rhizobia may increase in effectiveness when appropriately handled. Bean yield did not differ significantly when fertilized with either Mo or N as side dressing.  相似文献   

14.
To study the effects of organic and inorganic nitrogen (N) on yield and nodulation of chickpea (Cicer arietinum L.) cv. ILC 482, a spilt-plot experiment based on randomized complete block design with four replications was conducted in 2008 at the experimental farm of the Agriculture Faculty, University of Mohaghegh, Ardabili. Experimental factors were inorganic N fertilizer at four levels (0, 50, 75, and 100 kg ha?1) in the main plots that applied in the urea form, and two levels of inoculation with Rhizobium bacteria (with and without inoculation) as subplots. Nitrogen application and Rh. inoculation continued to have positive effects on yield and its attributes. The greatest plant height, number of primary and secondary branches, number of pods per plant, number of filled and unfilled pods per plant, number of grains per plant, grain yield, and biological yield were obtained from the greatest level of N fertilizer (100 kg urea ha?1) and Rh. inoculation. Application of 75 and 100 kg ha?1 urea showed no significant difference in these traits. Furthermore, the greatest rate of N usage (100 kg urea ha?1) adversely inhibited nodulation of chickpea. Number and dry weight of nodules per plant decreased significantly with increasing N application rate. The lowest values of these traits recorded in application of 100 kg ha?1 urea. Results indicated that application of suitable amounts of N fertilizer (i.e., between 50 and 75 kg urea ha?1) as starter can be beneficial to improve nodulation, growth, and final yield of inoculated chickpea plants.  相似文献   

15.
The objective of this work was to provide evidence on the effects of faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.) on the dynamics of soil N availability and yield parameters of wheat (Triticum turgidum L. var. durum) in a legume–wheat rotation in comparison with the effects of the more extensively studied common vetch (Vicia sativa L.). Soil samples were taken from field plots just before wheat sowing and incubated in the laboratory to assess N mineralization potential, soil respiration and N immobilization after incorporation of legume residues. Soil after vetch cultivation showed the highest residual N and mineralization potential (120 mg N kg?1 soil), the greatest CO2 release and the smallest N immobilization. Smaller mineral N release (80 mg N kg?1 soil) was shown by soil after faba bean cultivation, which, however, would be capable to support an average wheat production without fertilization. Soil after chickpea and wheat cultivation manifested no differences in residual N and mineralization or immobilization potential. Laboratory results were well correlated with grain yield and N uptake during the second season of rotation in the field. All legumes resulted in significant yield surpluses and provided N credit to the following unfertilized wheat.  相似文献   

16.
The effects of organic manure supplementation on rice–pulse cropping system productivity were studied. Three pulses, viz., blackgram, greengram and pea were grown after rice on the same plots to explore the feasibility of growing second crops with carry-over residual soil moisture and residual soil fertility. The study revealed that during the rainy season, 30%–35% higher rice grain yield was obtained when both inorganic and organic sources of nutrients were applied compared with the full dose of inorganic fertilizer, and the rice grain yield was 65%–78% higher than obtained following farmers’ practices. In the post-rainy season, pea crop recorded the highest grain yield of 490 kg ha-1 under the treatment combination of Sesbania and inorganic fertilizer. Organic carbon, and available N, P, K also enhanced yield by 20%–29%, 5.0%–29.4% to 7.9%–39.9% and 22.4%–60.3%, respectively when 25% N was applied through different organic sources of nutrients (green manure/press mud/farmyard manure).  相似文献   

17.
Abstract

A greenhouse study using lignite overburden surface soil from a lignite mine in northwest Louisiana was conducted to determine the yield response and nodulation of inoculated and non‐inoculated white clover (Trifolium repens L.) to P (0, 40, and 80 kg/ha) and Mo (0, 90, and 180 g/ha) fertilization. Results manifested a highly significant response of inoculated white clover to a single application of P and Mo. Application of P at the rate of 40 and 80 kg/ha increased the dry matter yield (DMY) of white clover by 164% and 154%, while Mo fertilization at the rate of 90 and 180 g/ha increased the dry matter yield (DMY) by 21% and 37%, respectively, over the control. The yield of white clover was also significantly affected by Rhizobium inoculation. Yield was increased from 2.1 to 2.5 Mg/ha which is equivalent to a 19% yield improvement over the non‐inoculated plants.

Nodule formation (NF), likewise, was significantly favored by P and Mo fertilization. Results also revealed that Rhizobium inoculation had remarkably improved the nodule count of white clover. Nodule count was increased from 0.4 to 5.5 or 1375% improvement between the inoculated and non‐inoculated plants. The non‐inoculated white clover also responded significantly to P fertilization, but not to Mo addition. Nodule formation, however, was not observed from the non‐inoculated white clover except at the highest rate of P and Mo additions. Increasing P supply significantly increased the concentrations of P, S, Na, and Ca but decreased the concentration of K in the clover. Mo additions resulted in increased concentrations of P and Ca. No significant P‐Mo interaction effects were observed on the nutrient concentration of white clover.  相似文献   

18.
A 4-year (2008–2009 to 2011–2012) study was conducted on the effect of mineral phosphorus (P) + sulphur (S) and biofertilizers on rain-fed chickpea (Cicer arietinum L.) at the Punjab Agricultural University’s Research Station, Ballowal Saunkhri, India. The experiment comprised of five combinations of P and S, viz. control (P0S0), no P + 10 kg S ha?1 (P0S10), 15 kg P + 10 kg S ha?1 (P15S10), no P + 20 kg S ha?1 (P0S20) and 30 kg P + 20 kg S ha?1 (P30S20); and three seed inoculation levels, viz. control, Rhizobium and phosphate-solubilizing bacteria (PSB), were laid out in randomized complete block design. Combined application of P + S resulted in improved growth, nodulation, yield attributes and yield. The increase in seed yield over control due to P + S ranged from 11.8% to 17.7%. Seed inoculation with Rhizobium recorded the highest growth, nodulation, yield attributes and yield of chickpea and was statistically at par with PSB and significantly better than no inoculation. Highest benefit/cost ratio (B:C, 2.19) was obtained in P30S20. In view of environmental pollution and high costs of chemical fertilizers, biofertilizers alone or in combination may help to achieve sustainable and ecological agricultural production.  相似文献   

19.
The great achievement of the development of intensive in agriculture in China can be partly attributed to substantial increases in mineral‐nutrient application. However, whereas farmers tend to apply high levels of nitrogen (N) and phosphorus (P) application of potassium (K) has been neglected. A greater understanding of the relationship between maize (Zea mays L.) grain yield and K‐application rate is thus required to provide an improved rationale for K fertilization for farmers in the various agro‐ecological regions of China. In this study, a total of 2765 farmers' survey data and 3124 on‐farm experiments across major maize agro‐ecological regions in China were collected and evaluated for farmers' K‐management status and to determine grain‐yield response to K application. Nationally, the average K‐application rate on farms was 26 kg K ha–1 and varied from 0 to 158 kg K ha–1, with a coefficient of variation of 107%, but the applied K‐fertilizer rates were not related to grain yield. Maize grain yields at recommended K rates increased by 14.0%, 14.7%, 19.4%, and 4.3% in Northeast China, North China Plain, Southwest China, and Northwest China, respectively, compared to zero K fertilization (K0). Increased yield due to K fertilization (IYmax, difference between maximum yield across all treatments and K0‐treatment yield for each experiment) averaged 1.4 t ha–1 but varied widely in different agro‐ecological regions. Soil extractable K (NH4OAc‐K) and intercounty variation resulted in large variation in IYmax in agro‐ecological regions, as did other factors, such as use of particular maize hybrids, soil types, or years in different regions.  相似文献   

20.
Silicon (Si) has been known to enhance plant tolerance against biotic and abiotic stresses besides its beneficial effects on plant growth and yield. Two experiments were conducted to evaluate the effect of Si against water-deficit stress in maize (Zea mays) applied through seed priming and soil incorporation methods, and to find out the optimum dose of Si under each method. In the seed priming experiment, seeds were exposed to different Si levels, up to 2 mM l–1, germinating under three soil moisture regimes (100%, 75% and 50% field capacity-FC). In the soil incorporation study, the treatments included were six Si doses from 0 to 600 kg ha–1 under the same soil moisture regimes. Grain yield was reduced by 59% and 69% in the seed priming and soil incorporation study, respectively, at 50% FC. Si application was effective irrespective of the application methods with higher cob length, 100-kernel weight and grain yield than the control. Application of Si at 1 mM l–1 as seed priming and 300 kg ha–1 as soil incorporation was more effective than other doses and could be recommended as optimum dose for Nakhon Sawan 3 hybrid maize variety under water-deficit stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号