首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil development in the surrounding of oligotrophic mires in the Berlin region Polygenetic soils, surrounding oligotrophic kettle hole mires in the valley and aeolian sand areas of the Berlin region, were investigated. The typical soil catena is formed by the sequence of Ombric Histosol (Niedermoor), Ombric Histosol/Albi‐gleyic Podzol (Moor‐Podsol‐Gley), Albi‐gleyic Podzol (Nasspodsol‐Gley), Gleyic Podzol (Podsol‐Gley), and Dystri‐gleyic Arenosol (Gley‐Podsol‐Braunerde) (German soil classifications in parenthesis). Field and laboratory work showed, that the investigated soils were strongly related to each other and that their development depends on the trophy of the mire and groundwater fluctuations during the Holocene. Compared with the Bh‐horizon of terrestrial soils the Gh‐horizon is nearly free of Fe and Mn, but very rich in pedogenic Al‐oxides and rich in organic matter. The genesis of the soils is explained as follows: 1. The development of different Gleyic Podzols was due to rise of groundwater. Consequently the Bh and Bs horizons of Podzols surrounding the mire were converted to Gh and Gr horizons. 2. Humic substances and Al in the Gh and Gr horizons were not re‐mobilized due to the rise of groundwater, whereas Fe and Mn were reduced and removed by groundwater. 3. At the periphery of the mire Fe was enriched in the Go horizon of the Gley‐Podzols but not Mn. 4. The fact that the mire is completely surrounded by Podzol‐Gleys, indicates, that movement of the groundwater from the central parts of mires towards the periphery is an essential pedogenetic factor.  相似文献   

2.
Biological activities greatly influence the formation of many soils, especially forest soils under cool humid climates. The objective of this study was to investigate the effects of vegetation and soil biota on the formation of selected soils. Field morphology, micromorphology, and carbon and organic matter analysis were determined on six Podzols (Spodosols) and two Cambisols (Inceptisols) from the eastern United States and north-east Scotland. Humification of plant material by soil fauna and fungi occurs in all organic horizons. Thick organic coatings are observed on soil peds and rock fragments from the E1 to the Bs horizon in a Haplic Podzol from Clingmans Dome Mt., TN. Thin sections reveal large accumulations of root material in different stages of decomposition in the spodic horizons of a Haplic Podzol from Whiteface Mt., NY. Organic carbon ranges from 5.4 to 8.5% in the spodic B horizons of the Whiteface Mt. Podzol. Earthworms and enchytraeids have a great effect on the structure of the surface and subsurface horizons in the Dystric Cambisols from Huntly and Clashindarroch Forests, Scotland and a Cambic Podzol from the Corrie Burn Basin, Scotland. Podzols from Speymouth Forest, Scotland (Gleyic Podzol), Clingmans Dome Mt., and Whiteface Mt. have thick organic horizons. The Podzols from the Flatwoods in Georgia, the Pine Barrens in New Jersey, the Corrie Burn Basin, and the Cambisol from Huntly Forest have only A horizons at the surface. The Clashindarroch Forest soil has a very thin organic horizon. Warm and humid climates and sandy parent material are responsible for thick E horizons and lack of thick organic horizons in the Flatwoods (Carbic Podzol) and Pine Barrens (Ferric Podzol) soils. Earthworms and enchytraeids thrive in the Corrie Burn Basin and Huntly Forest soils due to the vegetation and the highly weathered basic parent material. The site at Clashindarroch once carried oak, and then birch forest, both of which produce a mild litter and also encourage earthworm and enchytraeids. This fauna is responsible for much mixing of the topsoil. The present conifer vegetation will eventually produce a deep litter and cause podzolization.  相似文献   

3.
A number of soils are described in the literature as having andic and spodic soil properties, but have developed in nonvolcanic and nonallophanic materials and lack typical Podzol eluvial and illuvial horizons. They cover a wide range of parent materials and different types of climate. They have always been regarded as restricted to small areas. They were assigned to Andisols/Andosols, Podzols/Spodosols, or andic Inceptisols in the WRB and Soil Taxonomy and sometimes also named Cryptopodzols or Lockerbraunerden. Recent soil surveys in Bhutan, E Himalayas, show these soils are widespread at altitudes between 2200–3500 m asl and are spanning several bioclimatic zones. The aim of this study is the detailed characterization of specific properties and processes of formation by physical and chemical analyses, NMR spectroscopy, column experiments, SEM, XRD, and 14C dating in one of these soils in E central Bhutan. The results indicate advanced soil development with high amounts of oxidic Fe and Al compounds, low bulk densities (partly <0.5 g cm–3), P retention >85%, and a dominance of Al‐hydroxy‐interlayered phyllosilicates. Scanning electron microscopy of sand fractions indicate microaggregates highly resistant to dispersion. Column experiments show podzolization with mobilization and translocation of DOM, Fe, and Al. Nuclear‐magnetic resonance spectroscopy and 14C ages of 16,000 BP indicate stabilization of DOM. Applying classification criteria, these soils appear to have andic and spodic features, but are neither Andosols nor Podzols senso strictu. Especially the role of Fe seems to be underestimated with regard to the specific soil‐forming processes. Because of their widespread occurrence and distinct properties, we suggest either a simplification of the criteria for existing soil types or a clearly defined separation of volcanic and nonvolcanic/nonallophanic Andosols.  相似文献   

4.
《Geoderma》2007,137(3-4):293-299
A test vermiculite was inserted in different horizons of a Podzol profile to study its behavior in contact with the organic solutes in the soil solution. After incubation in the soil for three years, the ECEC showed a clear negative correlation with the contents of Tamura extracted Al. XRD analyses confirmed the presence of Al-polymers blocking the minerals interlayer. The formation of these stable Al-polymers is in contradiction to the theory that acido-complexolysis and not simple acidolysis is one of the major soil forming processes in Podzols, preventing Al-interlayering in open 2:1 phyllosilicates by the strong complexing power of the organic acids present. The hypothesis that podzolization is no longer active in the studied profile so that the complexing acids, typical of the acido-complexolysis are no longer present in large enough quantities to prevent “aluminization” of the vermiculites had to be rejected after studying the chemical composition of the soil solutions. Significant amounts (∼ 75%) of dissolved aluminium proved to be strongly bound to organic acids, indicating an active podzolization process. The behaviour of test-minerals as a criterion to distinguish acidolysis from acido-complexolysis must thus be used with great care and should never be interpreted without detailed analysis of the soil solution. Where aluminium is present in the soil solution, the use of test-minerals is likely to fail to distinguish simple acidolysis from acido-complexolysis, as the conditions in the field are then too different from those during the laboratory experiments from which the theory on simple acidolysis/acido-complexolysis originally was derived and where the sole source of Al was the mineral itself.  相似文献   

5.
The Plaggic Anthrosol (German: Plaggenesch) has been elected “Soil of the Year 2013” in Germany. This article reviews present knowledge on the formation, distribution, classification, soil functions, and threats of Plaggic Anthrosols. As the colors of Plaggic Anthrosols differ, we introduce a “Grey Plaggic Anthrosol” and a “Brown Plaggic Anthrosol”. The term Plaggic Anthrosols is used in WRB, whereas those soils are classified as Agrosems according to the Russian, as Plagganthrepts according to the US Soil Taxonomy, and Plaggenesch according to the German taxonomy. The formation of Plaggic Anthrosols is the result of a former arable land use technique, the plaggen agriculture, starting ≈ 1000 y ago and lasting since the introduction of mineral fertilization. During processing plaggen agriculture, plaggen or sods of humic topsoil horizons were cut in the landscape, carried to the stables, enriched with dung, and subsequently spread out onto the fields as an organic‐earthy manure. The manure decomposed and humified, whereas the mineral fraction remained and raised the land surface by 0.1 cm y–1 in average. Hence, the diagnostic horizon, a thick (70–130 cm) humus‐rich man‐made epipedon, often containing artefacts, was formed over time. The main region of spatial distribution of Plaggic Anthrosols is NW Germany, The Netherlands and NE Belgium. Minor occurrences are reported from other parts of Europe. Compared to the associated soils, Plaggic Anthrosols hold considerable natural, archive and utilization functions, but are threatened by degradation when their use as arable soil is rendered.  相似文献   

6.
We used the soil‐core translocation method to investigate the effect of increased temperature on above‐ and below‐ground phytomass and organic matter in cool alpine areas. The translocation of undisturbed soil cores from a high alpine site (2525 m a.s.l.) to an alpine site near the timberline (1895 m a.s.l.) achieved an effective artificial warming of 3.3 K. From a methodological point of view, the translocation of soil cores was performed successfully. Soil cores moved to a new site at the same altitude showed no change in above‐ and below‐ground vegetation, bulk density, and soil skeleton. At both sites, soils were Haplic Podzols with a similar chemistry and clay mineralogy. At the lower elevation site, however, podzolization processes seemed to be more pronounced. As a consequence, the translocation of the soil cores probably led to a disturbance of the actual steady state that had been established after about 10,000–13,000 years of soil formation. This might have affected the adaptability of the vegetation system. Therefore, it cannot be fully excluded that the experimental design influenced the results. Translocation of soil cores from a very cool to a warmer site led to a distinct decrease in above‐ground phytomass (about –45%) over the experimental period of two years. Below‐ground phytomass significantly decreased (up to –50%) in the topsoil (0–5 cm) after artificial warming. Possible mechanisms are that roots reduced photosynthesis and hence C flow below‐ground, a reduction of soil moisture that would have led to root death (not a very probable cause, however) or an abrupt change in the radiation duration and flux which affected root growth (also not very probable). Fast climate change exceeded the ability of the above‐ground and below‐ground phytomass to adapt quickly. Whether the decrease in phytomass was a short‐term or a long‐term response to climate warming remains uncertain. Based on a gradient study (climosequence at the same locality), we hypothesize that the decreased plant productivity might be a short‐term effect.  相似文献   

7.
Cryptopodzolic Soils in Switzerland   总被引:3,自引:0,他引:3  
Cryptopodzolic Soils are characterized by a thick blackish-brown mineral horizon rich in organic matter, the dark colour of which masks the morphological characteristics of podzolization. Little is known about the specific site factors that lead to the formation of these soils. Four representative soil profiles from a typical toposequence between 1700 and 500 m above sea level in southern Switzerland, embracing Haplic Podzols, Humic Cambisols and Cryptopodzolic Soils, are described morphologically, chemically and physically. The Cryptopodzolic Soils in this region are characterized by weak to moderate A1 and Fe translocation, and by a uniform incorporation of organic matter deep into the soil. The most prominent feature is the exceptional stability of the soil organic matter with a maximum in the spodic horizon. All these characteristics can be explained by the unique combined effect of a mild, wet climate, an Fe- and Al-rich acid bedrock and a litter layer providing dissolved organic matter rich in polyphenolic substances with strong metal-binding properties.  相似文献   

8.
Hydrochemical processes involved in the development of hydromorphic Podzols are a major concern for the upper Amazon Basin because of the extent of the areas affected by such processes and the large amounts of organic carbon and associated metals exported to the rivers. The dynamics and chemical composition of ground and surface waters were studied along an Acrisol‐Podzol sequence lying in an open depression of a plateau. Water levels were monitored along the sequence over a period of 2 years by means of piezometers. Water was sampled in zero‐tension lysimeters for groundwater and for surface water in the drainage network of the depression. The pH and concentrations of organic carbon and major elements (Si, Fe and Al) were determined. The contrasted changes reported for concentrations of Si, organic carbon and metals (Fe, Al) mainly reflect the dynamics of the groundwater and the weathering conditions that prevail in the soils. Iron is released by the reductive dissolution of Fe oxides, mostly in the Bg horizons of the upslope Acrisols. It moves laterally under the control of hydraulic gradients and migrates through the iron‐depleted Podzols where it is exported to the river network. Aluminium is released from the dissolution of Al‐bearing minerals (gibbsite and kaolinite) at the margin of the podzolic area but is immobilized as organo‐Al complexes in spodic horizons. In downslope positions, the quick recharge of the groundwater and large release of organic compounds lead to acidification and a loss of metals (mainly Al), previously stored in the Podzols.  相似文献   

9.
Morphological, geochemical and mineralogical studies were carried out in a representative soil catena of the low‐elevation plateaux of the upper Amazon Basin to interpret the steps and mechanisms involved in the podzolization of low‐activity clay soils. The soils are derived from Palaeozoic sandstones. They consist of Hydromorphic Podzols under tree savannah in the depressions of the plateaux and predominantly of Acrisols covered by evergreen forest elsewhere. Incipient podzolization in the uppermost Acrisols is related to the formation of organic‐rich A and Bhs horizons slightly depleted in fine‐size particles by both mechanical particle transfer and weathering. Weathering of secondary minerals by organic acids and formation of organo‐metallic complexes act simultaneously over short distances. Their vertical transfer is limited. Selective dissolution of aluminous goethite, then gibbsite and finally kaolinite favour the preferential cheluviation of first Fe and secondly Al. The relatively small amount of organo‐metallic complexes produced is related to the quartzitic parent materials, and the predominance of Al over Fe in the spodic horizons is due to the importance of gibbsite in these low‐activity clay soils. Morphologically well‐expressed podzols occur in strongly iron‐depleted topsoils of the depression. Mechanical transfer and weathering of gibbsite and kaolinite by organic acids is enhanced and leads to residual accumulation of sands. Organo‐metallic complexes are translocated in strongly permeable sandy horizons and impregnate at depth the macro‐voids of embedded soil and saprolite materials to form the spodic Bs and 2BCs horizons. Mechanical transfer of black particulate organic compounds devoid of metals has occurred later within the sandy horizons of the podzols. Their vertical transfer has formed well‐differentiated A and Bh horizons. Their lateral removal by groundwater favours the development of an albic E horizon. In an open and waterlogged environment, the general trend is therefore towards the removal of all the metals that have initially accumulated as a response to the ferralitization process and have temporarily been sequestrated in organic complexes in previous stages of soil podzolization.  相似文献   

10.

Purpose

The impacts of fly ash on the chemistry of forest floors were previously described in literature, while impacts on soil properties were less recognised. Soil investigations were focussed mainly on increases of pH and base saturations in surface horizons. The purpose of this study was to describe the influence of alkaline fly ash blown out from the dumping site of a lignite-fired power plant on pH changes of ectohumus horizons of Podzols and the morphology of deeper horizons.

Materials and methods

We investigated the soil profiles of Podzols derived from loose quartz sand and developed under pine forest surrounding the dumping site of the power plant Be?chatów, central Poland. In the vicinity of the fly ash dumping site, five Podzol profiles located at a distance of 50 m from the dumping site were investigated, as well as soil profiles located along the transect set at distances of 50, 300, 800 and 2000 m from the dumping site. Control profiles were located at a distance of 7.3 km from the dumping site. Soil morphology was described in the field and the following properties were determined: soil texture, hydrolytic acidity, exchangeable cations, total organic carbon and total nitrogen content.

Results and discussion

The pH values of Podzol ectohumus horizons located close to the dumping site ranged from 6.01 to 7.34 compared to a range of 3.08–3.72 in the control. Ectohumus horizon located 300 m from the dumping site showed a pH range of 4.13–4.26, while at a distance of 800 m, the pH values did not differ from those of the control site. The upper part of the eluvial soil horizons located close to the dumping site had been transformed into transitional AE horizons in which humic substances translocated from ectohumus horizons were accumulated. Moreover, the organic carbon content of this horizon increased compared to the carbon content of the illuvial Bs horizon located below it. Under the influence of alkalisation of upper horizons, the illuvial Bhs horizons vanished and were transformed into Bs horizons.

Conclusions

Changes in soils affected by fly ashes are connected with alkalinisation of ectohumus horizons. Podzolisation processes can be reduced or even completely stopped regarding the distance from the dumping site. Eluvial Podzol horizons located close to the dumping site may be transformed into AE horizons in which humic substances translocated from ectohumus horizons are accumulated. Due to transformation and translocation of organic components, Bhs horizons can be transformed into Bs horizons.
  相似文献   

11.
Fe and Al extractable by 3 per cent oxalic acid and by 0.1M potassium pyrophosphate at pH 10 have been determined in horizon samples of two soil profiles of each of three subgroups (Brown Earth, Brown Podzolic Soil, and Peaty Podzol) developed in North Wales on parent materials derived from Silurian shales. The vertical distribution of Fe and Al together with the relationship between pyrophosphate-extractable (‘fresh’ hydrous oxides) and oxalic-extract-able Fe or Al (‘fresh’+‘aged’ hydrous oxides) can assist classification and interpretation of the course of podzolization in these soils. If podzolization is defined as sesquioxide transport, then its degree of development in the soils studied differs according to whether Al or Fe are used as the index element. The evidence supports continued recognition of soils of Brown Podzolic type as an intergrade subgroup.  相似文献   

12.
Interactions with dissolved organic matter (DOM) are generally believed to play a crucial role in the translocation of Al and Fe in acid sandy soils. Binding of Al and Fe to DOM affects their mobility in soils by altering sorption equilibria of charged sites on solid soil material, inducing precipitation of organo‐metallic complexes and preventing the formation of inorganic Al and Fe phases. The relative importance of the different processes, especially with respect to the translocation of Al, Fe and organic matter in podzols, remains unresolved. We determined the effect of the presence of solid soil material from the eluvial (AhE and AE, respectively) horizons of a Fimic Anthrosol and a Haplic Podzol on the metal‐to‐organic carbon (M/C) ratio in solution and the formation of dissolved organic Al and Fe complexes. Furthermore, we assessed the resulting influence on the mobilization of Al, Fe and DOM. Even under considerable metal loading, the M/C ratios and ‘free’ metal fractions in solution remained low and relatively constant, due to an apparent buffering by the solid phase and the formation of organo‐metal complexes in solution. The M/C ratios remained so low that significant precipitation of organo‐metal complexes due to saturation with metals was not found. The apparent buffering by the solid phase can be explained by a strong release of organic matter from solid soil material and adsorption of non‐complexed Al and Fe on solid organic matter upon metal addition. Adsorption of organo‐metal complexes most likely played only a minor role. The observations confirm the expected mobilization of Al, Fe and DOM in eluvial horizons and seem to indicate that even under fluctuating input of Al, Fe and DOM the soil solution will have a constant composition with respect to M/C ratios and percentage of Al and Fe present in dissolved organo‐metal complexes.  相似文献   

13.
According to the German Soil Taxonomy, the formation of cemented horizons in Podzols is restricted to the precipitation of iron oxides. However, in iron‐poor sandy substrates, also illuviation of only organic compounds can form cemented horizons with penetration resistances of up to 14 kg cm−2. We present a reproducible field test for classifying pedogenic cementation in Podzols and suggest considering cemented horizons (Bmh and Bhm) in the upcoming edition of the Guidelines for Soil Mapping.  相似文献   

14.
Plaggen soils were produced by farmers in the sandy lowlands of Denmark, NW Germany, Belgium, and the Netherlands by long‐term application of plaggen manure. The present paper summarizes the genesis, the properties, and the landscape impact of plaggen soils. The objectives and methods of plaggen management are outlined. Evidence for the plaggen management can be traced back to the late Bronze Age. It has continued until the last century. Numerous references indicate the geographical expansion of plaggen management over Europe. The various conditions of plaggen soil formation are reflected by their basic physical and chemical properties. Recent investigations of soil organic matter composition in sandy plaggen horizons revealed large proportions of lipids and fatty acids and some similarity with organic matter in Podzol B horizons. Finally, the classification of plaggen soils is discussed. In the World Reference Base of Soil Resources (ISSS/ISRIC/FAO, 1998), most of them are classified as a separate subunit: within the reference soil group of Anthrosols, they differ from other artificially transformed soils, and are classified as Plaggic Anthrosols.  相似文献   

15.
Eurasian Soil Science - The contents, distribution in the profile, and migration capacity of 238U in automorphic podburs (Entic Podzols) and hydromorphic alluvial (Fluvisols) soils of natural and...  相似文献   

16.
Dissolved organic matter (DOM) is often considered the most labile portion of organic matter in soil and to be negligible with respect to the accumulation of soil C. In this short review, we present recent evidence that this view is invalid. The stability of DOM from forest floor horizons, peats, and topsoils against microbial degradation increases with advanced decomposition of the parent organic matter (OM). Aromatic compounds, deriving from lignin, likely are the most stable components of DOM while plant‐derived carbohydrates seem easily degradable. Carbohydrates and N‐rich compounds of microbial origin produced during the degradation of DOM can be relatively stable. Such components contribute much to DOM in the mineral subsoil. Sorption of DOM to soil minerals and (co‐)precipitation with Al (and probably also with Fe), especially of the inherently stable aromatic moieties, result in distinct stabilization. In laboratory incubation experiments, the mean residence time of DOM from the Oa horizon of a Haplic Podzol increased from <30 y in solution to >90 y after sorption to a subsoil. We combined DOM fluxes and mineralization rate constants for DOM sorbed to minerals and a subsoil horizon, and (co‐)precipitated with Al to estimate the potential contribution of DOM to total C in the mineral soil of a Haplic Podzol in Germany. The contribution of roots to DOM was not considered because of lack of data. The DOM‐derived soil C ranges from 20 to 55 Mg ha–1 in the mineral soil, which represents 19%–50% of the total soil C. The variation of the estimate reflects the variation in mineralization rate constants obtained for sorbed and (co‐)precipitated DOM. Nevertheless, the estimates indicate that DOM contributes significantly to the accumulation of stable OM in soil. A more precise estimation of DOM‐derived C in soils requires mineralization rate constants for DOM sorbed to all relevant minerals or (co‐)precipitated with Fe. Additionally, we need information on the contribution of sorption to distinct minerals as well as of (co‐)precipitation with Al and Fe to DOM retention.  相似文献   

17.
Summary Soil respiration was investigated in three loamy Orthic Luvisols (two arable, one forest soil), three sandy Haplic Podzols (also two arable, one forest soil) with a modified intersite method according to Lundegardh (1924). The method allows characterization of the CO2-flux from the soil and interpretation of the different levels with regard to temperature, nutrient and air supply. The method is sensitive to tillage and fertilization effects. In the two arable Luvisols the mean cumulative respiration rate was not uniform compared with the forest soil; in one case it was much higher and in another much lower. CO2 evolution in the Podzol under spruce was much lower than in the two arable Podzols. In the sandy Podzols 5 replicate measurements gave adequate results, with an error probability of 10%, but in the loamy Luvisols it was necessary to use 10 replicates to specify the same degree of difference. If soil respiration is very high, immediately after fertilization with cattle slurry or dung on arable land, or after litterfall in a deciduous forest, more replicates are necessary.  相似文献   

18.
Characteristics and genesis of humus substances of typical forest and arable soils of Schleswig-Holstein The humus substances of Luvisols and Podzols (forest, conventional and ecological farming system) were investigated wet chemically with “Streu- und Humus-Stoffgruppenanalyse” just as macro- and micromorphologically. Low nutrient contents and reduced bioturbation retard the decomposition of litter in the forest soils. Humus accumulation and transfer of humic substances are larger in the Podzol than in the Luvisol. Under arable land use the amount of humus decreased more under conventional farming. Organic fertilization stimulates the bioturbation and decomposition of litter.  相似文献   

19.
A study of soil morphological, physical and chemical properties was performed in woodland of different ages, in which spruce (Picea abies), aspen (Populus tremula) and birch (Betula pendula) growing stocks have colonized former agricultural land. The aim of the study was to clarify changes in soil genesis, morphology and properties due to the afforestation of abandoned agricultural land in glacial till deposits. The research showed that soil in these deposits (loamy sand, loam, clay) retains the morphological properties of agricultural land for up to 100 years. Secondary podzolization features in the soil profiles were observed within 100 years of the start of afforestation, whereas the diagnostic properties of Albic and Spodic horizons had not developed in the soil profile after 200 years. This study demonstrated that the morphological and physico-chemical properties of forest litter horizons, including the accumulation of organic substances, are dependent on forest age; however, changes in the properties of mineral soil horizons are mainly related to woodland age. Following the afforestation of agricultural lands, changes in soil pHKCl, organic matter content and extractable Al and Fe concentrations occur more rapidly than changes in soil diagnostic properties and profile formation.  相似文献   

20.
A reassessment of podzol formation processes   总被引:2,自引:0,他引:2  
Translocated (oxalate-soluble) Al and Fe are present predominantly in inorganic forms in the B2 horizons of the five pcdzol profiles examined: A1 as imogolite and proto-imogolite allophanes, and Fe as a separate oxide phase. Below the top few cm of the B2 horizon, over 75 per cent of the extractable (acid-plus alkali-soluble) organic matter is present as Al-fulvates, largely sorbed on allophanic material. The Bh horizons of the Iron Humus Podzol and Iron Podzol intergrades are distinguished by very high levels of organically bound Fe (soluble in EDTA solution), five to ten times more than in immediately adjacent A2 or B2 horizons, and also by larger humic acid contents than in comparable B2, levels in typical Iron Podzols. Inorganic forms of translocated Al and Fe are probably absent from two of the three Bh horizons examined, and also from the Bhg horizon overlying the thin iron pan in the Peaty Podzol. The organic matter in this Bhg horizon is saturated with Al rather than Fe. Chemical and physical processes which could lead to evolution of a profile along the genetic sequence, Iron Podzol, Iron Humus Podzol, Peaty Podzol, are postulated. During the formation of an Iron Podzol, positively charged inorganic sols carry aluminium, silicon and iron from the A2 and deposit them in the B2 horizon; subsequently, with the development of an H layer, colloidal humus migrates through the A2 and precipitates on the positive colloids at the top of the B2 horizon to form a Bh horizon, in which remobilized ferric species are trapped by the organic matter. In higher rainfall areas, occasional waterlogging above the oxide-impregnated B2 leads to a thin iron pan, separating permanently oxidizing conditions below from seasonally waterlogged and reducing conditions above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号