首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Improved legume tree fallows have great potential to increase soil organic carbon (SOC), aggregate stability and soil infiltration rates during the fallowing phase. However, persistence of the residual effects of improved fallowing on SOC, aggregate stability and infiltration rates, under different tillage systems in Zimbabwe is not well documented. The relationships between SOC, aggregate stability and infiltration in fallow-maize rotation systems are also not well documented. We therefore evaluated effects of tillage on SOC, aggregate stability and infiltration rates of a kaolinitic sandy soil during the cropping phase of an improved fallow-maize rotation system. Plots that were under legume tree fallows (Sesbania sesban; Acacia angustissima), natural fallow (NF) and under continuous maize during the previous 2 years were divided into conventional tillage (CT) and no-till (NT) subplots soon after fallow termination, and maize was cropped in all plots during the following two seasons. Aggregate stability was investigated using water stable macroaggregation index (Ima), water dispersible clay (WDC) and using the mean weight diameter (MWD) after different wetting procedures. Infiltration rates were determined using simulated rainfall at intensity of 35 mm h−1 on 1 m2 plots. Soil organic carbon was significantly higher (P < 0.05) under fallows than continuous maize. For the 0–5 cm depth SOC was 11.0, 10.0, 9.4 and 6.6 g kg−1 for A. angustissima, S. sesban, NF and continuous maize, respectively, at fallow termination. After 2 years of cropping SOC was 8.0, 7.0, 6.1 and 5.9 g kg−1 under CT and 9.1, 9.0, 8.0 and 6.0 g kg−1 under NT for A. angustissima, S. sesban, NF and continuous maize, respectively. Aggregate stability was significantly greater (P < 0.05) under fallows than under continuous maize and also higher under NT than under CT. The macroaggregation index (Ima) for the 0–5 cm depth was 466, 416, 515 and 301 for A. angustissima, S. sesban, NF and continuous maize, respectively at fallow termination, decreasing to 385, 274, 286 and 255 under CT and 438, 300, 325 and 270 under NT, for A. angustissima, S. sesban, NF and continuous maize, respectively, after 2 years of cropping. Percent WDC was also significantly lower (P < 0.05) in fallows than in continuous maize, and for the 0–5 cm it was 11, 10, 8 and 17 for A. angustissima, S. sesban, NF and continuous maize, respectively at fallow termination. After 2 years of cropping WDC (%) was 12, 14, 15 and 17 under CT and 10, 12, 12 and 16 under NT for A. angustissima, S. sesban, NF and continuous maize, respectively. MWD also showed significantly higher (P < 0.05) aggregate stability in fallows than in continuous maize. Water infiltration rates were significantly greater under fallows than continuous maize but these declined significantly during the cropping phase in plots that had been fallowed. In October 2000, infiltration rates in the A. angustissima and NF plots were above 35 mm h−1 as no runoff was observed. Steady-state infiltration rates were 24 mm h−1 in S. sesban and 5 mm h−1 for continuous maize after 30 min of rainfall simulations. After 2 years of cropping infiltration rates remained above 35 mm h−1 in A. angustissima plots, but declined to 18 and 8 mm h−1 for NF, CT and NT respectively and 12 mm h−1 for S. sesban, CT and NT. It is concluded that legume tree fallows improved SOC, aggregate stability and infiltration rates, but these benefits accrued during fallowing decreased significantly after 2 years of cropping following the termination of fallows. The decrease in SOC and aggregate stability was higher under CT than NT. Coppicing fallows of A. angustissima were the best long-term fallow species when integrated with NT as improved soil physical properties were maintained beyond 2 years of post-fallow cropping.  相似文献   

2.
Conservation tillage practices are commonly used to reduce erosion; however, in fields that have been in no-tillage (NT) for long periods, compaction from traffic can restrict infiltration. Rotational tillage (RT) is a common practice that producers use in the central corn-belt of the United States, and could potentially reduce soluble nutrient loads to surface waters. The objectives of this study were to determine the first year impacts of converting from long-term NT to (RT) on N and P losses through runoff. Plots (2 m × 1 m) were constructed in two fields that had been in NT corn–soybean rotation for the previous 15 years. One field remained in NT management, while RT was initiated prior to planting corn in the other field using a soil finisher. Variable-intensity rainfall simulations occurred before and after fertilization with urea (224 kg N ha−1) and triple superphosphate (112 kg P ha−1). Rainfall was simulated at (1) 50 mm h−1 for 50 min; (2) 75 mm h−1 for 15 min; (3) 25 mm h−1 for 15 min; (4) 100 mm h−1 for 15 min. Runoff volumes and nutrient (NH4-N, NO3-N and dissolved P [DP]) concentrations were greater from the NT field than the RT field before and after fertilization.Dissolved P concentrations in runoff prior to fertilization were greater during the 50 mm h−1 rainfall period (0.09 mg L−1) compared to the other periods (0.03 mg L−1). Nutrient concentrations increased by 10–100-fold when comparing samples taken after fertilization to those taken prior to fertilization. Nutrient loads were greater prior to and after fertilization from the NT treatment. Prior to fertilization, NT resulted in 83 g ha−1 greater NH4-N and 32.4 g ha−1 greater dissolved P losses than RT treatment. After fertilization, NT was observed to lose 5.3 kg ha−1 more NH4-N, 1.3 kg ha−1 more NO3-N, and 2.4 kg ha−1 more dissolved P than RT. It is typically difficult to manage land to minimize P and N losses simultaneously; however, in the short term, tillage following long-term NT resulted in lowering the risk of transport of soluble N and P to surface water.  相似文献   

3.
Data on surface runoff and soil loss on gentle slopes with vineyards are analysed. Using a rainfall simulator, 22 rainstorms with varied intensities from 30 to 117.5 mm h−1 and return periods from 2 to 127 years were reproduced. The experimental plots were installed on vineyards planted in straight rows and oriented with the slope direction having a mean gradient of 3.8°. The texture of soils was loamy, with a very heterogeneous surface gravel cover. Values of measured surface runoff varied from 7.2 mm h−1 for low rainfall intensities (30 mm h−1) and short return periods (2 years) to 41.9 mm h−1 with simulation experiments of higher rainfall intensity (104 mm h−1) and long return periods (68 years). Runoff increased linearly with rainfall intensity resulting in soil losses that also increased with rainfall intensity (18.2 g m−2 h−1 with storms of 30 mm h−1, and 93.2 g m−2 h−1 with storms of 104 mm h−1); however, r2 explains only 36% of the variance. It was necessary to add other factors to improve the coefficient of determination (0.74; p = 0.001) and the predictive function of the equation. These variables were rainfall intensity, kinetic energy of the storm, runoff, soil resistance to drop detachment, surface gravel cover, and gradient. The equation obtained was validated with the USLE-M. In comparison with similar experiments in other regions, the results obtained for soil loss were very moderate, especially those caused by rainstorms of intermediate and low intensity.  相似文献   

4.
Diversification of production is a concern for farmers in many regions of the world, raising a renewed interest in crop-animal rotations. However little information is available on whether the introduction of grazing animals in a no-till system could be a sustainable practice. The present long-term study was carried out in the semiarid region of Argentina, on an Entic Haplustoll (A, AC, C and Ck profile). The experimental plots were established in August 1993, with two treatments, no-till (NT) and conventional tillage (CT). Stubble was regularly used for grazing until 2002, when plots were divided into grazed (G) and non-grazed (NG) sub-treatments. Soil samples were taken at 0–0.10 and 0.10–0.20 m depth at the beginning of the experiment (1993) and during 2007, with the following determinations: clay + silt contents, bulk density (BD), total carbon (C), total nitrogen (N), available P, C contents of aggregate fractions of 2000–100 (POC), 100–50 (IOC) and <50 (FOC) μm diameter, aggregate size distribution and mean weight diameter change. NT showed a strong effect on all analyzed soil attributes: it had higher total carbon stocks (NT 16.6 Mg ha−1 vs. CT 13.2 Mg ha−1) and higher amounts in all C fractions, even in FOC (11.3 Mg ha−1 vs. 9.2 Mg ha−1). For BD, we found no difference between NT and CT at the surface and an even lower value for NT at 0.10–0.20 m depth. Under NT no depletion of available P occurred, while CT lost about 23 kg ha−1. Grazing had a negative effect on BD when averaging BD data across tillage systems, while there was no effect on aggregate stability, and a positive one on the proportion of >8 mm aggregates (23.3% vs. 11.7% for CT G and CT NG, respectively). C stratification showed a differential effect of grazing: NT G had the highest index (1.31) and CT G the lowest one (0.98). Our results indicated that the introduction of grazing animals in NT crop systems would not be detrimental to soil conditions and quality, at least in semiarid conditions of Argentina.  相似文献   

5.
Previous studies have demonstrated inconsistent results on the impact of tillage systems on nitrogen (N) losses from field-applied manure. This study assessed the impact of no-tillage (NT) and conventional tillage (CT) systems on gaseous N losses, N2O:N2O + N2 ratios and NO3-N leaching following surface application of cattle manure. The study was undertaken during the 2003/2004 and 2004/2005 seasons at two field sites in Nova Scotia namely, Streets Ridge (SR) in Cumberland County and the Bio-environmental Engineering Centre (BEEC) in Truro. Results showed that the NT system had higher (p < 0.05) NH3 losses than CT. Over the two seasons, manure incorporation in CT reduced NH3 losses on average by 86% at SR and 78% at BEEC relative to NT. At both sites and during both seasons, denitrification rates and N2O fluxes in NT were generally higher than in CT plots, presumably due to higher soil water and organic matter content in NT. Over the two seasons, mean denitrification rates at SR were 239 and 119 g N ha−1 d−1, while N2O fluxes were 120 and 64 g N ha−1 d−1 under NT and CT, respectively. At BEEC mean denitrification rates were 114 and 71 g N ha−1 d−1, while N2O fluxes were 52 and 27 g N ha−1 d−1 under NT and CT, respectively. Conversely, N2O:N2O + N2 ratios were lower in NT than CT suggesting more complete reduction of N2O to N2 under NT. When averaged across all soil depths, NO3-N was higher (p < 0.05) in CT than NT. Nitrate-N decreased with depth at both sites regardless of tillage. In most cases, NO3-N was higher under CT than NT at all soil depths. Similarly, flow-weighted average NO3-N concentrations in drainage water were generally higher under CT. This may be partly attributed to higher denitrification rates under NT. Therefore, NT may be a viable strategy to remove NO3-N from the soil, and thus, reduce NO3-N contamination of groundwater. However, it should be noted that while the use of NT reduces NO3-N leaching it may come with unintended environmental tradeoffs, including increased NH3 and N2O emissions.  相似文献   

6.
Broadcasting of urea to agricultural soils can result in considerable losses by NH3 volatilization. However, it is unclear if the impact of this practice on NH3 emissions is further enhanced when performed on no-till (NT) soils. The objective of this study was to compare NH3 volatilization following broadcasting of urea to NT and moldboard plowed (MP) soils. Intact soil cores were taken shortly after harvest from NT and MP plots of three long-term tillage experiments in Québec (Canada) and stored for 4.5 months prior to incubation. Urea (14 g N m−2) was applied at the soil surface and NH3 volatilization was measured for 30 d using an open incubation system. Mean cumulative NH3 losses were greater (P < 0.001) in NT (3.00 g N m−2) than in MP (0.52 g N m−2). Several factors may have contributed to the higher emissions from the NT soils. Urease activity in the top 1 cm of soils was on average 4.2 times higher in NT than in MP soils. As a result, hydrolysis of urea occurred very rapidly in NT soils as indicated by enhanced NH3 emissions 4 h after application of urea. The presence of crop residues at the surface of NT soils also decreased contact of the urea granules with the soil, possibly reducing adsorption of NH4+ on soil particles. Lower volatilization on the MP soils may also have partly resulted from a fraction of urea granules falling into shallow cracks. Field trials are needed to confirm our finding that NT soils bear greater potential for NH3 volatilization following surface application of urea than MP soils.  相似文献   

7.
The greenhouse gases CO2 and N2O emissions were quantified in a long-term experiment in northern France, in which no-till (NT) and conventional tillage (CT) had been differentiated during 32 years in plots under a maize–wheat rotation. Continuous CO2 and periodical N2O soil emission measurements were performed during two periods: under maize cultivation (April 2003–July 2003) and during the fallow period after wheat harvest (August 2003–March 2004). In order to document the dynamics and importance of these emissions, soil organic C and mineral N, residue decomposition, soil potential for CO2 emission and climatic data were measured. CO2 emissions were significantly larger in NT on 53% and in CT on 6% of the days. From April to July 2003 and from November 2003 to March 2004, the cumulated CO2 emissions did not differ significantly between CT and NT. However, the cumulated CO2 emissions from August to November 2003 were considerably larger for NT than for CT. Over the entire 331 days of measurement, CT and NT emitted 3160 ± 269 and 4064 ± 138 kg CO2-C ha−1, respectively. The differences in CO2 emissions in the two tillage systems resulted from the soil climatic conditions and the amounts and location of crop residues and SOM. A large proportion of the CO2 emissions in NT over the entire measurement period was probably due to the decomposition of old weathered residues. NT tended to emit more N2O than CT over the entire measurement period. However differences were statistically significant in only half of the cases due to important variability. N2O emissions were generally less than 5 g N ha−1 day−1, except for a few dates where emission increased up to 21 g N ha−1 day−1. These N2O fluxes represented 0.80 ± 0.15 and 1.32 ± 0.52 kg N2O-N ha−1 year−1 for CT and NT, respectively. Depending on the periods, a large part of the N2O emissions occurred was probably induced by nitrification, since soil conditions were not favorable for denitrification. Finally, for the period of measurement after 32 years of tillage treatments, the NT system emitted more greenhouses gases (CO2 and N2O) to the atmosphere on an annual basis than the CT system.  相似文献   

8.
Mass distributions of different soil organic carbon (SOC) fractions are influenced by land use and management. Concentrations of C and N in light- and heavy fractions of bulk soils and aggregates in 0–20 cm were determined to evaluate the role of aggregation in SOC sequestration under conventional tillage (CT), no-till (NT), and forest treatments. Light- and heavy fractions of SOC were separated using 1.85 g mL−1 sodium polytungstate solution. Soils under forest and NT preserved, respectively, 167% and 94% more light fraction than those under CT. The mass of light fraction decreased with an increase in soil depth, but significantly increased with an increase in aggregate size. C concentrations of light fraction in all aggregate classes were significantly higher under NT and forest than under CT. C concentrations in heavy fraction averaged 20, 10, and 8 g kg−1 under forest, NT, and CT, respectively. Of the total SOC pool, heavy fraction C accounted for 76% in CT soils and 63% in forest and NT soils. These data suggest that there is a greater protection of SOC by aggregates in the light fraction of minimally disturbed soils than that of disturbed soil, and the SOC loss following conversion from forest to agriculture is attributed to reduction in C concentrations in both heavy and light fractions. In contrast, the SOC gain upon conversion from CT to NT is primarily attributed to an increase in C concentration in the light fraction.  相似文献   

9.
Share-ploughed tillage with residue removed (CT-R) is the traditional tillage practice in the Highlands of Madagascar. No-tillage with residue mulching (NT+R) is nowadays often used as an alternative cultivation practice. Soils (0–5 cm layer) were sampled in Spring 2003 from both management systems after 11 years of soybean–maize annual rotation on a clayey Ferralsol. Soil aggregate stability can influence soil organic carbon (SOC) storage by its protection from microbial decomposition. The soil organic carbon (SOC) content was significantly impacted by systems and crop residues derived-carbon represented 64% of the annual benefit in SOC of NT+R system. The carbon associated with soil water stable macro- (200–2000 μm), meso- (20–200 μm) and microaggregates (<20 μm) from both systems, and their physical protection was studied by an incubation experiment of intact vs. crushed aggregates. Results showed macroaggregate content was significantly higher in NT+R than in CT-R system and mesoaggregate content was significantly higher in CT-R than in NT+R. Macroaggregates associated-C were 1.8 time higher in NT+R than in CT-R (31.9 and 17.9 g C g−1 soil, respectively) and made up the largest percentage (>80%) of the difference of SOC content between NT+R and CT-R systems. The amount of mineralized C over 28 days was higher in NT+R than in CT-R, and higher in meso- than in macroaggregates. However, crushing aggregates did not significantly affect the amount of mineralized C in macro- and mesoaggregates for both management systems. The macro- and mesoaggregates protected-C was lower than 54 μg g−1 soil for both NT+R and CT-R systems. Hence, the physical protection of C in aggregate larger than 50 μm was not the main process of C protection in the studied systems. Thus, C protection might occur in aggregates larger or smaller than 50 μm via physico-chemical protection mechanisms by association of organic matter to clay and silt fractions, or by protection due to chemical composition.  相似文献   

10.
Effects of the broad-spectrum insecticide fipronil were investigated on a non-target insect living in the soil, the springtail Folsomia candida Willem. Fipronil induced a significant reduction in juvenile production (PNEC = 250 μg kg−1 dry soil), which seemed to be linked with an impact on the first stages of springtail development: juveniles and 7-day-old adults. These young organisms have a thinner integument, a smaller mass body and a weaker detoxification efficiency and were more sensitive than adults (14 days old) to fipronil and phenylpyrazole derivatives. Contact toxicity for juveniles was measured (LC50(96 h)) giving the following values: fipronil, 450 μg l−1; sulfone-fipronil, 430 μg l−1; sulfide-fipronil, 160 μg l−1. F. candida organisms were able to avoid contaminated food because phenylpyrazoles decreased food appetency. However, F. candida could bioaccumulate fipronil through trans-tegumental penetration (BAF96 h = 160) and its high biotransformation rate inside springtail bodies (1 ng fipronil metabolized day−1 individual−1) was suspected to increase this process. Under natural conditions, phenylpyrazoles risk assessment on springtails seems to be weak due to their capacity of avoiding high contaminated zones and their biochemical tolerance to this class of insecticides.  相似文献   

11.
Applying constant precipitation intensity, which does not occur in natural events, is one of the main limitations concerning rainfall simulators in soil erosion studies. The present work evaluated the InfiAsper rainfall simulator operating with a new control panel to program rainfalls with different precipitation intensities (PI). Infiltration rates and soil and water losses were evaluated in a Distrophic Acrisol (clay loam texture) with simulated rainfalls of 30 mm and duration of 40 min, considering advanced (AD), intermediate (IN), delayed (DE), and inverted intermediate (II) patterns, all with PI peaks of 110 mm h?1, and a constant (CT) pattern. The experimental design was in randomized blocks with five treatments (rainfall patterns) and experimental units measuring 2.5 × 2.5 m. The simulator worked satisfactorily, applying the rainfall according to the preconfigured programs. The simulated rainfall with the CT and II patterns did not promote runoff nor soil loss. Infiltration and runoff rates varied according to the applied rainfall pattern, reaching 97.8 and 27.3 mm h?1 (AD), 82.1 and 39.5 mm h?1 (IN), and 76.2 and 49.7 mm h?1 (DE), respectively. Soil loss and surface runoff totaled each 4.77 g m?2 and 3.9 mm (AD), 6.70 g m?2 and 6.8 mm (IN), and 6.03 g m?2 and 7.0 mm (DE). The InfiAsper simulator modified enables varying precipitation intensity besides obtaining satisfactory results in the field and information consistent with the expected characteristics of natural rainfall patterns. In the intermediate and delayed rainfall patterns, soil and water losses are higher than in the advanced.  相似文献   

12.
To test the assumption that changes to earthworm communities subsequently affect macroporosity and then soil water infiltration, we carried out a 3 year study of the earthworm communities in a experimental site having six experimental treatments: 2 tillage management systems and 3 cropping systems. The tillage management was either conventional (CT; annual mouldboard ploughing up to −30 cm depth) or reduced (RT; rotary harrow up to −7 cm depth). The 3 cropping systems were established to obtain a wide range of soil compaction intensities depending on the crop rotations and the rules of decision making. In the spring of 2005, the impact of these different treatments on earthworm induced macroporosity and water infiltration was studied. During the 3 years of observation, tillage management had a significant effect on bulk density (1.27 in CT and 1.49 mg m−3 in RT) whereas cropping system had a significant effect on bulk density in RT plots only. Tillage management did not significantly affect earthworm abundance but significantly influenced the ecological type of earthworms found in each plot (anecic were more abundant in RT). On the contrary cropping system did have a significant negative effect on earthworm abundance (104 and 129 ind. m−2 in the less and most compacted plots, respectively). Significantly higher numbers of Aporrectodea giardi and lower numbers of Aporrectodea caliginosa were found in the most compacted plots. CT affected all classes of porosity leading to a significant decrease in the number of pores and their continuity. Only larger pores, with a diameter superior to 6 mm, however, were adversely affected by soil compaction. Tillage management did not change water infiltration, probably because the increase in macroporosity in RT plots was offset by a significant increase in soil bulk density. However, cropping system had a significant effect on water infiltration (119 vs 79 mm h−1 in the less and most compacted plots, respectively). In RT plots, a significant correlation was observed between larger macropores (diameter > 6 mm) and water infiltration illustrating the potential positive effect of earthworms in these plots.  相似文献   

13.
The effectiveness of a surface cover material (e.g. geotextiles, rock fragments, mulches, vegetation) in reducing runoff and soil erosion rates is often only assessed by the fraction of the soil surface covered. However, there are indications that soil structure has important effects on the runoff and erosion-reducing effectiveness of the cover materials. This study investigates the impact of soil pre-treatment (i.e. fine tilth versus sealed soil surface) on the effectiveness of biological geotextiles in increasing infiltration rates and in reducing runoff and interrill erosion rates on a medium and steep slope gradient. Rainfall was simulated during 60 min with an intensity of 67 mm h−1 on an interrill erosion plot having two slope gradients (i.e. 15 and 45%) and filled with an erodible sandy loam. Five biological and three simulated geotextiles with different cover percentage were tested on two simulated initial soil conditions (i.e. fine tilth and sealed soil surface). Final infiltration rates on a sealed soil surface (7.5–18.5 mm h−1) are observed after ca. 10 min of rainfall compared to ca. 50 min of rainfall on an initial seedbed (16.4–56.7 mm h−1). On the two tested slope gradients, significantly (α = 0.05) smaller runoff coefficients (RC) are observed on an initial seedbed (8.2% < RC < 59.8%) compared to a sealed soil surface (75.7% < RC < 87.0%). On an initial seedbed, decreasing RC are observed with an increasing simulated geotextile cover. However, on an initial sealed soil surface no significant effect of simulated geotextile cover on RC is observed. On a 15% slope gradient, calculated b-values from the mulch factor equation equalled 0.054 for an initial fine tilth and 0.022 for a sealed soil surface, indicating a higher effectiveness of geotextiles in reducing interrill erosion on a fine tilth compared to a sealed soil surface. Therefore, this study demonstrates the importance of applying geotextiles on the soil surface before the surface tilth is sealed due to rainfall. The effect of soil structure on the effectiveness of a surface cover in reducing runoff and interrill erosion rates, as indicated by the results of this study, needs to be incorporated in soil erosion prediction models.  相似文献   

14.
Nitrous oxide (N2O) and methane (CH4) emitted by anthropogenic activities have been linked to the observed and predicted climate change. Conservation tillage practices such as no-tillage (NT) have potential to increase C sequestration in agricultural soils but patterns of N2O and CH4 emissions associated with NT practices are variable. Thus, the objective of this study was to evaluate the effects of tillage practices on N2O and CH4 emissions in long-term continuous corn (Zea mays) plots. The study was conducted on continuous corn experimental plots established in 1962 on a Crosby silt loam (fine, mixed, mesic Aeric Ochraqualf) in Ohio. The experimental design consisted of NT, chisel till (CT) and moldboard plow till (MT) treatments arranged in a randomized block design with four replications. The N2O and CH4 fluxes were measured for 1-year at 2-week intervals during growing season and at 4-week intervals during the off season. Long-term NT practice significantly decreased soil bulk density (ρb) and increased total N concentration of the 0–15 cm layer compared to MT and CT. Generally, NT treatment contained higher soil moisture contents and lower soil temperatures in the surface soil than CT and MT during summer, spring and autumn. Average daily fluxes and annual N2O emissions were more in MT (0.67 mg m−2 d−1 and 1.82 kg N ha−1 year−1) and CT (0.74 mg m−2 d−1 and 1.96 kg N ha−1 year−1) than NT (0.29 mg m−2 d−1 and 0.94 kg N ha−1 year−1). On average, NT was a sink for CH4, oxidizing 0.32 kg CH4-C ha−1 year−1, while MT and CT were sources of CH4 emitting 2.76 and 2.27 kg CH4-C ha−1 year−1, respectively. Lower N2O emission and increased CH4 oxidation in the NT practice are attributed to decrease in surface ρb, suggesting increased gaseous exchange. The N2O flux was strongly correlated with precipitation, air and soil temperatures, but not with gravimetric moisture content. Data from this study suggested that adoption of long-term NT under continuous corn cropping system in the U.S. Corn Belt region may reduce GWP associated with N2O and CH4 emissions by approximately 50% compared to MT and CT management.  相似文献   

15.
Information on which management practices can enhance soil organic matter (SOM) content and quality can be useful for developing sustainable crop production systems. We tested the influence of 12 years of no-till (NT) versus conventional tillage (CT), and four crop sequences on the organic C pools of a Grey Luvisolic sandy loam soil in northwestern Alberta, Canada. The crop sequences were: continuous wheat (Triticum aestivum L.), field pea (Pisum sativum L.)–wheat–canola (Brassica rapa L.)–wheat, red clover (Trifolium pratense L.) green manure–wheat–canola–wheat/red clover and fallow–wheat–canola–wheat. Soil samples from 1992, when the study was initiated, and 1996, 2000 and 2004 were analyzed for total organic C (TOC), the light fraction (LF) and its C content, and water-soluble and mineralizable C. Total organic C in the top 15 cm of soil was higher in the red clover rotation than either the pea or fallow rotation by 1996. The tillage effect became significant only in 2004 with NT having a higher TOC than CT. The LF dry matter (DM) increased from 6.9 g kg−1 soil in 1992 to a range of 10–13 g kg−1 in 2000 and 2004. It was higher under NT than CT in 2 of 3 years and in the red clover rotation than the pea or fallow rotation in 1 of 3 years. The LF C content exhibited a similar trend as LF DM. The water-soluble and mineralizable C pools were not affected by tillage but decreased with time. Among crop rotations, the red clover rotation tended to result in higher levels of hot water-soluble and mineralizable C. It is concluded that tillage had a greater influence than crop rotation on the LF DM and LF C (as indicators of C storage), whereas the converse effect applied to mineralizable C and, to a lesser degree, hot water-soluble C (as indicators of SOM quality).  相似文献   

16.
Reduction of nitrous oxide (N2O) to dinitrogen (N2) by denitrification in soils is of outstanding ecological significance since it is the prevailing natural process converting reactive nitrogen back into inert molecular dinitrogen. Furthermore, the extent to which N2O is reduced to N2 via denitrification is a major regulating factor affecting the magnitude of N2O emission from soils. However, due to methodological problems in the past, extremely little information is available on N2 emission and the N2:N2O emission ratio for soils of terrestrial ecosystems. In this study, we simultaneously determined N2 and N2O emissions from intact soil cores taken from a mountainous beech forest ecosystem. The soil cores were taken from plots with distinct differences in microclimate (warm-dry versus cool-moist) and silvicultural treatment (untreated control versus heavy thinning). Due to different microclimates, the plots showed pronounced differences in pH values (range: 6.3–7.3). N2O emission from the soil cores was generally very low (2.0 ± 0.5–6.3 ± 3.8 μg N m−2 h−1 at the warm-dry site and 7.1 ± 3.1–57.4 ± 28.5 μg N m−2 h−1 at the cool-moist site), thus confirming results from field measurements. However, N2 emission exceeded N2O emission by a factor of 21 ± 6–220 ± 122 at the investigated plots. This illustrates that the dominant end product of denitrification at our plots and under the given environmental conditions is N2 rather than N2O. N2 emission showed a huge variability (range: 161 ± 64–1070 ± 499 μg N m−2 h−1), so that potential effects of microclimate or silvicultural treatment on N2 emission could not be identified with certainty. However, there was a significant effect of microclimate on the magnitude of N2O emission as well as on the mean N2:N2O emission ratio. N2:N2O emission ratios were higher and N2O emissions were lower for soil cores taken from the plots with warm-dry microclimate as compared to soil cores taken from the cool-moist microclimate plots. We hypothesize that the increase in the N2:N2O emission ratio at the warm-dry site was due to higher N2O reductase activity provoked by the higher soil pH value of this site. Overall, the results of this study show that the N2:N2O emission ratio is crucial for understanding the regulation of N2O fluxes of the investigated soil and that reliable estimates of N2 emissions are an indispensable prerequisite for accurately calculating total N gas budgets for the investigated ecosystem and very likely for many other terrestrial upland ecosystems as well.  相似文献   

17.
Effects of two tillage treatments, tillage (T) with chisel plough and no-till (NT), were studied under un-drained and drained soil conditions. Soil physical properties measured were bulk density (ρb), total porosity (ƒt), water stable aggregates (WSA), geometric mean diameter (GMD), mean weight diameter (MWD), organic carbon (OC) and total N concentrations in different aggregate size fractions, and total OC and N pools. The experiment was established in 1994 on a poorly drained Crosby silt loam soil (fine mixed, mesic, Aeric Ochraqualf) near Columbus, Ohio. In 2007, soil samples were collected (0–10, 10–20, and 20–30 cm) from all treatments and separated into six aggregate size classes for assessing proportions of macro (5–8, 2–5, 1–2, 0.5–1, 0.25–0.5) and micro (<0.25 mm) aggregates by wet sieving. Tillage treatments significantly (P ≤ 0.05) influenced WSA, MWD, and GMD. Higher total WSA (78.53 vs. 58.27%), GMD (0.99 vs. 0.68 mm), and MWD (2.23 vs. 0.99 mm) were observed for 0–10 cm depth for NT than T treatments. Relative proportion of macro-aggregates (>0.25-mm) was also more in NT than T treatment for un-drained plots. Conversely, micro-aggregates (<0.25-mm) were more in T plots for both drained and un-drained treatments. The WSA, MWD and GMD decreased with increase in soil depth. The OC concentration was significantly higher (P ≤ 0.05) in NT for un-drained (P ≤ 0.01) treatment for all soil depths. Within macro-aggregates, the maximum OC concentrations of 1.91 and 1.75 g kg−1 in 1–2 mm size fraction were observed in NT for un-drained and drained treatments, respectively. Tillage treatments significantly (P < 0.01) affected bulk density (ρb), and total porosity (ft) for all soil depths, whereas tillage × drainage interaction was significant (P < 0.01) for 10–20 and 20–30 cm depths. Soil ρb was negatively correlated (r = −0.47; n = 12) with OC concentration. Tillage treatments significantly affected (P ≤ 0.05) OC pools at 10–20 cm depth; whereas drainage, and tillage × drainage significantly (P ≤ 0.05) influenced OC pools for 0–10 cm soil layer. The OC pool in 0–10 cm layer was 31.8 Mg ha−1 for NT compared with 25.9 Mg kg−1 for T for un-drained treatment. In comparison, the OC pool was 23.1 Mg ha−1 for NT compared with 25.2 Mg ha−1 for T for the drained plots. In general, the OC pool was higher in NT system, coupled with un-drained treatment than in drained T plots. The data indicate the importance of NT in improving the OC pool.  相似文献   

18.
Land preparation for mechanisation in vineyards of the Anoia–Alt Penedès region, NE Spain, has required major soil movements, which has enormous environmental implications not only due to changes in the landscape morphology but also due to soil degradation. The resulting cultivated soils are very poor in organic matter and highly susceptible to erosion, which reduces the possibilities of water intake as most of the rain is lost as runoff. In order to improve soil conditions, the application of organic wastes has been generalised in the area, not only before plantation but also every 3–4 years at rates of 30–50 Mg ha− 1 mixed in the upper 30 cm.These organic materials are important sources of nutrients (N and P) and other elements, which could reduce further fertilisation cost. However, due to the high susceptibility to sealing of these soils, erosion rates are relatively high, so a higher nutrient concentration on the soil surface increases non-point pollution sources due to runoff.The aim of this study is to analyse the influence of applied composted cattle manure on infiltration, runoff and soil losses and on nutrients transported by runoff in vineyards of the Alt Penedès–Anoia region, NE Spain. In the two plots selected for the analysis, composted cattle manure had been applied in alternate rows 1 year previous to the study. In each plot soil surface samples (0–25 cm) were taken and compared to those of plots without manure application. The study was carried out at laboratory scale using simulated rainfall. Infiltration rates were calculated from the difference between rainfall intensity and runoff rates, and the sediment and total nitrogen and phosphorus were measured for each simulation. In addition, the influence of compost was investigated in the field under natural rainfall conditions by analysing the nutrient concentration in runoff samples collected in the field (in the same plots) after seven rainfall events, which amount different total precipitation and had different erosive character.Compost application increases infiltration rates by up to 26% and also increases the time when runoff starts. Sediment concentration in runoff was lower in treated (13.4 on average mg L− 1) than in untreated soils (ranging from 16.8 to 23.4 mg L− 1). However, the higher nutrient concentration in soils produces a higher mobilisation of N (7–17 mg L− 1 in untreated soils and 20–26 mg L− 1 in treated soils) and P (6–7 mg L− 1 in untreated soils and 13–19 mg L− 1 in treated soils). A major part of the P mobilised was attached to soil particles (about 90% on average) and only 10% was dissolved. Under natural conditions, higher nutrient concentrations were always recorded in treated vs. untreated soils in both plots, and the total amount of N and P mobilised by runoff was higher in treated soils, although without significant differences. Nutrient concentrations in runoff depend on rainfall erosivity but the average value in treated soils was twice that in untreated soils for both plots.  相似文献   

19.
One of the key issues to increase soil productivity in the Sahel is to ensure water infiltration and storage in the soil. We hypothesised that reducing tillage from annual to biennial ploughing and the use of organic matter, like compost, would better sustain soil hydraulic properties. The study had the objective to propose sustainable soil fertility management techniques in the cotton–maize cropping systems. The effects of reduced tillage (RT) and annual ploughing (AP) combined with compost application (Co) on soil infiltration parameters were assessed on two soil types. Topsoil mean saturated hydraulic conductivities (Ks) were between 9 and 48 mm h−1 in the Luvisol, while in the Lixisol they were between 18 and 275 mm h−1. In the two soil types compost additions with reduced tillage or with annual ploughing had the largest effect on Ks. Soil hydraulic behaviour was in reasonable agreement with soil pore size distribution (mean values varied from 19.5 to 237 μm) modified by tillage frequency and organo-mineral fertilization. Already the first 3 years of this study showed that use of organic matter, improved soil infiltration characteristics when annual ploughing was used. Also biennial ploughing showed promising results and may be a useful strategy for smallholders to manage these soils.  相似文献   

20.
Conversion of tropical forest ecosystems to agricultural land use can have drastic impact on quality of natural waters as related to temporal changes in the sediment load and concentrations of dissolved nutrients. Long-term experiments were conducted in two phases to assess seepage and runoff water quality changes from an Alfisol owing to changes in land use in a sub-humid region of southwestern Nigeria. Phase I, from 1978 to 1981, studied the impact of deforestation and tillage methods, and Phase II, from 1982 to 1987, evaluated the impact of cropping systems and soil restorative practices. The six treatments evaluated in Phase I, involving combination of deforestation and tillage methods, were: (1) manual clearing (MC) with no-till (NT); (2) MC with plow-till (PT), which involved plowing to about 20 cm depth followed by harrowing; (3) shear blade (SB) clearing with NT; (4) treepusher-rootrake (TP) clearing with NT; (5) TP clearing with PT; (6) traditional farming (TF) involving slash-and-burn agriculture without use of fertilizer and amendments. The TF treatment was discontinued during Phase II. Therefore, the five treatments evaluated in Phase II were: (1) alley cropping with Leucaena leucocephala (Lam.) De Wit planted on the contour at 4 m interval; (2) restorative fallowing with mucuna (Mucuna utilis Lam.) on severely degraded soil; (3) mucuna fallowing on moderately degraded watersheds; (4) ley farming, involving establishment of pastures and grazing, on severely degraded watersheds; (5) ley farming on moderately degraded watersheds. Pastures included a mixture of Guinea grass (Panicum maximum Jacq.) and centro (Centrosema pubescens Benth). All treatments were imposed on watersheds of 2–4 ha each, and were replicated twice. Each watershed was equipped with a rate measuring H-Flume, a water stage recorder, a runoff sampler and a storage tank. In addition, a single lysimeter was installed in each treatment to monitor crop water use and nutrient transport in seepage water.Sediment concentration in water runoff was measured for both phases whereas nutrient concentrations in runoff and seepage waters were measured in Phase II only. Land clearing and tillage methods affected sediment concentration in runoff water. Mean sediment concentration during the first season after deforestation was 5.5 gl−1 for MC and 9.7 gl−1 for TP. Within the NT system, mean sediment concentration was 4.0 gl−1 for MC, 3.9 gl−1 for SB, and 8.0 gl−1 for TP. Sediment concentration was also low for NT compared with PT, 5.3 gl−1 vs. 9.1 gl−1. Alley cropping decreased sediment concentration under maize (Zea mays L.) from 2.5 gl−1 to 0.44 gl−1. Mean sediment concentration was 4.3 gl−1 under maize and 0.2 gl−1 under cowpea (Vigna unguiculata L. Walp) with alley cropping, compared with 1.4 gl−1 under maize and 0.04 gl−1 under cowpea grown after pastures. There were seasonal and cropping system effects on sediment concentration. Both alley cropping and mucuna cover decreased sediment concentration. Nutrient concentration in runoff was influenced by cropping systems treatments, and was higher without than with alley cropping. Although the total runoff was less, nutrient concentration was greater in water runoff from pastures and mucuna fallow than from maize. The maximum nutrient concentrations were much higher in seepage water than in surface runoff. Manual clearing, no-till, alley cropping and use of cover crops decreased transport of sediments and dissolved elements in surface runoff and seepage water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号