首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Contents The aim of this study was to investigate the effect of sexual activity on concentrations of reproductive hormones in plasma of stallions. In the first experiment, two groups of stallions were monitored for secretion of luteinizing hormone (LH), testosterone and oestradiol from the beginning until shortly after the end of the breeding season. One group of animals were reserve stallions not used for breeding (group 1, n = 10), the other group consisted of active breeding sires (group 2, n = 8). Blood samples were withdrawn from March to August at 14-day intervals. In sexually nonactive stallions (group 1), seasonal variations in LH, testosterone and oestradiol occurred and concentrations of these hormones reached a maximum in May (p < 0.05). In the breeding stallions (group 2), no significant changes in the concentrations of these hormones were found between March and August. Concentrations of LH and testosterone were significantly lower in breeding stallions than in reserve stallions at most blood sampling times (p < 0.05). In the reserve stallions, oestradiol concentrations were significantly higher than in the breeding stallions in April and in June (p < 0.05). In a second experiment, the effect of regular sexual activity (semen collection three times per week) on the concentration of LH, testosterone and oestradiol was tested in a group of breeding stallions after a period of sexual rest for several weeks. Blood samples were taken once daily starting the day before the first semen collection was performed. Testosterone concentration significantly decreased in the first days after semen collection started (p < 0.05), while LH secretion was only transiently decreased and no effects on oestradiol concentration were found. In both experiments, semen parameters were within the normal range of fertile stallions. No correlations between the sexual drive of the stallions and concentration of reproductive hormones occurred. It can be concluded that in the stallion the secretion of reproductive hormones is influenced by sexual activity. Regular semen collection seems to inhibit testosterone release by unknown mechanisms while the effects on LH and oestradiol secretion are less pronounced.  相似文献   

2.
Testicular diameters and monthly blood samples were obtained from 83 stallions aged 4 to 22 years that were maintained on Central Kentucky Thoroughbred stud farms. The effects of age, season, and exposure to increased photoperiod (16 hours light/day, December 15 to April 1) on testicular diameters and plasma concentrations of FSH, LH and testosterone were studied.The results indicated that Thoroughbred stallions show distinct seasonal and age related changes in most of the reproductive parameters studied and that exposure of such stallions to increased photoperiod produced significant alterations in these changes. Although lighting stimulated testicular growth and testosterone secretion early in the breeding season such changes were short lived. Lighted stallions appeared to become refractory to the lighting program since both testicular size and plasma testosterone concentrations were significantly reduced by June.  相似文献   

3.
To study the biology of reproduction of male Korean ring-necked pheasants kept under natural conditions of temperature and photoperiod, testicular weight, serum testosterone concentrations, testosterone release from the luteinizing hormone (LH)-stimulated testis in vitro and sperm production were measured. Significant changes associated with seasonal cycles were found. Testis weight decreased dramatically in August, remained low until February, rapidly increased from March to high levels to June, and decreased subsequently. Serum testosterone concentrations remained little from August until February, but increased sharply in March to reach the highest levels in April. Thereafter, the concentrations decreased significantly from June. The testosterone release was low from August to February, increased abruptly in March to reach the highest levels in May, and showed rapid decrease thereafter. Sperm production decreased to nondetectable levels from August to February, increased markedly in March, reached a peak in May, and sharply decreased thereafter. Thus, the pheasants breed from late March to late June. These results indicate that the Korean ring-necked pheasant, under natural conditions, exhibits characteristics of a seasonal cycle in reproduction.  相似文献   

4.
Influence of day length on seasonal endocrine responses were studied using stallions (seven per group). Treatments included 1) control, with natural day length; 2) 8 h light and 16 h dark (8:16) for 20 wk beginning July 16, 1982 then 16:8 from December 2, 1982 until March 5, 1984 (S-L); or 3) 8:16 from July 16, 1982 until March 5, 1984 (S-S). Blood was sampled hourly for 5 h every 4 wk; sera were pooled within horse, and luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone were quantified. Blood was collected every 20 min for 24 h every 8 wk and 2 wk before and after the December light shift. Samples were assayed for LH. Stallions in all groups underwent seasonal changes (P less than .05) in concentrations of LH, FSH, testosterone and basal concentrations of LH and amplitude of LH pulses. Season X treatment (P less than .05) reflected on early recrudescence of LH, FSH and testosterone concentrations in S-L stallions followed by earlier regression. Except for FSH hormone concentrations were depressed in S-S stallions. Number of LH pulses per 24 h was unaffected by season, treatment or their interaction. Mean amplitude of LH pulses was affected (P less than .05) by season X treatment; maximal values occurred in April vs February for control and S-L stallions, and minimal values occurred in December vs April. The season X treatment interaction (P less than .05) similarly affected basal concentrations of LH. Thus, seasonal changes in concentrations of LH, FSH and testosterone can be driven by photoperiod. Increased peripheral concentrations of LH during seasonal recrudescence of reproductive function apparently results from more LH secreted per discharge without an increased frequency of LH discharges.  相似文献   

5.
Testis size, seminiferous tubules and plasma testosterone concentrations showed conspicuous annual changes in Sika deer of Hokkaido, Japan. The onset of the spermatogenic process occurred in July or August. Spermatogenic activity had already reached its height in late October, at the beginning of the rutting season, and had begun to decline in late December. Spermatogenesis had stopped in February or March. Plasma testosterone concentrations showed very high levels in late October and early November, but was almost at the basal level in February, March, June and December. The wide individual variation of the plasma levels in October suggest pulsatile secretions of testosterone.  相似文献   

6.
To investigate the influence of daylength on the seasonal reproductive cycle of stallions, 21 stallions were assigned to one of three treatments: control, ambient (natural) photoperiod; S-L, 8 h light and 16 h dark (8:16) for 20 wk beginning July 16, 1982 then 16:8 from December 2, 1982 until March 5, 1984; S-S, 8:16 from July 16, 1982 until March 1984. Temperature was not controlled and was similar for all groups. Total scrotal width (TSW) was measured every 4 wk throughout the experiment. During 10 periods, semen was collected and evaluated every other day for 3 wk and sexual behavior was assessed. The S-L stallions exposed to 16 h light in December had twice as much sperm output in February than in November. Within the February collection period, the sperm output for S-L stallions was greater (P less than .05) than that for either control of S-S stallions. The stimulatory effect of the S-L photoperiod also resulted in larger (P less than .05) testes and decreased (P less than .05) time to ejaculation for S-L stallions in February as compared with either controls or S-S stallions. Despite continued exposure to a 16:8 photoperiod, TSW and sperm output for S-L stallions eventually declined; presumably a consequence of photorefractoriness. The S-S stallions had seasonal cycles coincident with those for control stallions. Based on a sine wave model for TSW and sperm output, stallions in all three groups displayed significant seasonal cycles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Five experiments were performed to evaluate the effects of dexamethasone (DEX), gender, and testosterone on plasma leptin concentrations in horses. In experiment 1, plasma leptin, insulin, glucose, and IGF-1 concentrations were increased (P < 0.01) in stallions following five daily injections of DEX (125 microg/kg BW). In experiment 2, leptin concentrations increased (P < 0.01) in mares, geldings, and stallions following a single injection of DEX, and the response was greater (P < 0.01) in mares and geldings than in stallions. The gender effect was confounded by differences in body condition scores and diet; however, based on stepwise regression analysis, both BCS and gender were significant sources of variation in the best fit model for pre-DEX leptin concentrations (R(2) = 0.65) and for maximum leptin response to DEX (R(2) = 0.75). In experiment 3, in which mares and stallions were pair-matched based on age and body condition and fed similar diets, mares again had higher (P < 0.01) leptin concentrations than stallions after DEX treatment as used in experiment 2. In experiment 4, there was no difference (P > 0.1) in plasma leptin response in mares following four single-injection doses of DEX from 15.6 to 125 microg/kg BW. In experiment 5, treatment of mares with testosterone propionate every other day for 5 days did not alter (P > 0.1) plasma leptin concentrations or the leptin response to DEX. In conclusion, multiple injections of DEX increase leptin concentrations in stallions, as does a single injection in mares (as low as 15.6 microg/kg BW), geldings and stallions. The greater leptin levels observed in mares and geldings relative to stallions were due partially to their greater body condition and partially to the presence of hyperleptinemic individuals; however, even after accounting for body condition and diet, mares still had greater leptin concentrations than stallions after DEX administration. Elevation of testosterone levels in mares for approximately 10 days did not alter leptin concentrations in mares.  相似文献   

8.
Gonadotrophin-releasing hormone (GnRH) (a single intravenous injection with 0.042 mg busereline acetate) was administered to control stallions (n=5), aged stallions (n=5) and stallions with lack of libido (n=5). Jugular blood samples were taken at -10, 0, 10, 20, 40 and 80 minutes after treatment and measured for luteinizing hormone (LH) and testosterone concentrations. A single intravenous injection of hCG (3000 IE) was given 1 day later. Venous blood samples were taken at -60, 0, 15, 30, 60, 120, and 240 minutes after treatment and measured for the testosterone concentration. The experiment was performed in the breeding season. There was a wide variation between stallions in basal concentrations of LH and testosterone. The treatment groups all showed a significant increase in LH and testosterone concentrations after treatment with GnRH. There was a significant difference (P<0.05) between the control, the lack of libido stallions and the aged stallions in the production of LH before and after stimulation with GnRH. The aged stallions had higher basal LH concentrations. GnRH induced a rise in plasma LH in all groups, but the greatest response was observed in aged stallions. No response to GnRH was seen with respect to plasma testosterone. There was an increase in plasma testosterone following hCG; however, this increase was very small in aged stallions. After stimulation with hCG the control and lack of libido stallions had a significant increase (P<0.05) in testosterone production. In conclusion, stimulation with either GnRH or hCG can be a valuable method to test whether the function of the stallion's reproductive endocrine system is optimal.  相似文献   

9.
The seasonal reproductive cycle of stallions is characterized by an annual regression and recrudescence in testicular function and concentrations of LH, FSH, and testosterone in serum. Maximum reproductive capacity occurs during the increasing day lengths of spring and summer. The annual cycle in LH secretion may reflect a seasonally associated and photosensitive reduction and replenishment in pituitary content of LH. Similar to other seasonal breeders, it appears that stallions may possess an endogenous circannual rhythm in reproductive function that is subject to manipulation by altering the light:dark ratio, i.e., photoperiod. The application of a long-day photoperiod (16 hours light:8 hours dark) in December, following 20 weeks of short days (8 hours light:16 hours dark), was effective in hastening the seasonal sexual recrudescence of stallions but was not effective in prolonging the interval of heightened reproductive capacity. The infantile period in colts lasts approximately 32 weeks and is characterized by low gonadotropin concentrations and little gonadal activity. The start of the pre-pubertal period is marked by changes in the hypothalamic-pituitary axis which result in increased amounts of LH and FSH secretion between 32 and 40 weeks of age. Testosterone concentrations in serum exhibit a dramatic increase at 75 to 80 weeks of age, with puberty (defined as the age when the first ejaculate was obtained containing a minimum of 50 x 10(6) sperm with greater than or equal to 10% progressive motility) occurring at 83 weeks of age.  相似文献   

10.
Effects of season and photoperiod on the anterior pituitary gland and testes were studied by responses to exogenous GnRH. Stallions were assigned to one of three treatments: 1) control, exposed to natural day length; 2) S-L, 8 h of light and 16 h dark (8:16) for 20 wk beginning July 16, 1982 then 16:8 from December 2, 1982 until March 5, 1984; or 3) S-S, 8:16 from July 16, 1982 until March 5, 1984. Approximately every 8 wk, stallions were administered GnRH (2 micrograms/kg BW) and blood was sampled at 20-min intervals for 2 h before and 8 h after GnRH administration. Concentrations of LH, FSH and testosterone were determined. Baseline concentrations (mean of pre-GnRH samples) of all hormones fluctuated seasonally (P less than .05), but only LH and testosterone displayed seasonal changes (P less than .05) in maximum response to GnRH (highest concentration above baseline after GnRH). The FSH response to GnRH was not affected (P greater than .05) by season, photoperiod or the season X treatment interaction. Exposure of S-L stallions to 16:8 in December resulted in early recrudescence of baseline concentrations of LH, FSH and testosterone. Maximum concentration of testosterone in response to GnRH was stimulated by 16:8, but the increase in baseline LH concentrations in S-L stallions was not associated with an increase in maximum LH response to GnRH. Seasonal patterns of baseline concentrations of FSH and testosterone and maximum LH response to GnRH in S-S stallions were similar to those for control stallions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The objectives of this study were to evaluate the effects of season in southeast of Brazil comparing genotypes on semen characteristics, freezability and peripheral plasma concentrations of testosterone. Ejaculates of five Bos indicus bulls and six Bos taurus bulls were evaluated over a period of 27 months, which was divided into winter (July, August, September), spring (October, November, December), summer (January, February, March) and autumn (April, May, June). Semen was evaluated according to standard procedures for ejaculate volume, sperm concentration, gross-motility, progressive motility and sperm morphology. After preparing and freezing the ejaculates according to commercial procedures, the straws were stored in liquid N2 until post-thaw evaluation. Ejaculate volume, sperm concentration, gross-motility, progressive sperm motility, vigor and morphological sperm defects were significantly influenced by season and genotype (p < 0.05). Heat tolerance was better in B. indicus bulls than in B. taurus bulls characterized by lower values of sperm abnormalities throughout the observation period. The highest values were recorded for abnormal heads followed by cytoplasmatic droplets in B. taurus bulls. The proportion of ejaculates which were eliminated before freezing for reasons of bad quality was lower in the B. indicus bulls. Temporal changes in peripheral plasma testosterone concentrations were higher in B. indicus bulls than in B. taurus bulls not revealing seasonal influences. The results of this study show clear genotype differences regarding semen quality. Freezability of B. taurus semen varies considerably throughout the year, leading to a high proportion of eliminated ejaculates. Collecting semen from B. taurus bulls during the summer in an artificial insemination centre may not be profitable.  相似文献   

12.
Plasma concentrations of LH, FSH and testosterone are reported in stallions exhibiting a variety of reproductive problems. Stallions with poor libido were found to have low LH and FSH concentrations, while testosterone concentrations appeared normal. Stallions with good libido but experiencing ejaculatory disorders had normal concentrations of LH, FSH and testosterone. Older stallions experiencing a marked reduction in fertility had elevated FSH concentrations which were accompanied by increased LH concentrations in some cases, however, testosterone concentrations appeared normal in such stallions. Two young stallions which had experienced poor fertility (40 to 60% conception rates) from the beginning of their stud careers were found to have normal FSH and testosterone concentrations while LH concentrations were consistently low in one and normal in the other.  相似文献   

13.
Changes in follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, immunoreactive(ir)-inhibin, testosterone, estradiol-17β, and insulin-like growth factor (IGF)-I in Thoroughbred stallions along with changes in prolactin secretion in geldings were studied. The correlations of day-length with changes in the concentrations of these hormones were also studied. Five stallions and thirteen geldings were employed to draw blood samples in monthly basis and radioimmunoassay was performed to measure these hormones. All hormones showed a seasonal pattern, the levels being highest during the breeding season and lowest during the winter months. Most of the hormones were at their highest concentration during the month of April, the mid of spring in northern hemisphere. The concentration of circulating IGF-I also demonstrated seasonality, the peak lying on the month of April. The plasma concentration of prolactin also increased during the breeding season. This phenomenon was similar both in stallions and geldings although geldings had lower concentration than that of stallions. The changes in concentration of prolactin in stallions and geldings correlated more towards the day-length than towards the temperature. These results clearly indicate the seasonality of pituitary and gonadal hormones of Thoroughbred stallions, the activity being highest during the month of April and May of the breeding season.  相似文献   

14.
An experiment was conducted to determine the effects of equine somatotropin on the reproductive axis of the stallion during the nonbreeding season. Adult stallions were treated with equine somatotropin (20 μg/kg body weight [BW]; n = 5) or saline (n = 4) daily for 21 days starting in January. During the last week of treatment, stallions were subjected to low- and high-dose injections of luteinizing hormone (LH), as well as low- and high-dose injections of gonadotropin-releasing hormone (GnRH) and thyrotropin-releasing hormone (TRH). Two months after the onset of somatotropin treatment, semen was collected from all stallions every other day for 14 days. Treatment with equine somatotropin increased (P < .001) daily IGF-1 concentrations but had no effect (P > .1) on concentrations of LH, follicle-stimulating hormone (FSH), or testosterone. The testosterone responses to injections of LH were similar (P > .1) between treatments. Likewise, the LH, FSH, prolactin, and testosterone responses to the injections of GnRH/TRH were similar (P > .1) between groups. At seminal collections, stallions treated with somatotropin exhibited greater volumes of gel-free semen (P < .01) and gel (P < .05) and had decreased time until ejaculation (P < .05). In conclusion, somatotropin treatment for 21 days may alter the long-term accessory gland contribution to seminal volume but does not appear to alter pituitary gonadotrope function or testicular testosterone secretion.  相似文献   

15.
选用8只雄性成年梅花鹿,6只雄性成年东北马鹿,在我国传统饲养模式下,每月采集鹿血液样品,进行鹿血清胰岛素样生长因子(IGF-1)及生长激素(GH)浓度年周期变化规律研究。试验结果表明,①梅花鹿血清IGF-1质量浓度4月份上升较高,5月份略有下降,到6月份达到一年周期变化的最高值,7月份开始逐渐下降,7~10月份均保持在一个稳定的水平,从11月至翌年3月,梅花鹿血清IGF-1质量浓度为全年最低水平,从翌年4月开始,IGF-1水平又开始回升。梅花鹿血清GH质量浓度在夏季的4~7月份相对处于较高状态,2月份梅花鹿血清GH质量浓度为一年中的最低水平。梅花鹿血清GH质量浓度相对比IGF-1质量浓度水平高,且变化趋势具有同步性。②马鹿血清IGF-1质量浓度4月份较高,5月份略有下降,到6月份达到一年周期变化的最高值,7月份开始逐渐下降,7~10月份均保持在一个稳定的水平,11月份略有上升,从12月至翌年3月,马鹿血清IGF-1质量浓度为全年最低水平,从翌年4月开始,IGF-1水平又开始回升,5月份同上一年的变化规律,又有一个下降的水平。马鹿血清GH质量浓度全年均较为平稳,但在夏季的4~8月份相对处于较高状态。③梅花鹿与马鹿血清IGF-1及GH质量浓度变化同步,在一年的大部分时间点,梅花鹿血清IGF-1及GH水平均高于马鹿血清IGF-1和GH水平,梅花鹿IG  相似文献   

16.
This study was conducted to characterize the daily profile of testosterone secretion and its mean concentrations in the four seasons as well as to evaluate the semen characteristics and testicular biometry of Mangalarga Marchador stallions throughout the year in a tropical region. Three stallions were submitted to semen collections and evaluation of testicular biometry every 14 days along a year. Blood samples were collected once at the middle of each season, in a 20‐min interval during 24 hr in order to evaluate the testosterone secretion profiles among seasons. Testosterone concentrations along the day were higher at the beginning of the afternoon (from 12:00 to 15:00 hr), but a circadian secretion was not clearly observed. Mean testosterone concentrations did not differ among seasons (p > .05), but a pattern of secretion along the day showed variations with higher concentrations in the afternoon during the winter. Ejaculate volume was higher during summer; however, sperm motility decreased in summer and spring. Total sperm in ejaculate, sperm morphology and testicular biometry kept constant along the year showing no differences among the seasons. The results demonstrated that in a tropical region, reproductive aspects of stallions did not show a clearly defined seasonal variation, and months of autumn and winter were not unsuitable for reproduction of the males.  相似文献   

17.
The long term effect of a single injection of 6,000 iu of human chorionic gonadotrophin (hCG) was studied in two pony stallions. Peripheral plasma samples were analysed for testosterone and oestrone sulphate. Testosterone concentrations were markedly elevated for five days after injection in both stallions. No adverse effects of these high concentrations were observed on concentrations later in the experiment. There was an initial increase in oestrone sulphate in one stallion, after which concentrations decreased to below pre-injection levels. The other stallion (whose initial oestrone sulphate concentrations were somewhat higher) showed no rise in response to hCG but did show a significant decline from five days after injection. Whether this suppression is an effect of the high testosterone concentrations remains to be determined.  相似文献   

18.
Monthly population fluctuations of carrion-frequenting blow-flies over a 24-month period were monitored using 2 carrion-baited traps in the southern Kruger National Park (KNP) and 3 in the northern KNP. All species displayed a clear seasonality. Chrysomyia marginalis and Chrysomyia albiceps were by far the most abundant. C. marginalis attained maximum abundance between November and March, with relatively low numbers present between May and September. C. albiceps maintained high population numbers between January and March in the northern KNP, with minimum numbers between May and August. In the southern KNP, C. albiceps became abundant from November to February, with low population levels between April and September. Although present only in relative low numbers, populations of Lucilia cuprina showed a clear increase in winter. Chrysomyia chloropyga, Chrysomyia putoria and Chrysomyia bezziana were trapped in significant numbers in the southern KNP, the latter 2 species reaching relative abundance in the warmer months, whereas C. chloropyga increased in cooler months from June to September. Graphic illustrations of monthly abundance are provided for all species.  相似文献   

19.
This study examined the reproductive endocrine profile under natural and artificial photoperiods in Magang goose ganders. Group 1 ganders (n=8) served as non-treated controls and were exposed to natural photoperiod throughout the experiment from 13th January to 17th December 2004. Group 2 ganders (n=8) were exposed to 18 h long daily photoperiod for 60 days from 13 January till 15 March 2004 and again to 16 h photoperiod for 75 days till 10th October 2004, and the 11h short photoperiod in the remainder periods of the experiment. In control ganders, plasma LH concentrations were high in normal breeding seasons (August-March) and decreased to low levels in non-breeding season from April to July. Testosterone concentrations changed similarly to that of LH throughout the seasons. Seasonal pattern of PRL concentrations was opposite to those of LH and testosterone, with low values in breeding season and high values in non-breeding season. In artificial photoperiod treated ganders, increasing photoperiod increased PRL and decreased LH and testosterone concentrations, while decreasing photoperiod reversed these changes. There were no seasonal or photoperiod caused changes in plasma T3 concentrations in both control ganders and artificial photoperiod treated ganders. These results demonstrated that in Magang goose ganders that long photoperiod stimulates PRL secretion and decreases LH secretion, which terminates reproductive season in spring and early summer, and short photoperiod stimulates LH secretion and inhibits PRL secretion rendering ganders enter into reproductive season.  相似文献   

20.
In boars and rabbits, administration of adrenocorticotropic hormone (ACTH) results in a testis-dependent, short-term increase in concentrations of testosterone in peripheral plasma. This experiment was designed to assess the short-term effects of a single ACTH injection on plasma concentrations of testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH) and cortisol in stallions. Eight light horse and two pony stallions were paired by age and weight and then one of each pair was randomly assigned to the treatment (ACTH, .2 IU/kg of body weight) or control (vehicle) group. Injection of ACTH increased (P<.01) plasma concentrations of cortisol by approximately twofold in the first 60 minutes; control stallions showed no change (P>.10) in concentrations of cortisol during the blood sampling period. Control stallions exhibited a midday increase (P>.05) in concentrations of testosterone similar to that reported previously; ACTH treatment prevented or delayed this increase such that concentrations of testosterone in treated stallions were lower (P<.05) than in controls 4 to 5 hours after injection of ACTH. Treatment with ACTH had no effect (P<.10) on plasma concentrations of LH or FSH up to 12 hours after injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号