首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The species Chromolaena odorata (Asteraceae) is a notorious invasive shrub spreading throughout West and Central Africa and as such, there is a need to determine its environmental impact, particularly on soil biodiversity and functioning. Indeed, soil organisms such as earthworms are known to strongly influence soil properties and biogeochemical cycles. This study, conducted in Central Côte d’Ivoire, aims to investigate the temporal dynamics of earthworm communities in C. odorata fallows of different ages and to identify associated indicators and persistent species. Three distinct classes of fallows identified by local farmers, were considered: young (1–3 years, C1), medium-aged (4–8 years, C2) and old (>9 years, C3). Each of the classes included four plot replicates where earthworms were sampled using the Tropical Soil Biology and Fertility (TSBF) 25 cm × 25 cm × 30 cm soil monolith method. The study of earthworm communities was focused on density, biomass, diversity and complementarity. Indicator values (IndVals) were used to identify indicator species of the classes of fallows. The shrub exerted a mixed influence on earthworms depending on the functional group, with litter feeders and polyhumics declining over time as a result of a reduction of the litter availability on the soil surface. The species richness was significantly greater in C1 than in the other classes although the Shannon–Weaver's index did not vary significantly. However, a cluster analysis performed on densities highlighted marked differences between C2 and the two other classes in terms of community composition. Indicator species were found for C1 and C2. The geophagous Millsonia omodeoi has emerged as a persistent species as its density and biomass steadily increased so that it became the dominant species in old fallows. The roles of litters and soil parameters in influencing earthworm communities are discussed.  相似文献   

2.
There is vigorous debate about the potential for reforestation to offset losses in biodiversity associated with tropical deforestation, but a scarcity of good data. We quantified developmental trajectories following active restoration (replanting) of deforested pasture land to tropical Australian rainforest, using 20 different bird community indicators within chronosequences of multiple sites. Bird species composition in restored sites (1–24 years old) was intermediate between that of reference sites in pasture and primary rainforest. Total species richness was much less sensitive to land cover change than composition indicators, because of contrasting species-specific response patterns. For example, open-country (grassland/wetland) bird species declined in richness and abundance with increasing site age, while rainforest-dependent species increased. Results from two different landscapes (uplands and lowlands) were remarkably consistent, despite differing bird assemblages. After 10 years, restored sites averaged about half the number of rainforest-dependent bird species typical of rainforest. Mean values at around 20 years overlapped with the “poorest” rainforest reference sites, but projections suggest that >150 years are required to reach mean rainforest levels, and high variability among sites means that many were not on track towards ever achieving a rainforest-like bird community. Regional rainforest endemics were half as likely to occupy older revegetated sites as non-endemic rainforest-dependent species. Between-site variability and slow colonisation by regional endemics strongly constrain the potential of rainforest restoration to offset the biodiversity impacts of tropical deforestation. The results also mean that ongoing monitoring of biodiversity is an essential part of restoration management.  相似文献   

3.
《Soil biology & biochemistry》2012,44(12):2359-2367
As, Cd, Cu, Pb, Sb and Zn concentrations were determined in two earthworm species (Allolobophora rosea and Nicodrilus caliginosus) from a mining and industrial area in northern Kosovo and compared with their contents in the bulk soil and the main soil fractions. Earthworm specimens were collected at fifteen sites located at different distances from a Pb–Zn smelter along a gradient of decreasing contamination. Individuals of A. rosea and N. caliginosus showed similar tissue levels of As, Cd, Cu, Pb, Sb and Zn, suggesting that earthworm species belonging to the same eco-physiological group have a similar propensity to uptake and bioaccumulate heavy elements. Cd, Pb, Sb and Zn concentrations in both earthworm species were positively correlated with the respective total soil contents and generally decreased with distance from the smelter. The bioaccumulation factor (BAF) revealed that Cd and Zn were the only elements bioaccumulated by earthworms. The rank order of BAF values for both species was as follows: Cd > > Zn > > Cu > As = Pb = Sb. The absorption of Cd, Pb, Sb and Zn by earthworms mostly depended on the extractable, reducible and oxidable soil fractions, suggesting that the intestine is likely the most important uptake route. The extractable soil fraction constantly influenced the uptake of these heavy elements, whereas the reducible fraction was important mainly for Pb and Zn. The water soluble fraction had an important role especially for the most mobile heavy elements such as Cd and Zn, suggesting that dermal uptake is not negligible. As a whole, the analytical data indicate that soil fractionation patterns influence the uptake of heavy elements by earthworms, and the extractable fraction is a good predictor of heavy element bioavailability to these invertebrates in soil.  相似文献   

4.
The distribution, density and biomass of earthworms were investigated at the copper polluted site, Hygum (Denmark). In 1994, shortly after farming of the area was abandoned, only four earthworm species were present and their distribution was restricted to areas where copper concentration did not exceed 200 mg kg?1 dry soil. Sixteen years later (in 2010), without any agricultural activity, ten species of earthworms were found, in particular, epigeic species were present where soil copper concentrations reached >1000 mg kg?1 dry soil.  相似文献   

5.
The rhizosphere and the surrounding soil harbor an enormous microbial diversity and a specific community structure, generated by the interaction between plant roots and soil bacteria. The aim of this study was to address the influences of tree species, tree species diversity and leaf litter on soil bacterial diversity and community composition. Therefore, mesocosm experiments using beech, ash, lime, maple and hornbeam were established in 2006, and sampled in October 2008 and June 2009. Mesocosms were planted with one, three or five different tree species and treated with or without litter overlay.Cluster analysis of DGGE-derived patterns revealed a clustering of 2008 sampled litter treatments in two separated clusters. The corresponding treatments sampled in 2009 showed separation in one cluster. PCA analysis based on the relative abundance of active proteobacterial classes and other phyla in beech and ash single-tree species mesocosm indicated an effect of sampling time and leaf litter on active bacterial community composition. The abundance of next-generation sequencing-derived sequences assigned to the Betaproteobacteria was higher in the litter treatments, indicating a higher activity, under these conditions. The Deltaproteobacteria, Nitrospira and Gemmatimonadetes showed an opposite trend and were more active in the mesocosms without litter. The abundance of alphaproteobacterial sequences was higher in mesocosms sampled in 2009 (P = 0.014), whereas the Acidobacteria were more active in 2008 (P = 0.014). At the family level, we found significant differences of the litter vs. non-litter treated group. Additionally, an impact of beech and ash as tree species on soil bacterial diversity was confirmed by the Shannon and Simpson indices. Our results suggest that leaf litter decomposition in pH-stable soils affect the soil bacterial composition, while tree species influence the soil bacterial diversity.  相似文献   

6.
Earthworms can have positive effects upon crop growth in the tropics. If soils are to be managed sustainably, then more attention should be paid to the effects of cultivation and cropping practices upon earthworms. When forest vegetation is cleared, slashed, burned and land is tilled and cultivated, earthworm abundance, diversity and activity are reduced. Conversely, retaining trees in agroecosystems may maintain earthworm populations during the cropping phase.Here, we assessed the impact on earthworm species diversity and densities of crop cultivation in the understorey of timber plantations thinned to two tree densities and compared these with uncropped, undisturbed timber plantation controls. The plots were reassessed after two and a half years of fallow to see whether populations had recovered. The experiment was in central Cameroon.Seventeen earthworm species were recorded from Eudrilidae subfamilies Eudrilinae and Pareudrilinae, Ocnerodrilidae and Acanthodrilidae, most of which were endemics. This included two new species from two new genera from the sub-family Pareudrilinae, one new species from one new genus of Ocnerodrilidae, two new species of Dichogaster and one new species of Legonodrilus. Ten species were epigeic, six were endogeic and one was anecic.Generally, earthworm densities were lower in cropped plots than in the undisturbed plantation control. The most abundant species was a Legonodrilus sp. nov. with average densities of 49 individuals m−2 in the crop phase and 80 ind. m−2 in the fallow phase. By the fallow phase, densities in the low tree density (120 ind. m−2) were higher than in the high density (40 ind. m−2). The densities of the epigeic Acanthodrilidae were significantly reduced to 7 ind. m−2 in the cropped plots compared with 42 ind. m−2 in the control plots. The effects of cropping were thus species-specific and more work is required to identify which of these endemics are the ecosystem engineers in the system.  相似文献   

7.
《Applied soil ecology》2007,35(1):140-153
This study explored the relationship between landscape-level factors (land use type) and the diversity of soil mites (Acari: Oribatida, Mesostigmata) at a within-site scale, using diversity measures including point diversity (local species diversity within a single sampling point), patterns of species turnover among the sampling points, and alpha diversity (total species richness in a habitat). The land use types included corn fields, intensive short-rotation forestry plantations, two types of abandoned agricultural fields, and hardwood forests.Land use type was identified as a significant factor influencing both small-scale (within individual soil cores) and site-scale diversity of Oribatida, which increased in the order “corn  willow  abandoned fields  forests”. There was no statistical relationship between land use type and abundance or diversity of Mesostigmata.Using a bootstrapping method to generate “random” communities, we found that all land use types had significantly more diverse patterns of species abundance than was expected by chance. On the other hand, the patterns of presence/absence of species were less diverse than expected by chance. Local site factors were significant in driving the patterns of diversity of soil mites at the site scale; land use type was less important. The overall structure of Oribatida and Mesostigmata assemblages was significantly related to land use type. We conclude that soil communities respond to land management on both local scales and habitat-wide scales.  相似文献   

8.
Climate change has serious impacts on ecosystems, e.g. species diversity and abundance. It is well known that changes in temperature may have a pronounced influence on the reproductive output, growth and survival of various terrestrial species. However, much less is known on to how changes in temperature combined with exposure to pollution will influence biodiversity, the interaction between species, and the resulting change in species composition. In order to understand the effects of changes in temperature and copper pollution (individually and in combination) on soil communities and processes, a factorial multispecies experiment was performed. Six animal species (representing different functional groups) were exposed in control (30 mg Cu/kg) and copper-contaminated soil (1000 mg Cu/kg) to four temperatures (10, 14, 19, and 23 °C) representing the “summer” range (low to high) for Denmark, and three exposure periods (28, 61, and 84 days). The species composition, feeding activity and OM turnover were assessed throughout. Multivariate analysis displayed significant changes in the food-web both with different copper levels and temperatures, resulting in different species composition for each exposure scenario. The most important species were Enchytraeus crypticus (most sensitive to copper and temperature) and Folsomia candida (most abundant). Major changes in abundance due to temperature occurred in the first 28 days of exposure, where population growth was higher. A temperature dependent population growth rate could be modeled for an exposure period of 28 days, whereas after 61 and 84 days of exposure the data did not fit the model. Especially for treatments that also included Cu, modeling of the population growth was no longer possible. The results of our study indicate that when climate change occurs in polluted areas, the consequences on populations cannot be predicted based on data from non-polluted areas. The risk may be synergistic for certain species, as indicated in the present study, and the final balance may depend on the particular species composition of that ecosystem.  相似文献   

9.
Forest biodiversity conservation in intensively managed agricultural landscapes is a constant concern. The dispersal ability of forest plants is, hypothetically, the major limiting factor in fragmented forest landscapes and, therefore, we tested the validity of the theoretical dispersal scheme for plants in fragmented landscapes: ancient forest > woody corridor > emerging forest patch. To this end, we examined the distribution pattern of forest-dwelling plant species in rural landscapes, specifically the occurrence of common forest plant species in old historical forests and in closed-canopy stands of rural ornamental parks, planted on an agricultural land one–two centuries ago.We found that (i) the shade tolerant plant flora in parks’ stands more resemble forests than woody linear habitats (corridors), (ii) nearly 50% of the local forest species pool was present in parks, (iii) the abundance of seed source habitats and the ecological quality of the target habitat determine success rate of colonization. Models predicted that optimal stand characteristics for forest herbs are a minimum area 2.5 ha, canopy closure 0.7–0.8, basal area of trees 10–20 m2 ha?1 and the presence of moderate understory management.We conclude that only patch-type habitats provide suitable environmental conditions for forest-specific plant species. Many common forest plant species are capable of long-distance dispersal between habitat patches across hostile agricultural land, and accordingly, their dispersal follows a modified scheme of the island biogeography, without intermediary role of corridor habitats. Old rural manor parks provide an ecosystem service for nature conservation by harbouring forest biodiversity, and should be considered as potential refugium habitats.  相似文献   

10.
Understanding the cultural variation in public preference for marine species is a necessary pre-requisite if conservation objectives are to include societal preferences in addition to scientific considerations. We report the results of a contingent study undertaken at three case-study sites: Azores islands (Portugal), Gulf of Gdansk (Poland) and Isles of Scilly (UK). The study considered species richness of five specific marine taxa (mammals, birds, fish, invertebrates and algae) as proxies of marine biodiversity and the aim of analysis was to estimate from a multi-site perspective public’s willingness to pay (WTP) to avoid increased levels of species loss (reduction of species richness) for different marine taxa. Results, based on 1502 face-to-face interviews, showed that income, education and environmental awareness of the respondents were significant predictors of WTP for marine species conservation. Results also indicated that respondents in each of the European locations had different preferences for marine taxa. In the Azores, although mammals and fish were valued highly, small differences occurred in the WTP among different taxa. Respondents in the Isles of Scilly put a relatively low value on fish while algae and marine mammals were highly valued. In Gdansk, respondents defined a clear order of preference for marine mammals > fish > birds > invertebrates and algae. These findings suggested that cultural differences may be important drivers of valuation and undermines the commonly held premise that charismatic/likeable taxa consistently have a disproportionately strong influence on WTP for biodiversity conservation. We conclude that conservation policy must take account of cultural diversity alongside biological diversity.  相似文献   

11.
Impacts of management and land use on soil bacterial diversity have not been well documented. Here we present the application of the bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP) diversity method, which will promote studies in soil microbiomes. Using this modified FLX pyrosequencing approach we evaluated bacterial diversity of a soil (Pullman soil; fine, mixed, thermic Torrertic Paleustolls) with 38% clay and 34% sand (0–5 cm) under four systems. Two non-disturbed grass systems were evaluated including a pasture monoculture (Bothriochloa bladhii (Retz) S.T. Blake) [P] and a diverse mixture of grasses in the Conservation Reserve Program (CRP). Two agricultural systems were evaluated including a cotton (Gossypium hirsutum L.) -winter wheat (Triticum aestivum L.)-corn (Zea mays L.) rotation [Ct–W–Cr] and the typical practice of the region, which is continuous monoculture cotton (Ct–Ct). Differences due to land use and management were observed in soil microbial biomass C (CRP > P = Ct–W–Cr > Ct–Ct). Using three estimators of diversity, the maximum number of unique sequences operational taxonomic units (OTU; roughly corresponding to the species level) never exceeded 4500 in these soils at the 3% dissimilarity level. The following trend was found using the most common estimators of bacterial diversity: Ct–W–Cr > P = CRP > Ct–Ct. Predominant phyla in this soil were Actinobacteria, Bacteriodetes and Fermicutes. Bacteriodetes were more predominant in soil under agricultural systems (Ct–W–Cr and Ct–Ct) compared to the same soil under non-disturbed grass systems (P and CRP). The opposite trend was found for the Actinobacteria, which were more predominant under non-disturbed grass systems (P and CRP). Higher G? bacteria and lower G+ bacteria were found under Ct–W–Cr rotation and highest abundance of actinomycetes under CRP. The bTEFAP technique proved to be a powerful method to characterize the bacterial diversity of the soil studied under different management and land use in terms not only on the presence or absence, but also in terms of distribution.  相似文献   

12.
We investigated the fate of root and litter derived carbon in soil organic matter and dissolved organic matter in soil profiles, in order to explain mechanisms of short-term soil carbon storage. A time series of soil and soil solution samples was investigated at the field site of The Jena Experiment between 2002 and 2004. In addition to the main experiment with C3 plants, a C4 species (Amaranthus retroflexus L.) naturally labeled with 13C was grown on an extra plot. Changes in organic carbon concentration in soil and soil solution were combined with stable isotope measurements to follow the fate of plant carbon into the soil and soil solution. A split plot design with plant litter removal versus double litter input simulated differences in biomass input. After 2 years, the no litter and double litter treatment, respectively, showed an increase of 381 g C m?2 and 263 g C m?2 to 20 cm depth, while 71 g C m?2 and 393 g C m?2 were lost between 20 and 30 cm depth. The isotopic label in the top 5 cm indicated that 115 g C m?2 and 156 g C m?2 of soil organic carbon were derived from C4 plant material on the no litter and the double litter treatment, respectively. Without litter, this equals the total amount of 97 g C m?2 that was newly stored in the same soil depth, whereas with double litter this clearly exceeded the stored amount of 75 g C m?2. Our results indicate that litter input resulted in lower carbon storage and larger carbon losses and consequently accelerated turnover of soil organic carbon. Isotopic evidence showed that inherited soil organic carbon was replaced by fresh plant carbon near the soil surface. Our results suggest that primarily carbon released from soil organic matter, not newly introduced plant organic matter, was transported in the soil solution. However, the total flow of dissolved organic carbon was not sufficient to explain the observed carbon storage in deeper soil layers, and the existence of additional carbon uptake mechanisms is discussed.  相似文献   

13.
Because particular life history traits affect species vulnerability to development pressures, cross-species summaries of life history traits are useful for generating management guidelines. Conservation of aquatic turtles, many members of which are regionally or globally imperiled, requires knowing the extent of upland habitat used for nesting. Therefore, we compiled distances that nests and gravid females had been observed from wetlands. Based on records of > 8000 nests and gravid female records compiled for 31 species in the United States and Canada, the distances that encompass 95% of nests vary dramatically among genera and populations, from just 8 m for Malaclemys to nearly 1400 m for Trachemys. Widths of core areas to encompass varying fractions of nesting populations (based on mean maxima across all genera) were estimated as: 50% coverage = 93 m, 75% = 154 m, 90% = 198 m, 95% = 232 m, 100% = 942 m. Approximately 6–98 m is required to encompass each consecutive 10% segment of a nesting population up to 90% coverage; thereafter, ca. 424 m is required to encompass the remaining 10%. Many genera require modest terrestrial areas (<200 m zones) for 95% nest coverage (Actinemys, Apalone, Chelydra, Chrysemys, Clemmys, Glyptemys, Graptemys, Macrochelys, Malaclemys, Pseudemys, Sternotherus), whereas other genera require larger zones (Deirochelys, Emydoidea, Kinosternon, Trachemys). Our results represent planning targets for conserving sufficient areas of uplands around wetlands to ensure protection of turtle nesting sites, migrating adult female turtles, and dispersing turtle hatchlings.  相似文献   

14.
The frequency of drought is anticipated to increase in wetland ecosystems as global warming intensifies. However, information on microbial communities involved in greenhouse gas emissions and their responses to drought remains sparse. We compared the gene abundance of eubacterial 16S rRNA, nitrite reductase (nirS) and methyl coenzyme M reductase (mcrA), and the diversity and composition of eubacteria, methanogens and denitrifiers among bog, fen and riparian wetlands. The gene abundance, diversity and composition significantly differed among wetlands (p < 0.01) with the exception of the diversity of methanogens. The gene abundance was ranked in the order of the bog = fen > riparian wetland, whereas the diversity was in the riparian wetland  fen > bog. In addition, we conducted a short-term drought experiment and compared microbial communities between control (water-logged) and drought (?15 cm) treatments. Drought led to significant decline in the gene abundance in the bog (16S rRNA, nirS, mcrA) (p < 0.01) and fen (16S rRNA, nirS) (p < 0.05), but not in the riparian wetland. There were no differences in the diversity and composition of denitrifiers and methanogens at all sites following drought. Our results imply that denitrifiers and methanogens inhabiting bogs and fens would suffer from short-term droughts, but remain unchanged in riparian wetlands.  相似文献   

15.
In traditional environmental risk assessment for soils, interactions between biota, contaminants and soil functioning are seldom taken into account. Also, single species toxicity tests are conducted with a fixed number of test animals. The objective of this study was to investigate effects of zinc (0–620 mg Zn kg?1 dry soil) on soil ecosystem processes at different densities of the earthworm Lumbricus rubellus. Experiments were conducted using 1-liter microcosms equipped with respirometers. The presence of L. rubellus stimulated relevant soil processes and parameters: litter fragmentation, leaf litter mass loss from the soil surface, soil organic matter (SOM) content and soil respiration. Zinc was not lethal to L. rubellus, but negatively impacted soil respiration at the highest concentrations. Litter mass loss from the soil surface was also decreased by zinc and there was a significant interaction with worm density. The results of the study demonstrate that the impact of zinc on soil processes depends on the presence and densities of key soil organisms such as earthworms that influence decomposition and SOM content. The outcome of this research can be used to make existing models for site-specific risk assessment more ecologically relevant, linking effects of contaminants on soil fauna populations with effects on ecosystem functioning.  相似文献   

16.
《Applied soil ecology》2007,35(1):46-56
A study on the widespread earthworm Dendrobaena octaedra was conducted to determine which individual life history traits were the most sensitive to copper and to determine the contribution of changes in individual traits to changes in the population growth rate (λ). The study showed that the effect of copper on population growth rate mirrored the effects seen on growth, maturation and reproductive output, with stimulation at the lowest concentrations and inhibition at the highest concentration. A decomposition analysis showed that the mean change in λ was mainly driven by time between consecutive cocoon productions, except at the highest copper concentration (200 mg/kg dry soil) where decreased production of fertile cocoons also contributed to the reductions in λ. The highest population growth rate (λ = 1.18 week−1) occurred at 80 mg Cu/kg dry soil. At higher concentrations λ became gradually smaller, and was almost 1 week−1 (where no population increase or decrease occurs) at the highest exposure concentration of 200 mg Cu/kg dry soil suggesting that extinction would occur if a population of D. octaedra were to be exposed to copper concentrations only slightly higher than this level.  相似文献   

17.
The Azores bullfinch (Pyrrhula murina) is an endemic bird of São Miguel island (Azores Archipelago, Portugal), currently threatened by two of the major causes of biodiversity loss worldwide: invasion of native habitats by exotic plants and habitat destruction by land use changes. The aim of this research was to develop and test a novel spatially explicit modelling framework that predicts the Azores bullfinch responses to alternative realistic scenarios of native forest management. This was done by integrating Multi-Model Inference statistical analysis, Stochastic-Dynamic Modelling and Geographic Information Systems under a common framework relating bird population trends to changes in the surrounding habitats. Overall, in the next 25 years, the Azores bullfinch breeding population was predicted to increase around 19% as a consequence of habitat management actions already implemented (“LIFE Priolo” project) or around 27% in the context of realistic future habitat restoration scenarios. These results represent, respectively, a supplementary increase of more 6% or more 13% in the Azores bullfinch abundance when compared with the trends simulated for the scenario without management. Nevertheless, those actions seemed to be relatively ineffective in promoting the expansion of the species from the actual restricted favourable area, essentially due to local forestry dynamics and on-going plant invasion processes. This novel integrative approach provides a promising baseline to support ecological models with increased realism and predictive power, making the outputs more useful and intuitive to decision-makers and environmental managers.  相似文献   

18.
In a controlled potted experiment, citrus (Poncirus trifoliata) seedlings were inoculated with three species of arbuscular mycorrhizal (AM) fungi, Glomus mosseae, G. versiforme or Gdiaphanum. Two soil-water levels (ample water, −0.10 MPa; drought stress, −0.44 MPa) were applied to the pots 4 months after transplantation. Eighty days after water treatments, the soils and the citrus seedlings were well colonized by the three AM fungi. Mycorrhizal fungus inoculation improved plant biomass regardless of soil-water status but decreased the concentrations of hot water-extractable and hydrolyzable carbohydrates of soils. Mycorrhizal soils exhibited higher Bradford-reactive soil protein concentrations than non-mycorrhizal soils. Mycorrhizas enhanced >2 mm, 1–2 mm and >0.25 mm water-stable aggregate fractions but reduced 0.25–0.5 mm water-stable aggregates. Peroxidase activity was higher in AM than in non-AM soils whether drought stressed or not, whereas catalase activity was lower in AM than non-AM soils. Drought stress and AM fungus inoculation did not affect polyphenol oxidase activity of soils. A positive correlation between the Bradford-reactive soil protein concentrations, soil hyphal length densities, and water-stable aggregates (only >2 mm, 1–2 mm and >0.25 mm) suggests beneficial effects of the AM symbiosis on soil structure. It concluded that AM fungus colonization enhanced plant growth under drought stress indirectly through affecting the soil moisture retention via glomalin's effect on soil water-stable aggregates, although direct mineral nutritional effects could not be excluded.  相似文献   

19.
Pantepui is a biogeographical province composed of a group of approximately 50 tabular mountain summits, or tepuis, in the southeast of Venezuela. This region, also known as Guayana Highlands (GH), lies between 1500 and 3014 m elevation and has an approximate extension of 6000 km2. The summits of the tepuis are characterized by exceptional vascular plant diversity and high endemism. However, it is expected that ongoing global warming will produce upward displacements of summit taxa, which may cause the extinction of certain species due to habitat loss. This study assessed the potential extinction risk of the >600 Pantepui endemic vascular plant species during the 21st century due to global warming, revealing that 30–50% of endemic species would lose their habitat by the end of this century. In light of these results, prioritization of threatened species for conservation purposes became necessary. This was achieved through the calculation of an Environmental Impact Value (EIV) for each species, and a subsequent division of these species into priority categories, which should be used in a chronological sequence to guide decision-making and future research aimed at establishing the most suitable conservation strategies. A number of in situ and ex situ conservation alternatives were discussed. In situ conservation by means of designating protected areas does not appear a viable option because of the upward habitat displacement involved in this case. Conversely, seed banks, living plant collections and managed relocation were suggested in this chronological order to preserve the species studied here.  相似文献   

20.
The main reason for meadow bird declines is supposed to be the intensification of grassland management with earlier first harvest dates and more frequent harvests, resulting in high nest destruction rates. To increase productivity of meadow bird populations in intensified grassland areas a delay of mowing date and individual nest protection measures have been proposed. However, for ground-nesting songbirds such as the whinchat (Saxicola rubetra) the effectiveness of such measures remains widely unknown. In particular, if nest predation rate is high, measures to protect nests from agricultural destruction alone might be questionable. Here, we quantify whinchat nest survival of (1) unprotected nests situated in early mown meadows, (2) protected nests situated in early mown meadows, and (3) nests situated in late mown meadows. Analyses considered the fact that successful and unsuccessful nests are not found with equal probabilities. Periods of reduced nest survival were associated with mowing periods in the different types of meadows. In early mown meadows nest survival rates were low (S < 0.1), and both conservation measures, individual nest protection and delayed mowing, resulted in significantly increased nest survival rates (S > 0.7). Individual nest protection cannot avoid changes in habitat quality of intensively managed meadows, and therefore is only suitable as small-scale and short-term measure to increase nest success until a high portion of late mown meadows is established. Thus, we suggest that a combination of the two measures applied to intensified grassland fields should be provided to maintain viable sizes of endangered meadow bird populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号