首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discharge of acidic mine drainage waters onto a hillslope in Dalarna, central Sweden, has lead to the contamination of the podzol soils with Cu, Fe, Ni, Pb, Zn and sulfate. Samples from contaminated and reference soils have been collected for chemical and mineralogical analyses. Jarosite is identified by x-ray diffraction analysis as a precipitate in the upper horizons (A, E, B) of the contaminated soils, where the soil acidity (pHKCl~2.6) promotes jarosite stability. The sequential chemical extraction of soil samples indicates that, in the reference A horizon, Cu, Pb, Ni and Zn are bound primarily to cation exchange sites and organic matter. In the A horizon of the contaminated soils closest to the rock dump, metal partitioning is dominated by the Fe oxide fractions, despite the high organic matter content; Pb is almost completely bound to crystalline Fe oxides, possibly adsorbed to Fe oxides or occuring in a jarosite solid solution. In the reference B and C horizons, Cu, Ni and Zn are primarily adsorbed/coprecipitated in the Fe oxide fractions, while Pb remains with a large fraction bound to organic matter. In the Fe-rich B horizon of the contaminated soils, the partitioning of the metals in cation exchange sites and to organic matter has greatly increased relative to the reference soils, resulting from the mobilization of organo-metal complexes down the profile.  相似文献   

2.
Abstract

The accumulation of heavy metals in plants is related to concentrations andchemical fractions of the metals in soils. Understanding chemical fractions and availabilities of the metals in soils is necessary for management of the soils. In this study, the concentrations of copper (Cu), cadmium (Cd), lead (Pb), and zinc (Zn) in tea leaves were compared with the total and extractable contents of these heavy metals in 32 surface soil samples collected from different tea plantations in Zhejiang province, China. The five chemical fractions (exchangeable, carbonate‐bound, organic matter‐bound, oxides‐bound, and residual forms) of the metals in the soils were characterized. Five different extraction methods were also used to extract soil labile metals. Total heavy metal contents of the soils ranged from 17.0 to 84.0 mgCukg?1, 0.03 to 1.09 mg Cd kg?1, 3.43 to 31.2 mg Pb kg?1, and 31.0 to 132.0 mg Zn kg?1. The concentrations of exchangeable and carbonate‐bound fractions of the metals depended mainly on the pH, and those of organic matter‐bound, oxides‐bound, and residual forms of the metals were clearly controlled by their total concentrations in the soils. Extractable fractions may be preferable to total metal content as a predictor of bioconcentrations of the metals in both old and mature tea leaves. The metals in the tea leaves appeared to be mostly from the exchangeable fractions. The amount of available metals extracted by 0.01 mol L?1 CaCl2, NH4OAc, and DTPA‐TEA is appropriate extractants for the prediction of metals uptake into tea plants. The results indicate that long‐term plantation of tea can cause sol acidification and elevated concentrations of bioavailable heavy metals in the soil and, hence, aggravate the risk of heavy metals to tea plants.  相似文献   

3.
Different forms of manganese (Mn) were investigated, including total, diethylenetriamine penta-acetic acid (DTPA) extractable, soil solution plus exchangeable (Mn), Mn adsorbed onto inorganic sites, Mn bound by organic sites, and Mn adsorbed onto oxide surfaces, from four soil taxonomic orders in northwestern India. The total Mn content was 200–950 mg kg?1, DTPA-extractable Mn content was 0.60–5.80 mg kg?1, soil solution plus exchangeable Mn content was 0.02–0.80 mg kg?1, Mn adsorbed onto inorganic sites was 2.46–90 mg kg?1, and Mc adsorbed onto oxide surfaces was 6.0–225.0 mg kg?1. Irrespective of the different fractions of Mn their content was generally greater in the fine-textured Alfisols and Inceptisols than in coarse-textured Entisols and Aridisols. The proportion of the Mn fractions extracted from the soil was in the order as follows: Adsorbed onto oxide surfaces > adsorbed onto inorganic site > organically bound > DTPA > soil solution + exchangeable. Based on coefficient of correlation, the soil solution plus exchangeable Mn, held onto organic site and oxide surface (amorphous) and DTPA-extractable Mn, increased with increase in organic carbon of the soil. The two forms, adsorbed onto inorganic site (crystalline) and DTPA extractable, along with organic carbon, increased with increase in clay content of the soil. DTPA-Mn and Mn adsorbed onto oxide surfaces and held on organic site decreased with increased with an increase in calcium carbonate and pH. Total Mn was strongly correlated with organic carbon and clay content of soil. Among the forms, Mn held on the organic site, water soluble + exchangeable and adsorbed onto oxide surface were positively correlated with DTPA-extractable Mn. DTPA-extractable Mn seems to be a good index of Mn availability in soils and this form is helpful for correction of Mn deficiency in the soils of the region. The uptake of Mn was greater in fine-textured Inceptisols and Alfisols than in coarse-textured Entisols and Aridisols. Among the different forms only DTPA-extractable Mn was positively correlated with total uptake of Mn. Among soil properties Mn uptake was only significantly affected by pH of the soil.  相似文献   

4.
Chemical speciation and bioaccumulation factor of iron (Fe), manganese (Mn), and zinc (Zn) were investigated in the fractionated rhizosphere soils and tissues of sunflower plants grown in a humic Andosol. The experiment was conducted for a period of 35 days in the greenhouse, and at harvest the soil system was differentiated into bulk, rhizosphere, and rhizoplane soils based on the collection of root-attaching soil aggregates. The chemical speciations of heavy metals in the soil samples were determined after extraction sequentially into fractions classified as exchangeable, carbonate bound, metal–organic complex bound, easily reducible metal oxide bound, hydrogen peroxide (H2O2)–extractable organically bound, amorphous mineral colloid bound, and crystalline Fe oxide bound. Iron and Zn were predominantly crystalline Fe oxide bound in the initial bulk soils whereas Mn was mainly organically bound. Heavy metals in the exchangeable form accumulated in the rhizosphere and rhizoplane soils, comprising <4% of the total content, suggesting their relatively low availability in humic Andosol. Concentrations of organically bound Fe and Mn in soils decreased with the proximity to roots, suggesting that organic fraction is the main source for plant uptake. Concentrations of Mn and Zn in the metal–organic complex also decreased, indicating a greater ability of sunflower to access Mn from more soil pools. Sunflower showed bioaccumulation factors for Zn, Fe, and Mn as large as 0.39, 0.05, and 0.04 respectively, defining the plant as a metal excluder species. This result suggests that access to multiple metal pools in soil is not necessarily a major factor that governs metal accumulation in the plant.  相似文献   

5.
In order to achieve remediation of contaminated substrates, phyto-extraction in pot experiments utilizing lettuce seedlings as universal accumulator plants was investigated. As test substrates, mine tailings from Shiheung and Okdong mines in Korea (particularly high in Pb, Zn, Cu, and Cd), as well as samples from historic mining site at Oberzeiring in Austria (particularly high in Pb, Sb and As) were used, and compared with adjacent farmland soils. After 21 days of growth in the test substrate, the lettuce plants were harvested, and the adjacent soils parted in bulk and root soils. Special soil bacteria, adapted to high Cd levels (Exiguobacter sp.) and capable of adsorbing large amounts of cadmium from solution, as well as perlite (Samson Perlite Inc.) were added to the test substrates before plant growth. Speciation changes in the solids were investigated by sequential leaching, utilizing neutral MgCl2 (exchangeable), 0.16 M acetic acid, hydroxylamine pH 2, oxalate pH 3, H2O2 oxidation, and reflux with aqua regia. Plant growth induced differentiation between root and bulk soils, the differences were more pronounced for the non-contaminated controls. The iron-hydroxide phase increased about 30%, and also the amount of iron-hydroxide bound Be, Cd, Co, Cu, Mg, Mo, Sb and V concentrations, coming mainly from less mobile fractions. The Mn hydroxide phase, however (hydroxylamine), remained rather constant. After plant growth, the root soils were significantly lower in available P, and significantly higher in available Ca, Mn, and Na than the corresponding bulk soils. Addition of Cd-adapted soil bacteria led to a severe decrease of plant yield, but metal uptake changed in both directions. Exchangeable P in both root and bulk soil decreased, and Be, Co, Cr, Fe, K, Li, Mg, Mn, Ni, and Sr in the residual organic fraction increased. This can be interpreted as competition for nutrients, dissolution of residuals by bacterial action, and adsorption to a tightly bound biomass. Addition of perlite hardly affected the plant yield, and again metal uptake changed in both directions, but led to a decrease of siderophilic elements in the Fe- and Mn hydroxides of the bulk soil. In the root soil, perlite addition above all decreased available K, P and As, with respect to the untreated samples. Bacteria addition to perlite treated soils shifted some elements from weak acid mobile towards less available fractions.  相似文献   

6.
柴达木农田土壤Cd的积累影响及风险预测   总被引:1,自引:0,他引:1  
【目的】土壤重金属空间结构特征是土壤环境质量评价及重金属污染评价的基础。本文用地质统计学方法研究了柴达木盆地原生地和耕种50年的农田土壤镉的空间分布特征,对土壤镉进行质量评价,同时分析了农业耕种对土壤镉积累的影响,调查统计了灌溉水、肥料、农药等农业源土壤镉的输入量,为农田镉积累的风险预测提供参考。【方法】以柴达木盆地诺木洪农场的一块原生地(从未耕种过的土地,可以认为无化肥污染)和一块耕种地(已种植了50年的农田)为研究对象,从原生地采集22个土壤样本,耕种地采集50个土壤样本进行镉含量的测定,同时检测灌溉水、农药、化肥中的镉含量,并进行每年农田输入量的统计。用Excel软件进行数据处理,反比权重法(IDW,Inverse Distance Weighting)插值,GIS9.3进行空间分析和图像处理;以单项污染指数法评价土壤镉质量,评价模式为Pi=Ci/Si(Pi为污染物镉的单项污染指数,Ci为污染物镉的实测数据,Si为污染物的评价标准)。评价标准分别以农业部公布的行业标准《无公害食品 枸杞生产技术规程》(NY/T 5249-2004)和《绿色食品 枸杞》(NY/T1051-2006)产地环境标准要求下的《绿色食品 产地环境技术条件》(NY/T 391-2000)为依据。依据农业源土壤镉输入量,以土壤现状值为起点,以绿色食品标准限量值为终点,测算输入量积累突破两端差值的年限。【结果】原生地22个土壤样品的镉平均含量为0.30 mg/kg,是土壤背景值的两倍(0.14 mg/kg),达到无公害食品(0.60 mg/kg)和绿色食品(0.40 mg/kg)标准;种植50年农田的50个土壤样品的镉平均含量为0.43 mg/kg,是土壤背景值的3倍,达到无公害食品标准,但超过绿色食品标准。用于灌溉的河水的镉含量为0.0036 ng/kg。检测生产中使用的15种农药和7种肥料,其中的镉导致每年土壤镉增加3444 mg/hm2。最严重的污染源是鸡粪,施入土壤后每年导致土壤镉增加2025 mg/hm2,其次依次为复合肥(使土壤镉增加576 mg/hm2),磷酸二铵(增加432 mg/hm2),有机肥(增加360 mg/hm2)。【结论】以小尺度空间分布和全量统计研究的诺木洪农场土壤镉含量这一单一指标衡量,可以看出诺木洪原生地土壤是清洁的,能够满足无公害、绿色食品的生产;但是研究选择的多年耕种田已经遭到重金属镉的污染,只能达到无公害食品标准,而达不到绿色食品标准。现行生产中的施肥措施是导致诺木洪土壤重金属镉污染的一个重要因素,其中鸡粪对镉污染的贡献最大,其次是复合肥、磷酸二铵和有机肥。如果继续现在这种耕种方式,以现有的原生地镉含量均值为0.30 mg/kg进行计算,76.3年后该土地镉含量将超过0.40 mg/kg的绿色标准上限。  相似文献   

7.
ABSTRACT

Understanding how plants use of various nitrogen (N) sources is important for improving plant N use efficiency in organic farming systems. This study investigated the effects of farming management practices (organic and conventional) on pakchoi short-term uptake of glycine (Gly), nitrate (NO3 ?) and ammonium (NH4 +) under two N level conditions. Results showed that plant N uptake rates and N contributions from the three N forms in the low N (0.15 μg N g?1 dry soil) treatment did not significantly differ between the organic and conventional soils, except the significantly greater Gly contribution in organic soil at 24 h after tracer addition. Under high N (15 μg N g?1 dry soil) conditions, the N uptake rates, uptake efficiencies, and N contributions of Gly and NH4 +-N were significantly greater in pakchoi cultivated in the organic soil compared to conventional soil, whereas the N uptake rates and N contributions from NO3 -N decreased in pakchoi cultivated in the organic soil. The greater Gly-N uptake in plants grown in high-N treated organic soil may be related to the greater gross N transformation, Gly turnover rate and the increased expression of an amino acid transporter gene BcLHT1. Intact Gly contributed at most 6% to Gly-derived N at 24 h after tracer additions, which accounting for about 1.24% of the total N uptake in organic soil. Our study suggested that Gly-N and other organic source N might serve as a more important compensatory N source for plants in organic farming.  相似文献   

8.
Profiles of semi-arid-zone soils in Punjab, northwestern India, were investigated for different forms of copper (Cu), including total Cu, diethylenetriaminepentaacetic acid (DTPA)–extractable Cu, soil solution plus exchangeable Cu, Cu adsorbed onto inorganic sites, Cu bound by organic sites, and Cu adsorbed onto oxide surfaces. When all soils were considered, total Cu content ranged from 7 to 37 mg kg?1, while DTPA-extractable and soil solution plus exchangeable Cu contents ranged from 0.30 to 3.26 mg kg?1 and from 0.02 to 0.43 mg kg?1, respectively. Copper adsorbed onto inorganic sites ranged from 0.62 to 2.6 mg kg?1 and that onto oxide surfaces ranged from 2.0 to 13.2 mg kg?1. The Cu bound by organic sites ranged from 1.2 to 12.2 mg kg?1. The magnitudes of different forms of Cu in soils did not exhibit any consistent pattern of distribution. Organic matter and size fractions (clay and silt) had a strong influence on the distribution of different forms of Cu. The content of all forms of Cu was generally greater in the fine-textured Alfisols and Inceptisols than coarse-textured Entisols. Soil solution plus exchangeable Cu, Cu held onto organic sites, and and Cu adsorbed onto inorganic sites (crystalline) had significant positive correlations with organic carbon and silt contents.The DTPA Cu was positively correlated with organic carbon, silt, and clay contents. Total Cu content strongly correlated with silt and clay contents of soils. Among the forms, Cu held on the organic site, water soluble + exchangeable Cu, and Cu adsorbed onto oxide surface were positively correlated with DTPA-extractable Cu. The DTPA-extractable Cu and soil solution plus exchangeable Cu seems to be good indices of Cu availability in soils and can be used for correction of Cu deficiency in the soils of the region. The uptake of Cu was greater in fine-textured Inceptisols and Alfisols than coarse-textured Entisols. Among the different forms only DTPA-extractable Cu was positively correlated with total uptake of Cu.  相似文献   

9.
利用土壤改良剂固定污染土壤中铅、镉的研究进展   总被引:21,自引:0,他引:21  
Since the inception of industrial revolution, metal refining plants using pyrometallurgical processes have generated the prodigious emissions of lead (Pb) and cadmium (Cd). As the core target of such pollutants, a large number of soils are nowadays contaminated over widespread areas, posing a great threat to public health worldwide. Unlike organic pollutants, Pb and Cd do not undergo chemical or microbial breakdown and stay likely in site for longer duration after their release. Immobilization is an in-situ remediation technique that uses cost-effective soil amendments to reduce Pb and Cd availability in the contaminated soils. The Pb and Cd contamination in the soil environment is reviewed with focus on source enrichment, speciation and associated health risks, and immobilization options using various soil amendments. Commonly applied and emerging cost-effective soil amendments for Pb and Cd immobilization include phosphate compounds, liming, animal manure, biosolids, metal oxides, and biochar. These immobilizing agents could reduce the transfer of metal pollutants or residues to food web (plant uptake and leaching to subsurface water) and their long-term sustainability in heavy metal fixation needs further assessment.  相似文献   

10.
Phosphorus availability in terrestrial ecosystems is strongly dependent on soil P speciation. Here we present information on the P speciation of 10 forest soils in Germany developed from different parent materials as assessed by combined wet‐chemical P fractionation and synchrotron‐based X‐ray absorption near‐edge structure (XANES) spectroscopy. Soil P speciation showed clear differences among different parent materials and changed systematically with soil depth. In soils formed from silicate bedrock or loess, Fe‐bound P species (FePO4, organic and inorganic phosphate adsorbed to Fe oxyhydroxides) and Al‐bound P species (AlPO4, organic and inorganic phosphate adsorbed to Al oxyhydroxides, Al‐saturated clay minerals and Al‐saturated soil organic matter) were most dominant. In contrast, the P speciation of soils formed from calcareous bedrock was dominated (40–70% of total P) by Ca‐bound organic P, which most likely primarily is inositol hexakisphosphate (IHP) precipitated as Ca3‐IHP. The second largest portion of total P in all calcareous soils was organic P not bound to Ca, Al, or Fe. The relevance of this P form decreased with soil depth. Additionally, apatite (relevance increasing with depth) and Al‐bound P were present. The most relevant soil properties governing the P speciation of the investigated soils were soil stocks of Fe oxyhydroxides, organic matter, and carbonate. Different types of P speciation in soils on silicate and calcareous parent material suggest different ecosystem P nutrition strategies and biogeochemical P cycling patterns in the respective ecosystems. Our study demonstrates that combined wet‐chemical soil P fractionation and synchrotron‐based XANES spectroscopy provides substantial novel information on the P speciation of forest soils.  相似文献   

11.
Soil and plant samples (Lolio-Cynosuretum) were taken from four different locations in Hesse, Germany. Different doses of nitrogen, phosphorus, and potassium fertilizers were applied to verify metal input due to fertilization. Metal concentrations in plants increased due to mineral fertilization. Detected plant cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb), and zinc (Zn) concentrations in non-fertilized plots were 0.04, 4.13, 106.5, 0.57, and 23.0 mg kg?1 and in long-term NPK-amended plots they were 0.31, 15.3, 524.9, 3.49, and 60.0 mg kg?1, respectively. Transfer factor (TF) was observed to decrease in the order of Cd>Cu>Zn>Mn>Pb. The results of regression analysis showed that organic carbon (Corg) content, effective-cation exchange capacity (CECeff), and bioavailable metal content are the most important predictors for plant metal uptake. This study confirmed that plant metal uptake was not only highly affected by the soil metal content but also influenced by soil properties.  相似文献   

12.
Immobilization of metals by two materials (zeolite, AZ, and a synthetic, carbonate-rich material, “slovakite”, SL) was tested in a pot experiment with two soils from urban areas of Sevilla and two soils affected by a mine spill. Barley (Hordeum vulgare L. Hispanic) was grown in the pots, and metal contents were measured after 31 days in shoots and roots. Available metal was estimated by extraction with CaCl2 (readily soluble), ethylenediaminetetraacetic acid (EDTA; plant available), a mixture of organic acids (soluble by root exudates), and glycine (bioaccessible by ingestion). Neither treatment caused significant differences on plant growth or metal contents of shoots, whereas roots contained more Cu in the SL treatments. Root Zn uptake was reduced in all cases, but reduction of Pb in roots was observed only in AZ treatments of the mine-spill soils. The effects on metal availability were often method-dependent. Decrease of CaCl2 data were observed only in the mine-spill soils. EDTA-soluble metals were clearly decreased by both materials. Bioaccessible Zn were decreased by either material in several cases (but not in the most heavily polluted soil), whereas Cu or Pb data were less conclusive.  相似文献   

13.
Cadmium is both readily available and highly toxic to plants and animals. Our objectives were to evaluate the effect of oyster shell as a liming material on reducing plant cadmium (Cd) uptake and to compare oyster shell and Ca(OH)2, a common liming material in Korea. Ground oyster shell and Ca(OH)2 were applied at 0, 2, 4, and 8 Mg Ca per hectare to an upland soil contaminated manually with CdSO4 (total Cd 8.96 mg kg?1). Radish (Raphanus sativa L.) was sown on the contaminated soil. Oyster shell was less effective at increasing soil pH and net negative charge than Ca(OH)2, but more effective at suppressing radish Cd uptake in both roots and shoots. The portion of Cd that is strongly bound to soil (fraction 5) increased more with oyster shell than with Ca(OH)2. Radish plant Cd concentration was positively correlated with 0.1 N HCl-extractable Cd and negatively correlated with the residual Cd fraction (F5), indicating that an increase in the strongly bound Cd fraction played an important role in reducing radish Cd uptake in soil to which oyster shell was applied. The greater potential of oyster shell to decrease Cd extractability in soil and plant Cd uptake compared to Ca(OH)2 might be attributed to the layered morphology of oyster shells. Based on these results, oyster shell could be a very good alternative liming material to reduce Cd phytoavailability in Cd-contaminated soil.  相似文献   

14.
This study was conducted to investigate the various boron fractions in olive tree grown soils. The correlations between boron fractions in leaves, fruits and soil properties were examined. For this purpose cv “Gemlik” olive (Olea europaea L.) orchards were visited. Soil samples from 0–30 cm and 30–60 cm deep, the leaf and fruit samples were collected. The greatest proportion of total soil boron is present in residual form (85–88%). It is followed by organically bound B (2.84–4.50%), specifically adsorbed on soil colloid surfaces (0.93–1.31%), oxides (manganese oxyhydroxides, amorphous Fe and Al oxides, crystalline Fe and Al oxides) bound B (7.27–8.31%). The smallest one readily soluble (extracting plant available) boron values were composed of only 0.40–0.50% of total boron ranging. To determine readily soluble boron five different extraction solutions were in the order Hot water ? 0.01 M CaCl2 ? 1 M NH4OAc ? 0.1 M KCl ? 0.005 M DTPA. Fruit boron concentration and soil boron fractions showed close correlations than leaf boron concentration.  相似文献   

15.
Recently, application of sewage sludge or effluents resulted in raising the concentrations of some heavy metals in some agricultural soils of Iran. Experiments were conducted to evaluate the competitive adsorption of lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) on six calcareous soils. Adsorption characteristics were evaluated by equilibration of 1 g of each soil sample with 20 ml of 0, 10, 20, 30, 40, 50, 100, or 200 mg L?1 of their nitrate solutions and 0.01 M NaNO3 as background electrolyte. Furthermore, solid/liquid distribution coefficients (Kd) of studied metals, as an index of soil capacity to resist a change of the soil solution concentration, were calculated. Results indicated that amounts of adsorbed Pb, Cu, Zn, and Cd increased with increase in their concentrations in the contact solutions, but this trend was more pronounced for Pb and Cu than the others. For all studied soils and metals, Langmuir equation described the adsorption behavior fairly well. Furthermore, Langmuir and Freundlich equation parameters were positively correlated to cation exchange capacity (CEC) and smectite contents; whereas, they were negatively correlated to sand content. Considering Kd values, the selectivity sequence of the metal adsorption was Pb > Cu > Zn > Cd. Therefore, the risk of leaching and also plant uptake of Zn and Cd will be higher as compared to those of the other elements.  相似文献   

16.
Cadmium, Ni and Zn ions in aqueous solution were allowed to react with clay fractions (< 2 μm) separated from soils with a wide range of mineralogical composition and properties. Sorbed metals were separated into two components, termed specifically and non-specifically bound, by a controlled washing procedure using 10?2M Ca(NO3)2.Sorption reactions were characterized by Δ pH50 values, by shapes of adsorption curves, and by measuring separation factors and distribution coefficients under prescribed conditions. Three reaction types were identified, viz., (i) those associated with soil adsorbing surfaces dominated by iron oxides; these appear to be controlled by mechanisms which involve metal-ion hydrolysis and result accordingly in relative sorption affinities of Zn > Ni > Cd; (ii) those associated with organic surfaces for which metal-ion hydrolysis was of little significance and little difference in metal-ion affinity was evident; at lower pH-values, Cd and Ni were somewhat preferred over Zn, with the converse at higher pH-values; (iii) those associated with 2:1 layer lattice silicates which exhibit greater preference for Zn, i.e., Zn >> Ni, Cd and higher affinities for each metal at lower pH-values (< 5) than is shown by clays dominated by iron oxides. There was also evidence of greater relative affinity for Ni shown by clay fractions dominated by fine kaolinites when compared with other clays.This investigation has shown that a range of sorption processes are involved in reactions of heavy metals with soils. We caution against undue emphasis on any particular sorption process in developing theoretical sorption models as a basis of understanding and solving problems connected with pollution and plant nutrition; we also stress the need for studies with colloids separated from soils in conjunction with those using synthetic adsorbents as models for soil constituents.  相似文献   

17.
为理解石灰岩地区农田土壤重金属积累特点及污染风险,以浙西石灰岩地区为例,随机选择了153块重金属污染农田,点对点采集了土壤和水稻样品,分析了土壤和糙米中镉的含量及土壤性状,探讨了石灰岩地区污染农田土壤与稻米镉积累特点及其与土壤性状的关系。结果表明,土壤全镉随粘粒含量的增加而增加,随土壤pH的下降而下降;土壤有效镉占全镉的比例与土壤pH呈负相关,糙米中镉含量与土壤有效镉、水溶性镉呈显著正相关;糙米中镉含量与土壤pH、有机质含量及粘粒含量均呈现显著负相关,土壤pH是影响石灰岩地区农田糙米镉积累最为重要的因素。《土壤环境质量-农用地土壤污染风险管控标准(试行)》(GB 15618—2018)的污染风险筛选值并不适用于石灰岩地区高pH的土壤。当6.5 < pH ≤ 7.5时,土壤重金属镉含量与农产品中重金属镉超标结果并不一致,其风险筛选值(0.60 mg kg?1)偏低,实际的风险筛选值可能在0.80 mg kg?1以上。土壤水溶性镉较土壤全镉和有效镉能更好地评估石灰岩地区农作物重金属镉的污染风险。  相似文献   

18.
Chemical extraction, multi‐element stable isotopic dilution (ID) and multi‐surface modelling were used to investigate the lability of cadmium (Cd) and copper (Cu) in nine types of soil with different properties and contaminated or not with Cd and Cu. The chemical extraction and ID analyses both showed that Cd was more labile than Cu in all the soil types studied. From the ID results, 32.8–93.3% of total Cd and 14.7–71.8% of total Cu were isotopically exchangeable after 3 days of equilibration. A single extraction in 0.43 m HNO3 gave similar results to the 3‐day ID assay for Cu in most of the soils and for Cd in the non‐calcareous soils. However, an eight‐step selective sequential extraction (SSE) procedure gave different results from the ID assay for both metals. Predictions of the multi‐surface model for the amounts of Cd and Cu adsorbed, based on measured metal ion activities in the soil solution and the concentrations of reactive surfaces in the soil, agreed with the ID results. The model predicted that soil organic matter was the predominant sorbent for Cd and Cu in the soils and that manganese oxide was the least important sorbent. The contributions of iron oxides to sorption were predicted to be small except in soil with a high pH and little organic matter. The predicted sorption on different soil components did not match SSE measurements.  相似文献   

19.
Abstract

A study was conducted to investigate the chemical speciation of added cadmium (Cd) and lead (Pb) and their availability as influenced by fresh organic matter (OM) and sodium chloride (NaCl) in three agricultural soils. The soils were treated with 20 mg Cd/kg as cadmium nitrate [Cd(NO3)2 · 4H2O], 150 mg Pb/kg as lead nitrate [Pb(NO3)2], 20 g/kg alfalfa powder, and 50 mmol/kg of NaCl and then incubated for 3 months at 60% water‐holding capacity (WHC) and constant temperature (25 °C). Subsamples were taken after 1, 3, 6, and 12 weeks of incubation, and electrical conductivity (EC), pH, dissolved organic carbon (DOC), and concentrations of cations and anions were determined in the 1:2.5 soil/water extract. Available Cd and Pb were determined in 0.05 M ethylenediaminetetraacetic acid (EDTA) extract. Concentrations of organic and inorganic species of Cd and Pb in soil solution were also predicted using Visual Minteq speciation program. The most prevalent species of dissolved Pb and Cd in the soils were Pb‐DOC and Cd2+ species, respectively. Salinity application increased the available and soluble Cd significantly in the acid and calcareous soils. It, however, had little effect on soluble Pb and no effect on available Pb. Organic‐matter application decreased availability of added Pb significantly in all soils. In contrast, it raised soluble Pb in all soils except for the acid one and approximated gradually to the added Pb with time. Impact of OM on available Cd was somewhat similar to that of Pb. Soluble Cd increased by OM application in the calcareous soil, whereas it decreased initially and then increased with time in the other soils.  相似文献   

20.
Abstract

The changes in availability and uptake of boron (B) by M.26 apple rootstocks as affected by applications of different forms and rates of nitrogen (N) were examined. The study was carried out in a greenhouse using soil with low contents of organic matter, clay, calcium carbonate, NH4‐oxalate soluble aluminum (Al) and iron (Fe), NH2OH·HCl extractable manganese (Mn), poor cation exchange capacity and low pH. Soil N application was in the form of urea, calcium nitrate, ammonium sulphate, or ammonium nitrate at rates of 0, 17, 34, and 51 mg N kg?1. After 1, 3, and 5 days of N application, soil B fractions were determined: B in soil solution, B specifically and non‐specifically adsorbed on soil surfaces, B occluded in Mn oxyhydroxides, and B occluded in crystalline Al and Fe oxides. The results showed that N as calcium nitrate and ammonium nitrate increased B both in soil solution and non‐specifically adsorbed on soil surface and decreased B concentration on Al and Fe oxides. This indicates that N‐NO3 inhibited B sorption on Fe and Al oxides. Maximum B desorption from Fe and Al oxides was obtained within one day after N‐NO3 was supplied. Nitrogen application as calcium nitrate and ammonium nitrate increased availability and uptake of B by plant roots. Thus, it was concluded that apple trees planted on coarse‐textured soils where risk of B deficiency is high, calcium nitrate or ammonium nitrates would be appropriately to apply to keep B more available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号