首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four poplar clones were inoculated with four isolates of Melampsora larici-populina at seven spore concentrations (inoculum densities up to 680 spores cm–2 using a leaf-disc method. Disease reactions were recorded using a digital camera. The number and size of uredinia were examined using image analysis software and the number of spores produced per leaf disc was counted. The infection efficiency was estimated in a range of 0.008–0.167 and the pustule diameter measured 0.75–0.94 mm. Rust resistance/susceptibility was expressed by the differences in both the number and the size of uredinia. Within a clone/isolate combination, pustule diameter and the number of spores produced per pustule did not differ significantly between different levels of inoculum density. There was a close correlation between the pustule area and spore yield. When Spearman rank correlation was tested between the disease variables, a close correlation was found between pustule number and pustule area per leaf disc (0.98) and between the number of spores produced and the pustule area/number per leaf disc (0.94 and 0.92, respectively). There was significant correlation between the number and the diameter of pustules (0.54, P < 0.001).  相似文献   

2.
The endoparasitic nematophagous fungusHirsutella rhossiliensis was tested for its ability to suppress root penetration and cyst formation by the potato cyst nematode speciesGlobodera pallida. Isolates ofH. rhossiliensis were obtained from infected potato cyst nematode juveniles from different starch potato fields in The Netherlands. The isolates showed no difference in spore adhesion to juveniles on agar plates (adhesion rate: ±90%). The most rapid growing isolate, CBS 108.94, was used for experiments. Vegetative mycelial colonies ofH. rhossiliensis CBS 108.94, grown in potato dextrose broth, were used as soil inoculum. During submerged cultivation the mycelial colonies produced phialides (spore-bearing cells) but no spores. Exposed to the air, however, spores were rapidly formed. The effect of different soil inoculum densities of mycelial colonies on root penetration byGlobodera pallida was examined in an experiment in 250-ml pots. Up to a mycelial colony concentration representing a potential spore density of 104 g–1 soil no suppression occurred. At approximated densities of 2.5×104 and 105 spores g–1 soil the numbers of juveniles which penetrated roots were reduced by 30% and 34%, respectively. The distribution of the inoculum could be improved by fragmentation of the mycelial colonies before soil inoculation. Using mycelial fragments, again no suppression of root penetration was observed up to a potential spore density of 104 g–1 soil, but at densities of 105 and 106 g–1 a suppression of 54% and 88%, respectively, was measured. In a greenhouse experiment, soil inoculation with mycelial colonies with a potential spore production of 2.5×105 g–1 soil resulted in a suppression of root penetration of 37% and 51% after 5 and 6 weeks, respectively, but the number of newly formed cysts after 18 weeks in soil was not different for control and inoculated pots. It is concluded thatH. rhossiliensis may be useful for the reduction of root damage caused by juveniles of potato cyst nematodes, but the usefulness for population control is doubtful.  相似文献   

3.
It has been reported that Alternaria brassicae, the causal agent of gray leaf spot in Brassica plants, produces a host-specific or host-selective toxin (HSTs) identified as destruxin B. In this study, the role of destruxin B in infection of the pathogen was investigated. Destruxin B purified from culture filtrates (CFs) of A. brassicae induced chlorosis on host leaves at 50–100 μg ml−1, and chlorosis or necrosis on non-host leaves at 250–500 μg ml−1. Destruxin B was detected in spore germination fluids (SGFs) on host and non-host leaves, but not in a sufficient amount to exert toxicity to host plants. When spores of non-pathogenic A. alternata were combined with destruxin B at 100 μg ml−1 and inoculated on the leaves, destruxin B did not affect the infection behavior of the spores. Interestingly, SGF on host leaves allowed non-pathogenic spores to colonize host leaves. Moreover, a high molecular weight fraction (>5 kDa) without destruxin B obtained by ultrafiltration of SGF had host-specific toxin activity and infection-inducing activity. From these results, we conclude that destruxin B is not a HST and does not induce the accessibility of the host plant which is essential for colonization of the pathogen. In addition, the results with SGF imply that a high molecular weight HST(s) is involved in the host–pathogen interaction.  相似文献   

4.
An in vitro detached leaf assay, involving the inoculation of detached leaves with Microdochium nivale, was further developed and used to compare with whole plant resistance ratings to Fusarium head blight (FHB) of 22 commercial cultivars and published information on 21 wheat genotypes, identified as potential sources for FHB resistance. An incubation temperature of 10 °C and isolates of M. nivale var. majus of intermediate pathogenicity were found to be the most suitable for the differential expression of several components of partial disease resistance (PDR), namely incubation period, latent period and lesion length, in wheat genotypes used in the detached leaf assay. There were highly significant differences (P < 0.001) for each component of PDR within commercial cultivars and CIMMYT genotypes. Positive correlations were found between incubation period and latent period (r = 0.606; P < 0.001 and r = 0.498; P < 0.001, respectively, for commercial cultivars and CIMMYT genotypes), inverse correlations between incubation period and lesion length (r = -0.466; P < 0.01 and r = –0.685; P < 0.001, respectively) and latent period and lesion length (r = –0.825; P < 0.001 and r = –0.848; P < 0.001, respectively). Spearman rank correlations between individual PDR components and UK 2003 recommended list ratings were significant for incubation period (rs = 0.53; P < 0.05) and latent period (rs = 0.70; P < 0.01) but not for lesion length (r s = –0.26). Commercial cultivars identified with high resistances across all three PDR components in the detached leaf assay also had high whole plant FHB resistance ratings, with the exception of cv. Tanker which is more susceptible than the results of the detached leaf assay suggested, indicating an additional susceptibility factor could be present. Agreement between resistances found in the detached leaf assay and resistance to FHB suggests resistances detected in detached leaves are under the same genetic control as much of the resistances expressed in the wheat head of the commercial cultivars evaluated. In contrast, high resistances in each of the PDR components were associated with higher susceptibility across 19 CIMMYT genotypes previously evaluated as potential breeding sources of FHB resistance (incubation period: r = 0.52; P < 0.01, latent period: r = 0.53; P < 0.01, lesion length: r = –0.49; P < 0.01). In particular, the CIMMYT genotypes E2 and E12 together with Summai #3, known to have high levels of whole plant FHB resistance, showed low levels of resistance in each PDR component in the detached leaf assay. Such whole plant resistances, which are highly effective and not detected by the detached leaf assay, do not appear to be present in Irish and UK commercial cultivars. The most resistant Irish and UK commercial cultivars were comparable to the genotype Frontana and the most resistant CIMMYT germplasm evaluated in the leaf assay.  相似文献   

5.
为筛选出对马铃薯甲虫Leptinotarsa decemlineata(Say)具有防治潜力的菌株,本研究从马铃薯甲虫僵虫虫体上分离菌株NDBJJ-BFG,通过形态学特征和分子生物学方法明确其分类地位,采用喷雾法和覆土法测定了不同浓度下该菌株对马铃薯甲虫室内毒力的致死中浓度LC50及半致死时间LT50。结果表明,经形态特征与r DNA ITS序列分析最终确定菌株NDBJJ-BFG为球孢白僵菌Beauveria bassiana(Bals.)Vuill。该菌株对1、2、3和4龄马铃薯甲虫幼虫的LC50分别为0.91×10~6、1.51×10~6、5.09×10~6和6.84×10~6个/m L;采用喷雾法和覆土法处理蛹的LC50分别为1.43×10~7个/m L和8.15×10~6个/m L,成虫的LC50分别为5.08×10~7个/m L和2.97×10~7个/m L。在孢子悬浮液浓度相同时LT50随虫龄的增大而延长,其中成虫的LT50最长,其次是蛹;在相同龄期下LT50随着孢子悬浮液浓度的增大而缩短。表明菌株NDBJJ-BFG对马铃薯甲虫1龄和2龄幼虫具有高毒力,其在马铃薯甲虫的生物防治中将具有较大的应用潜力。  相似文献   

6.
An exopolygalacturonase and three endopolygalacturonases were purified from mycelia of pear scab pathogens, Venturia pirina and Venturia nashicola. The molecular weight of the isolated exoPG from V. pirina was 43 kDa, and the endoPGs from V. nashicola were 42 kDa as estimated by SDS–polyacrylamide gel electrophoresis. The pH optimum of the exoPG activity from V. pirina was 5.0. TheKm and Vmaxvalues of the exoPG were 0.08 mg ml−1and 4.44 × 10−3 mmol reducing group min−1 mg protein−1. The N-terminal amino acid sequence of the exoPG from V. pirina was similar to that of the exoPG from Fusarium oxysporum f. sp. melonis, and the N-terminal amino acid sequences of the three endoPGs fromV. nashicola races 1, 2 and 3 were similar to other fungal endoPGs with a conserved motif of ASxxxTFTxAAAxxxG.  相似文献   

7.
Field studies were conducted near Lethbridge, Alberta, Canada, in 2001, 2004 and 2005 to determine the efficacy of the antagonistic fungusUlocladium atrum for control of white mold of bean caused bySclerotinia sclerotiorum. Results of the 3 years of field trials showed that, compared with the untreated control, foliar application of a spore suspension ofU. atrum (300 ml m−2 of 106 spores ml−1 suspension) significantly reduced incidence and severity of white mold, increased seed yield and reduced contamination of bean seed by sclerotia ofS. sclerotiorum. The level of control of white mold observed in the treatment ofU. atrum was similar to that of the mycoparasitic fungusConiothyrium minitans, but lower than the fungicide treatments of Ronilan (vinclozolin) at the rate of 1200 g ha−1 per application in 2001, or Lance (boscalid) at the rate of 750 g ha−1 per application in 2004 and 2005. The potential for use ofU. atrum as a biological control agent for sclerotinia diseases is discussed. http://www.phytoparasitica.org posting Nov. 12, 2006.  相似文献   

8.
When detached broad bean leaves were preinoculated with virulent strain B304 of Botrytis cinerea 24 h before a challenge inoculation with strain B304, lesion formation by B304 was significantly inhibited in red light but not in the dark. In leaves that were preinoculated with avirulent strain 021 and then challenged by B304, however, lesion formation was not inhibited even under red light. Such differences in lesion formation after the challenge inoculation with an avirulent strain were also observed with lesions caused by Alternaria alternata, a nonpathogen of broad bean and by avirulent strain 021R in the presence of germination fluid from spores of strains B304 and 021R. These results suggest the possibility that virulent B. cinerea produced a suppressor involved in induced susceptibility and an elicitor involved in resistance induced by red light during spore germination.  相似文献   

9.
为明确从田间采集草地贪夜蛾 Spodoptera frugiperda幼虫体内发现的一种微孢子虫的分类地位和致病性,利用传统形态学观察和分子生物学技术对该微孢子虫进行鉴定,同时采用室内生物活性测定法对其致病性进行分析。结果显示,该微孢子虫的形态学特征与家蚕微孢子虫 Nosemabombycis相近,具有典型微孢子虫超微组成结构,孢子壁厚度为195.00~205.15 nm,极丝盘旋于孢子后极内侧10~12圈;其基因组的基因间隔区(intergenic spacer, ITS)和小亚基核糖体RNA(smallsubunit ribosomal RNA, SSU)序列与已报道的家蚕微孢子虫相关序列的相似度分别达94.34%和99.50%,系统发育树显示该微孢子虫属于微孢子虫属 Nosema,与家蚕微孢子虫亲缘关系最近。该微孢子虫侵染草地贪夜蛾1龄和2龄幼虫5 d时的LC50分别为2.51×107孢子/mL和2.48×107孢子/mL;侵染3龄幼虫10 d时的LC50为3.79×107孢子/mL;侵染4龄幼虫15 d时的LC50为3.98×107孢子/mL;且当微孢子虫浓度为1.0×108孢子/mL时,草地贪夜蛾1至4龄幼虫的LT50分别为3.04、 3.86、 7.47和10.43 d。表明该微孢子虫隶属微孢子虫属,对草地贪夜蛾不同龄期幼虫均有较强的致病力,具有良好的开发应用潜力。  相似文献   

10.
Rice leaves were inoculated with spores of Magnaporthe grisea, and the number of fluorescence-labeled spores that attached to the leaf surface were counted before and after leaves were dipped and then stirred in water. Just 5% of the spores were retained on the leaf surface 1h after inoculation; the percentage retained then increased rapidly between 1.25 and 1.50h, and most had attached by 2h. Scanning electron microscopy revealed that most conidia were lying on a few wart-like protuberances 2–4µm high. Spores became attached when the germ tubes were long enough to reach the leaf surface, at least 3µm, by mucilaginous substances at the tip. Retained spores swayed when water was added under the cover glass from one side, indicating that the attachment was confined to the tips of germ tubes. Spores are attached to the rough leaf surface by mucilaginous substances – not at the tip of spore as reported on smooth artificial substrates but at the tip of the germ tubes.  相似文献   

11.
The epidemiology of Botrytis cinerea was studied in five annual strawberry crops using waiting-bed transplants, a system widely adopted in the Netherlands. On dead leaves of transplants the incidence of B. cinerea varied from 26.7% to 52.6%, but the leaf area with potential sporulation was low (3.5–15.6%). During each crop cycle, the availability of necrotic leaf substrate for spore production of B. cinerea was generally low and varied between seasons and with the quality of transplants. B. cinerea sporulated on a maximum of 15.5 cm2 of leaf area per plant, measured as potential sporulation. The aerial concentration of B. cinerea conidia in untreated plots did not differ from the concentration in plots where all dead leaves had been removed, nor from the concentration at 25–50 m distance from the strawberry plots. B. cinerea incidence on flowers ranged from 5% to 96%, but no correlation was found with the potential spore production on necrotic leaves. Grey mould at harvest varied from 1.4% to 11.3% and was correlated with the average precipitation during the harvesting period but not with B. cinerea incidence on flowers. Post-harvest grey mould ranged from 2.1% to 32.6% and was correlated with petal colonisation by B. cinerea. The results suggest that in the annual cropping system with waiting-bed transplants, necrotic leaves are not a significant source of B. cinerea inoculum, unlike in other strawberry production systems. Therefore, control measures of grey mould in this annual system should focus on protection of flowers and young developing fruits, and not on the reduction of inoculum production on leaf debris.  相似文献   

12.
In this study, the hypothesis was tested that removal of substrate for sporulation ofBotrytis spp. may lead to a retardation of an epidemic if the majority of the inoculum is produced inside the treated crop. Suppression of sporulation ofBotrytis spp. could be an attractive option for biological control ofBotrytis leaf spot in onions. In a field experiment, necrotic leaf tissue was removed to simulate the effect of a biocontrol agent. By this means, the amount of substrate on whichBotrytis spp. sporulates was reduced. In the experiment, the spore load above the onion plots was significantly reduced and the epidemic of onion leaf spot was retarded. At the end of the growing season, the number of leaf lesions in the green leaf area was lower in plots with substrate removal than in control plots (0.6 and 1.1 cm–2, respectively). The results demonstrated that an epidemic of onion leaf spot largely depends on the rate of inoculum production inside a crop. Thus, suppression of sporulation on necrotic leaf tissue is a valid control strategy that could be applied by using sporulation suppressing antagonists.  相似文献   

13.
为筛选有效防治草地贪夜蛾Spodoptera frugiperda的微生物制剂,采用室内生物测定法测定从北京市、浙江省和海南省土壤样品中分离获得的3株球孢白僵菌Beauveria bassiana菌株bbbj、bbzj和bbhn对草地贪夜蛾3龄幼虫的毒力,并比较这3株菌株的产孢情况和合成白僵菌素的能力。结果显示,分离自北京市的菌株bbbj对草地贪夜蛾3龄幼虫的毒力最强,LC50为3.37×105个孢子/mL;其次为浙江省的菌株bbzj,毒力略逊于菌株bbbj;海南省的菌株bbhn毒力最弱,其在试验最高浓度108个孢子/mL处理7 d后对草地贪夜蛾3龄幼虫的致死率低于50%。菌株bbbj的产孢量远高于另外2株菌株,并且其菌丝结构上着生大量芽生孢子簇,而且菌株bbbj菌体中的白僵菌素含量最高,培养5 d后,分别为菌株bbzj和bbhn的40.08倍和65.85倍。虽然补充白僵菌素可以提高菌株bbhn的毒力,但是草地贪夜蛾幼虫对白僵菌素敏感度不高。表明球孢白僵菌菌株bbbj对草地贪夜蛾幼虫有较高的毒杀活性,具有作为草地贪夜蛾生防菌株的潜力。  相似文献   

14.
The effect ofPyricularia oryzae, the causal organism of leaf blast in rice, on photosynthesis characteristics of rice leaves was measured in two greenhouse experiments. Leaf blast reduced photosynthesis not only through a reduction in green leaf area, but also through an effect on photosynthesis of green leaf tissue surrounding the lesions. The assimilation rate at light saturation (P max ) was more affected than the initial light use efficiency (). Dark respiration (R d ) increased as a result of infection. The experimental data were used to derive relations between leaf blast severity andP max , andR d .  相似文献   

15.
Inoculum density, temperature, leaf age, and wetness duration were evaluated for their effects on the development of black streak (Itersonilia perplexans) on edible burdock (Arctium lappa L.) in a controlled environment. The effect of relative humidity (RH) on ballistospores production by I. perplexans was also evaluated. Symptoms of black streak on leaves increased in a linear fashion as the inoculum density of I. perplexans increased from 102 to 106 ballistospores/ml. Rugose symptoms on young leaves were observed at densities of ≥104 ballistospores/ml. Disease severity of I. perplexans in relation to leaf age followed a degradation curve when the leaves were inoculated with ballistospores. Disease severity was high in newly emerged leaves up to 5 days old, declined as leaf age increased to 29 days, and was zero when leaf age increased from 30 to 33 days. Disease development of edible burdock plants exposed to ballistospores of I. perplexans was evaluated at various combinations of temperature (10°, 15°, 20°, 25°C) and duration of leaf wetness (12, 24, 36, 48, and 72 h). Disease was most severe when plants were in contact with the ballistospore sources at 15° or 20°C. The least amount of disease occurred at 25°C regardless of wetness duration. Ballistospores required 24–36 h of continuous leaf wetness to cause visible symptoms by infection on edible burdock. Ballistospores production in infected lesions required at least 95.5% RH.  相似文献   

16.
This study aimed to evaluate the effect of silicon (Si) rates on some components of sorghum resistance to anthracnose. Two 2×5 factorial experiments, consisting of two sorghum lines (BR005 and BR009, resistant and susceptible, respectively) and five Si application rates (0, 0.06, 0.12, 0.24 and 0.30 g Si kg−1 of soil) were arranged in a completely randomised design with three replications. Plants from both lines were inoculated with a conidial suspension of Colletotrichum sublineolum (1×106 conidia ml−1) 30 days after emergence. The incubation period (IP), latent period (LP60), area under relative infection efficiency progress curve (AURIEPC), area under anthracnose index progress curve (AUAIPC), final disease severity (FDS), percentage of pigmented leaf area (PLA), and percentage of necrotic leaf area (NLA) were evaluated. Silicon and calcium (Ca) content in leaf tissue of both lines was also determined. The content of Si in leaf tissue increased relative to the control by 55 and 58%, respectively, for the susceptible and resistant lines. There was no significant change in Ca content in leaf tissue for either of the lines; therefore the variations in Si accounted for differences in the level of disease response. The IP for the resistant line was not affected by Si application rates. The LP60 was not evaluated in the resistant line due to the absence of acervuli. For the resistant line, Si application rates had no significant effect on AUAIPC, FDS, percentage of PLA, and percentage of NLA. On the susceptible line, a quadratic regression model best described the effect of Si application rates on IP, LP60, AURIEPC, AUAIPC, FDS, percentage of PLA, and percentage of NLA. The correlation between Si content in leaf tissue of the susceptible line and the AURIEPC, AUAIPC, FDS, PLA, and NLA was negatively significant (r = −0.57, −0.37, −0.40, −0.67, and −0.77, respectively). There was no correlation between Si content and IP or LP60. The correlation between the percentage of PLA with the percentage of NLA was negatively significant (r = −0.74). In conclusion, the results from this study underscore the importance of Si in sorghum resistance to anthracnose particularly for the susceptible line.  相似文献   

17.
The effects of age of ascospores (0–18 days after discharge), photon flux density (0–494 mol m–2 s–1 PAR), temperature (4–30 °C), frost (–15 °C for 30 min), relative humidity (RH; 0–100%), pH (2.5–6.5) and dryness (0 and 53% RH for up to 40 min) on the germination of the ascospores of the mycotoxin-producing fungus Gibberella zeae (anamorph Fusarium graminearum) were studied. Freshly discharged ascospores germinated within 4 h at 20 °C and 100% RH. The rate of germination and the percentage of viable ascospores decreased over time after the spores were discharged from perithecia. The time course of ascospore germination was not significantly affected by photon flux density. The period of time required to obtain 50% germinated ascospores at 100% RH was 26.90 h at 4 °C, 10.40 h at 14 °C, 3.44 h at 20 °C and 3.31 h at 30 °C. There was no significant effect of frost on the percentage of viable ascospores. A small percentage (6.6 ± 3.8%) of the ascospores germinated at 53% RH. At RH 84% and 20 °C almost 100% of the freshly discharged ascospores germinated. The time course of ascospore germination was affected by pH. The maximum rate of ascospore germination was estimated to be at pH 3.76. Ascospores lost their ability to germinate following exposure to 0% RH almost instantaneously. No germinating spores were detected after an incubation period of 1 min at 0% RH. Incubating the ascospores at 53% RH decreased the percentage of viable spores from 93 to 6% within 10 min. The data demonstrate that age of spores, relative humidity, temperature and pH, but not photon flux density, are key factors in germination of G. zeae ascospores.  相似文献   

18.
A phytotoxic protein that evokes the typical symptoms of Verticillium wilt disease in seedlings of Gossypium hirsutum L. (Upland cotton) was isolated from culture filtrates of Verticillium dahliae. The protein was purified by ammonium sulfate precipitation, Sephadex-G100 fractionation, and native PAGE. The 18.5 kDa protein, designated VD18.5, appears to be a single subunit protein with an isoelectric point between 3 and 5. VD18.5 induces symptoms of leaf dehydration, chlorosis, necrosis and stem discoloration in seedlings of the disease susceptible cotton cultivar Siokra 1–4. The LD50 of VD18.5 on protoplasts of Siokra 1–4 was 18 μg mL−1. VD18.5 had no noticeable effect on Pima S-7, which is a disease resistant cultivar. Phytotoxic activity was partially destroyed at high temperature and was abolished by digestion with proteinase K. Mass spectrometry fingerprinting and protein sequence data from VD18.5 yielded no significant matches when submitted to the Mascot search engine and NCBI non-redundant protein databases, respectively. These results suggest that VD18.5 is a novel protein that may be involved in the development of some of the symptoms associated with Verticillium wilt disease in the cotton plant.  相似文献   

19.
为获得对Q型烟粉虱Bemisia tabaci(Gennadius)具有高毒力的杀虫真菌菌株并将其应用于生产,采用喷雾法测定了5个球孢白僵菌Beauveria bassiana菌株对烟粉虱若虫的毒力,并运用时间-剂量-死亡率模型分析了B.bassiana 84(Bb84)菌株对烟粉虱若虫的时间效应和剂量效应。结果表明:在5个供试菌株中,Bb84菌株对烟粉虱3龄若虫的致死速度快、致死率最高,逐日死亡率随着Bb84菌株孢子浓度的增加而上升,且其对2、4龄烟粉虱若虫也有较高的毒力。用时间-剂量-死亡率模型分析其剂量效应与时间效应,结果表明:随着Bb84菌株接种时间的延长,相应的致死中浓度(LC50)值随之降低,剂量效应逐渐增强;当Bb84菌株处理浓度为1.0×107、1.0×108和1.0×109孢子/mL时,其对烟粉虱3龄若虫的致死中时间(LT50)值分别为5.44、4.61和4.05 d,即LT50值随菌株孢子浓度的增加而减小,时间效应增强。因此,在实际生产中,当球孢白僵菌Bb84菌株的浓度高于1.0×108孢子/mL时,对烟粉虱3龄若虫的防治效果较好。  相似文献   

20.
The spores (conidia) of the bean anthracnose fungal pathogen, Colletotrichum lindemuthianum, adhere to the aerial parts of plants to initiate the infection process. In previous studies we have shown that the Colletotrichum spores are surrounded by a fibrillar spore coat, comprising several major glycoproteins. Previous evidence showed that a monoclonal antibody (UB20) that recognised these glycoproteins was able to inhibit adhesion of spores to a hydrophobic surface. In this paper we have further studied the role of the spore coat in adhesion, germination and fungal development by studying the effects of UB20 and protease treatment of spores. The latter treatment has previously been shown to remove the spore coat. Spores germinate on glass, polystyrene and water agar, however, appressoria only develop on glass or polystyrene, showing a requirement for a hard surface. Removal of the spore coat with protease inhibits adhesion at 30 min, before the secretion of ECM glycoproteins. Protease treatment also inhibits the development of appressoria and reduces pathogenicity on leaves. Incubation of spores with the MAb UB20 inhibits adhesion at 30 min, but does not affect appressorium formation or pathogenicity. The results suggest that an intact spore coat has two functions; it is required for adhesion to a hydrophobic surface and for the detection of a hard surface necessary for appressorium formation. We suggest that contact with a hard surface, rather than adhesion, is the key event leading to appressorium formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号