首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Conserving and managing populations of marine vertebrates can be complex when they occupy the waters of multiple nations, crossing heterogeneous legal and management landscapes. Hawksbill turtles (Eretmochelys imbricata) are subject to varying levels of use in Caribbean countries and their conservation and management is complicated by the extent to which they are a ‘shared’ resource. In 1997 and 2000, Cuba attempted to ‘downlist’ hawksbills from Cuban waters to CITES Appendix II to allow limited international trade. The research on movement and dispersal of hawksbills reported here was undertaken to better inform discussion about the impacts of their harvest. Flipper tagging and satellite tracking demonstrate that the majority of study turtles remained in Cuban territorial waters. Of 1170 hawksbills tagged (525 adults and 606 juveniles), 12% (n = 143) were recaptured. All recaptured adults (n = 16 males, 38 nesting females and 30 adult females in-water) were in Cuban waters. Of the 59 juveniles recaptured, only four recaptures were outside Cuban waters (Nicaragua = 2, Colombia = 1, USA = 1). Fourteen hawksbills tagged in the waters of other nations were recaptured in Cuban waters. We also satellite tracked 21 turtles (one adult male, ten nesting females and ten non-nesting adult females), of which five tags failed, 11 stayed in Cuban waters for the duration of transmissions (1–809 days) and five foraged in the waters of other nations (Mexico n = 1 an adult female; Honduras n = 2, both post-nesting turtles; Colombia n = 1 an adult female; and the eastern Lesser Antilles n = 1, an adult male), with differences for nesting and non-nesting turtles. Our results, demonstrating extended site fidelity within Cuban waters, suggest that strengthening national management within national jurisdictions that host hawksbill turtles is fundamental to improving regional conservation as a whole.  相似文献   

2.
Designing conservation strategies that protect wide-ranging marine species is a significant challenge, but integrating regional telemetry datasets and synthesizing modeled movements and behavior offer promise for uncovering distinct at-sea areas that are important habitats for imperiled marine species. Movement paths of 10 satellite-tracked female loggerheads (Caretta caretta) from three separate subpopulations in the Gulf of Mexico, USA, revealed migration to discrete foraging sites in two common areas at-sea in 2008, 2009, and 2010. Foraging sites were 102–904 km away from nesting and tagging sites, and located off southwest Florida and the northern Yucatan Peninsula, Mexico. Within 3–35 days, turtles migrated to foraging sites where they all displayed high site fidelity over time. Core-use foraging areas were 13.0–335.2 km2 in size, in water <50 m deep, within a mean distance to nearest coastline of 58.5 km, and in areas of relatively high net primary productivity. The existence of shared regional foraging sites highlights an opportunity for marine conservation strategies to protect important at-sea habitats for these imperiled marine turtles, in both USA and international waters. Until now, knowledge of important at-sea foraging areas for adult loggerheads in the Gulf of Mexico has been limited. To better understand the spatial distribution of marine turtles that have complex life-histories, we propose further integration of disparate tracking data-sets at the oceanic scale along with modeling of movements to identify critical at-sea foraging habitats where individuals may be resident during non-nesting periods.  相似文献   

3.
Earthworms are key regulators of soil structure and soil organic matter (SOM) dynamics in many agroecosystems. They are greatly impacted by agricultural management, yet little is known about how these factors interact to control SOM dynamics. This study sought to explore linkages between agricultural management, earthworms and aggregate associated SOM dynamics through a survey of tomato (Solanum lycopersicum L.) cropping systems in northern California. Earthworms and soil samples were collected between February and April of 2005 from 16 fields under one of three types of residue management: (1) tomato mulch – no postharvest tillage and tomato residues left on the soil surface, (2) cover crop – tomato residues tilled in and leguminous cover crop planted, and (3) bare fallow – tomato residues tilled in and soil surface left exposed throughout the winter. Earthworms were collected via hand-sorting and identified to species, while soils were wet sieved to yield four aggregate size classes: large macroaggregates (>2000 μm), small macroaggregates (250–2000 μm), microaggregates (53–250 μm) and the silt and clay fraction (<53 μm). The combined large and small macroaggregate fraction was then fractionated into coarse particulate organic matter (cPOM; 250 μm), microaggregates within macroaggregates (mM; 53–250 μm) and macroaggregate occluded silt and clay (Msc; <53 μm). The earthworms identified in this survey were composed entirely of exotic species and were dominated by Aporrectodea caliginosa. Earthworm abundance was related to residue management, with the tomato mulch systems averaging 4.5 times greater fresh earthworm biomass than bare fallow (P = 0.024). Aggregate stability and total soil C and N also appeared to be influenced by residue management, such that the tomato mulch system displayed significantly greater mean weight diameters than the bare fallow system (P = 0.049), as well as more than 50% greater total soil C and N (P = 0.049 and P = 0.036; respectively). Earthworm biomass was also found to be positively correlated with total soil C (P = 0.009, R2 = 0.39) and N (P = 0.010, R2 = 0.039) as well as the proportion of macroaggregate C in the cPOM fraction (P = 0.028, R2 = 0.30). Our findings suggest that residue handling and the associated management practices (e.g., tillage, organic vs. conventional agriculture) are important for both earthworm populations and SOM storage. Although earthworms are known to influence SOM in many ways, other factors appear to play a more prominent role in governing aggregate associated SOM dynamics.  相似文献   

4.
Soil organic matter (SOM) status was evaluated using the relationships between two independent soil variables, i.e., C respiration and the weight of particulate organic matter POM (4000–50 μm) under different vegetation covers and ecosystems of central Belgium. A positive relationship was found between the weight of the finest POM fraction, i.e., fine POM fraction (250–50 μm) and C respiration after 1 week (R2 = 0.34, n = 120, p < 0.0001) and 2 weeks (R2 = 0.28, n = 120, p < 0.0001) of incubation. Therefore, we assumed that the C respiration and the weight of fine POM might be used to evaluate the SOM status under different vegetation covers and ecosystems.  相似文献   

5.
In this paper we summarize the current knowledge on earthworm biodiversity in the State of Paraná, Brazil. Up to the present, 54 species of earthworms are known from the State, belonging to seven families and 19 genera. Native species (N = 34), dominated over exotics (N = 20). The most widespread exotics were Pontoscolex corethrurus (Glossoscolecidae) and several Amynthas spp. (Megascolecidae) and Dichogaster spp. (Acanthodrilidae), generally associated with anthropogenic sites. Of the native species, most (17 spp.) were in the genus Glossoscolex, frequently encountered in chronically wet soils. Further work is warranted, particularly more sampling efforts, but also ecological studies, given the potential biodiversity and agro-ecological importance of earthworms in Paraná.  相似文献   

6.
We used the eddy-covariance technique to measure evapotranspiration (E) and gross primary production (GPP) in a chronosequence of three coastal Douglas-fir (Pseudotsuga menziesii) stands (7, 19 and 58 years old in 2007, hereafter referred to as HDF00, HDF88 and DF49, respectively) since 1998. Here, we focus on the controls on canopy conductance (gc), E, GPP and water use efficiency (WUE) and the effect of interannual climate variability at the intermediate-aged stand (DF49) and then analyze the effects of stand age following clearcut harvesting on these characteristics. Daytime dry-foliage Priestley–Taylor α and gc at DF49 were 0.4–0.8 and 2–6 mm s?1, respectively, and were linearly correlated (R2 = 0.65). Low values of α and gc at DF49 as well at the other two stands suggested stomatal limitation to transpiration. Monthly E, however, showed strong positive linear correlations to monthly net radiation (R2 = 0.94), air temperature (R2 = 0.77), and daytime vapour pressure deficit (R2 = 0.76). During July–September, monthly E (mm) was linearly correlated to monthly mean soil water content (θ, m3 m?3) in the 0–60 cm layer (E = 453θ ? 21, R2 = 0.69), and GPP was similarly affected. Annual E and GPP of DF49 for the period 1998–2007 varied from 370 to 430 mm and from 1950 to 2390 g C m?2, respectively. After clearcut harvesting, E dropped to about 70% of that for DF49 while ecosystem evapotranspiration was fully recovered when stand age was ~12 years. This contrasted to GPP, which varied hyperbolically with stand age. Monthly GPP showed a strong positive linear relationship with E irrespective of the stand age. While annual WUE of HDF00 and HDF88 varied with age from 0.5 to 4.1 g C m?2 kg?1 and from 2.8 to 4.4 g C m?2 kg?1, respectively, it was quite conservative at ~5.3 g C m?2 kg?1 for DF49. N-fertilization had little first-year response on E and WUE. This study not only provides important results for a more detailed validation of process-based models but also helps in predicting the influences of climate change and forest management on water vapour and CO2 fluxes in Douglas-fir forests.  相似文献   

7.
An investigation of the detection of water stress in non-homogeneous crop canopies such as orchards using high-spatial resolution remote sensing thermal imagery is presented. An airborne campaign was conducted with the Airborne Hyperspectral Scanner (AHS) acquiring imagery in 38 spectral bands in the 0.43–12.5 μm spectral range at 2.5 m spatial resolution. The AHS sensor was flown at 7:30, 9:30 and 12:30 GMT in 25 July 2004 over an olive orchard with three different water-deficit irrigation treatments to study the spatial and diurnal variability of temperature as a function of water stress. A total of 10 AHS bands located within the thermal-infrared region were assessed for the retrieval of the land surface temperature using the split-window algorithm, separating pure crowns from shadows and sunlit soil pixels using the reflectance bands. Ground truth validation was conducted with infrared thermal sensors placed on top of the trees for continuous thermal data acquisition. Crown temperature (Tc), crown minus air temperature (Tc  Ta), and relative temperature difference to well-irrigated trees (Tc  TR, where TR is the mean temperature of the well-irrigated trees) were calculated from the ground sensors and from the AHS imagery at the crown spatial resolution. Correlation coefficients for Tc  TR between ground IRT sensors and airborne image-based AHS estimations were R2 = 0.50 (7:30 GMT), R2 = 0.45 (9:30 GMT) and R2 = 0.57 (12:30 GMT). Relationships between leaf water potential and crown Tc  Ta measured with the airborne sensor obtained determination coefficients of R2 = 0.62 (7:30 GMT), R2 = 0.35 (9:30 GMT) and R2 = 0.25 (12:30 GMT). Images of Tc  Ta and Tc  TR for the entire field were obtained at the three times during the day of the overflight, showing the spatial and temporal distribution of the thermal variability as a function of the water deficit irrigation schemes.  相似文献   

8.
A review of the literature suggests that the sombric horizon (from French sombre, dark) was established in Soil Taxonomy (ST) and the World Reference Base for Soil Resources (WRB) from limited data and without a clear understanding of how this horizon forms. This paper reviews data on sombric horizons, evaluates four hypotheses regarding their origin, and offers suggestions for improving the identification of sombric horizons. Of the 30 pedons recognized in the literature as having sombric or sombric-like horizons, 12 fully satisfied the existing criteria in ST and the WRB. Soils with a true sombric horizon may be restricted to the highlands of central Africa (Burundi, Rwanda, Congo) on relatively cool (mean annual air temperature 16–20 °C), moist (mean annual precipitation 1450–2000 mm) plateaus and mountains at elevations ranging from 1450 to 2000 m. Soils with a sombric horizon occur primarily on highly weathered materials from a variety of crystalline rocks. The surface of the sombric horizon occurs at depths of 40 to 110 cm from the surface (average = 76 cm) and ranges from 27 to 100 cm in thickness (average = 63 cm). The sombric horizon commonly is dark reddish brown (5YR 3/3), acidic (average pH = 4.7), low in exchangeable bases (average base saturation = 4%), high in organic C (average = 1.3%), and despite abundant clay (average = 56%) has a low cation-exchange capacity (average = 12 cmol(+)/kg soil). Based on existing data, the sombric horizon contains humus that has migrated downward in the soil, possibly in response to climate and vegetation change. Sombric horizons are not to be confused with sombric-like horizons which may contain andic soil properties or spodic materials. In Soil Taxonomy, soils with sombric horizons are classified primarily as Sombriudoxes (8 pedons) and Sombrihumults (4 pedons). In the World Reference Base for Soil Resources, sombric horizons occur primarily in Umbric Ferralsols (Sombric).  相似文献   

9.
We investigated predation of simulated turtle nests in an effort to understand how land-use patterns and the availability of nesting habitat may affect turtle recruitment in a region where human populations and associated development are increasing. Simulated nests were patterned after those created by painted turtles (Chrysemys picta), a common aquatic turtle in our study area, and distributed in four patterns (clustered and near pond, scattered and near pond, clustered and far from pond, and scattered and far from pond) around 36 ponds. Landscape composition (500-2000 m from pond perimeters) and habitats surrounding pond edges (an area extending 250 m from the shore of each pond) were then compared with rates of predation at each pond. Nest-site characteristics also were compared to the fate of individual nests. Landscape composition and habitats surrounding ponds apparently had little influence on predation rates. Nest distribution and the immediate habitat features associated with each nest did affect vulnerability to predation. Clumped nests were preyed upon at a higher rate than scattered nests, and nests close to ponds (within 50 m) were more vulnerable to predators than those created far (100-150 m) from a pond. Counter to our expectations, proximity to edge habitats (other than the shore of a pond) reduced the probability that a nest would be detected by predators. Also, nests placed near roads and suburban lawns had a reduced likelihood of predation whereas those placed in agricultural areas or disturbed sites had a greater probability of being preyed upon. Our results suggest that predation of simulated turtle nests may be a consequence of their distribution and location relative to the foraging activities of common nest predators, especially raccoons (Procyon lotor). Efforts to enhance recruitment among declining populations of turtles should consider the abundance and distribution of nesting habitat. Providing additional nesting sites away from predator foraging habitats may reduce nest predation and increase the recruitment of hatchlings into a population.  相似文献   

10.
Land use changes in the Amazon region strongly impact soil macroinvertebrate communities, which are recognized as major drivers of soil functions (Lavelle et al., 2006). To explore these relations, we tested the hypotheses that (i) soil macrofauna communities respond to landscape changes and (ii) soil macrofauna and ecosystem services are linked. We conducted a survey of macrofauna communities and indicators of ecosystem services at 270 sites in southern Colombia (department of Caqueta) and northern Brazil (state of Pará), two areas of the Amazon where family agriculture dominates. Sites represented a variety of land use types: forests, fallows, annual or perennial crops, and pastures. At each site we assessed soil macroinvertebrate density (18 taxonomic units) and the following ecosystem service indicators: soil and aboveground biomass carbon stock; water infiltration rate; aeration, drainage and water storage capacities based on pore-size distribution; soil chemical fertility; and soil aggregation. Significant covariation was observed between macrofauna communities and landscape metric data (co-inertia analysis: RV = 0.30, p < 0.01, Monte Carlo test) and between macrofauna communities and ecosystem service indicators (co-inertia analysis: RV = 0.35, p < 0.01, Monte Carlo test). Points located in pastures within 100 m of forest had greater macrofauna density and diversity than those located in pastures with no forest within 100 m (Wilcoxon rank sum test, p < 0.01). Total macroinvertebrate density was significantly correlated with macroporosity (r2 = 0.42, p < 0.01), as was the density of specific taxonomic groups: Chilopoda (r2 = 0.43, p < 0.01), Isoptera (r2 = 0.30, p < 0.01), Diplopoda (r2 = 0.31, p < 0.01), and Formicidae (r2 = 0.13, p < 0.01). Total macroinvertebrate density was also significantly correlated with available soil water (r2 = 0.38, p < 0.01) as well as other soil-service indicators (but with r2 < 0.10). Results demonstrate that landscape dynamics and composition affect soil macrofauna communities, and that soil macrofauna density is significantly correlated with soil services in deforested Amazonia, indicating that soil macrofauna have an engineering and/or indicator function.  相似文献   

11.
《Soil & Tillage Research》2007,92(1-2):96-103
Soil loss due to crop harvesting (SLCH) has been established as an important soil erosion process that has significantly contributed to soil degradation in highly mechanised agriculture. This has stimulated the need to investigate the importance of this process of erosion under low input agriculture where, until now, only water and tillage erosion are known as important phenomena causing soil degradation. This study was conducted in Eastern Uganda with the following objectives: (1) to assess the amount of soil lost due to the harvesting of cassava roots and sweet potato tubers under low input agriculture, (2) to look into the factors that influence variations in these soil losses, and (3) to estimate the amount of plant nutrients lost due to SLCH for cassava and sweet potato. Soil sticking to roots and tubers was washed and the soil suspension oven dried to estimate the amount of soil lost after harvesting. Mean annual soil loss for cassava was 3.4 tonnes ha−1 and for sweet potato was 0.2 tonnes ha−1. Ammonium acetate lactate extractable soil nutrient losses for cassava were N = 1.71 kg ha−1 harvest−1, P = 0.16 kg ha−1 harvest−1, K = 1.08 kg ha−1 harvest−1 and for sweet potato were N = 0.14, P = 0.01 kg ha−1 harvest−1, K = 0.15 kg ha−1 harvest−1. Difference in soil loss due to crop harvesting for cassava and sweet potato could be due to: (1) smaller yields of sweet potato leading to smaller soil losses on an area basis, (2) smoother skin and less kinked morphology of sweet potato that allowed less soil to adhere, and (3) the fact that sweet potato is planted in mounds which dry out faster compared to the soil under cassava. Soil moisture content at harvesting time and crop age were significant factors that explained the variations in the soil lost at cassava harvesting. Soil loss under cassava justifies the need to conduct further investigations on this process of soil erosion under low input agriculture.  相似文献   

12.
Impact of Pheidole sp., reportedly important in insect pest suppression in agroecosystems was studied on supporting agroecosystem services. This tropical ant species was found to be common and abundant in agroecosystems, with a high nest density and preference for the central, crop-growing zone of annual cropping systems. Physico-chemical characteristics of the debris soil were examined from nests located by the roadside and within two managed ecosystems. The debris soil had significantly higher concentrations of total C, N, P and NO3-N along with higher water-holding capacity and moderate-sized soil particles in comparison to the control soil. The pH of the Pheidole sp. debris soil was shifted towards reduced alkaline conditions. Results reveal that annually, 2.44 kg/ha C, 0.071 kg/ha P, 0.628 kg/ha N and 0.009 kg/ha NO3-N are added to the soil through the accumulation of organic refuse at the nest rim. This contributes to soil nutrient enhancement and is suggested to enhance ecosystem productivity. The high nutrient content of nest debris soil is linked to the predominance of arthropod carcasses (93.7% of the total organic refuse) in the refuse piles derived from the animal-based food (70.3%) brought to the nests by the foragers. Plant-based food was 29.6% (seeds, leaves, roots, etc.) of the total indicating a minor role of Pheidole sp. as a seed harvester. The results suggest an important role of Pheidole sp. in regulating the soil nutrients as an ecosystem engineer.  相似文献   

13.
Many parts of the Turkish coastline are important nesting grounds for sea turtles. The aim of this study was to assess the present state of sea turtle populations along the coastline of Turkey, by evaluating research conducted at various nesting grounds from 1979 to 2000. The results of the evaluation indicate that the Turkish coastline is the most important nesting area for Chelonia mydas, and the third most important nesting area for Caretta caretta after Greece and Libya (if nesting estimates for Libya are correct) in the entire Mediterranean. The most important C. caretta nesting beaches in Turkey are Dalyan (11.9%), Kumluca (11.3%), Belek (27.9%), Kizilot, (8.9%) and Anamur (8.8%), while those for C. mydas are Kazanli (24.1%) and Akyatan (54.4%). These sites are classified as “Nesting Areas of 1st Degree Importance”. Annual mean nest numbers along the coastline of Turkey are estimated to be ca. 2000 for C. caretta and 650 for C. mydas. Assuming that each adult female sea turtle nests three times per season, the annual numbers of nesting females along the beaches of Turkey range between about 500 and 800 for C. caretta and 130 and 300 for C. mydas. Annual nesting densities along the 204 km beach strip, which includes 17 important nesting grounds in Turkey, were 11.3 nests/km for C. caretta and 19.2 nests/km for C. mydas.  相似文献   

14.
In this study, the soil structure of two soils (Haplic Chernozem and Eutric Fluvisol) of different land uses (forest, meadow, urban and agro-ecosystem – consisted of four crop rotations) in Slovakia was compared. The soil aggregate stability was determined with a dependence on the chemical composition of plant residues. The quantity and quality of the organic matter was assessed through the parameters of the C and N in size fractions of dry-sieved and water-resistant aggregates. The soil structure of the forest ecosystem was evaluated as the best of all of forms of land use. Differences in the soil structure under the grass vegetation of a meadow (natural conditions) and urban ecosystem were also recorded. The agro-ecosystem was characterised by a higher portion (55.95%) of the most valuable (agronomically) water-resistant aggregate size fraction of 0.5–3 mm. Values of the carbon management index showed that the larger water-resistant aggregates were, the greater were the changes in the organic matter (r = ?0.680, P < 0.05). In addition, a smaller content of dry-sieved aggregates of the 3–5 mm size fraction was observed with higher contents of soil organic carbon (SOC) (r = ?0.728, P < 0.05) and labile carbon (CL) (r = ?0.760, P < 0.05); there were also greater changes in the soil organic matter and vice versa, higher contents of SOC (r = 0.744, P < 0.05) and CL (r = 0.806, P < 0.05) greater contents of dry-sieved aggregates of size fraction 0.5–1 mm. The soil structure of agro-ecosystem was superior at a higher content of cellulose (r = ?0.712, P < 0.05) in the plant residues. The higher content of cellulose and hemicellulose in the plant residue of a previous crop was reflected in a smaller CL content in the water-resistant aggregates (r = ?0.984, P < 0.05). A correlation was observed between a high content of lignin in the plant residue and a smaller SOC content in the water-resistant aggregates (r = ?0.967, P < 0.05). Lastly, a higher content of proteins in the plant residues (r = 0.744, P < 0.05) supported a greater content of dry-sieved aggregates of the 0.5–1 mm size fraction.  相似文献   

15.
A real-time PCR assay was developed to quantify in soil the fungus Hirsutella minnesotensis, an important parasite of secondary-stage juvenile (J2) of the soybean cyst nematode. A primer pair 5′-GGGAGGCCCGGTGGA-3′ and 5′-TGATCCGAGGTCAACTTCTGAA-3′ and a TaqMan probe 5′-CGTCCGCCGTAAAACGCCCAAC-3′ were designed based on the sequence of the ITS region of the rRNA gene. The primers were highly species-specific. The PCR reaction system was very sensitive and able to detect as few as 4 conidia g?1 soil. Regression analysis showed similar slopes and efficiency on DNA from pure culture (y = ?3.587x + 41.017, R2 = 0.9971, E = 0.9055) and from Log conidia g?1 soil (y = ?3.855x + 37.669, R2 = 0.9139, E = 0.8172), indicating that the real-time PCR protocol can reliably quantify H. minnesotensis in the soil. The real-time PCR assay was applied to 20 soil samples from soybean fields, and compared with a parasitism assay. The real-time PCR assay detected H. minnesotensis in six of the soils, whereas the parasitism assay detected H. minnesotensis in the same six soils and three additional soils. The real-time PCR assay was weakly correlated (R2 = 0.49) with the percentage of parasitized J2 in the six soils, indicating that different types of soil may interfere the efficiency of the real-time PCR assay, possibly due to the effect of soil types on efficacy of DNA extraction. The parasitism assay appeared to be more sensitive than real-time PCR in detecting presence of H. minnesotensis, but real-time PCR was much faster and less costly and provided a direct assessment of fungal biomass. Using the two assays in combination can obtain more complete information about the fungus in soil than either assay alone. Hirsutella parasitism was widespread and detected in 13 of the 20 field soils, indicating that these fungi may contribute to suppressiveness of soybean cyst nematode in nature and likely have high biological control potential for the nematode.  相似文献   

16.
Worldwide, green turtle Chelonia mydas populations have declined and the species is classified as globally endangered. Tortuguero, Costa Rica, hosts the largest remaining green turtle rookery in the Atlantic basin. Tortuguero green turtles have been hunted since pre-Columbian times. Monitoring and conservation of the green turtle population began in 1955. The long-term efforts provide an excellent opportunity to evaluate the success of sea turtle conservation action and policies. Nest counts conducted 1971-2003 were analyzed to: (1) determine the nesting trend, (2) estimate rookery size and (3) identify events and policy decisions influencing the trend. A nonparametric regression model indicates a 417% increase in nesting over the study period. Rookery size was defined as the mean number of nests 1999-2003 and estimated at 104,411 nests year−1, corresponding to 17,402-37,290 nesting females year−1. A comparison with 34 index populations verifies Tortuguero as one of the two largest green turtle rookeries worldwide. Events and policy decisions in Costa Rica, Nicaragua, and Panama that comprise the main nesting, feeding and mating grounds for the Tortuguero population are likely to have had the greatest influence on green turtle survivorship. Conservation efforts and policies catalyzing increased hatchling production and decreased adult and juvenile mortality since 1963 have contributed to the positive nesting trend. The trend demonstrates that long-term conservation efforts can reverse nesting declines and offers hope that adequate management can result in recuperation of endangered sea turtle species.  相似文献   

17.
Allelopathic rice releases allelochemicals from its roots to paddy soils at early growth stages to inhibit neighboring weeds. However, little is currently known about the effects of allelochemicals on soil microbes. In this study, we show that allelopathic rice can have great impact on the population and community structure of soil microbes. Allelopathic rice PI312777 seedlings reduced the culturable microbial population and total PLFA when compared to non-allelopathic rice Liaojing-9. Similar results were observed when, instead of growing seedlings, soils were incubated with plant root exudates. This result demonstrates that the composition of root exudates from the rice varieties tested contributes to the soil microbial community. Further experiments showed that the microbial community was affected by the allelochemical 5,4′-dihydroxy-3′,5′-dimethoxy-7-O-β-glucopyranosylflavone exuded from allelopathic rice roots, through immediately hydrolyzing glucose with stimulation on soil bacteria and aglycone (5,7,4′-trihydroxy-3′,5′-dimethoxyflavone) with inhibition on soil fungi. This result indicates that the flavone O-glycoside can provide carbon and interact with soil microbes. PC analysis of the fatty acid data clearly separated the allelopathic PI312777 and the non-allelopathic Liaojing-9 variety (PC1 = 46.4%, PC2 = 20.3%). Similarly, the first principal component (PC1 = 37.4%) together with the second principal component (PC2 = 17.3%) explained 54.7% of the variation between the allelopathic and non-allelopathic root exudates. Furthermore, the canonical correlation between allelopathic root exudates and the flavone O-glycoside was statistically significant (Canonical R = 0.889, χ2 (25) = 69.72, p = 0.0041). Although the data generated in this study were not completely consistent between culturable microbes and PLFA profile, it is a fact that variation in soil microbial populations and community structures could be distinguished by the allelopathic and non-allelopathic rice varieties tested. Our results suggest that individual components of rice root exudates, such as allelochemicals from allelopathic rice, can modify the soil microbial community.  相似文献   

18.
Ecological and hydrological models applied over regional domains generally require the input of spatial meteorological time series. We investigate the potential improvements to space–time regionalisations of sparse meteorological data sets when including information on temporal correlations between successive measurements of minimum temperature (Tmin), maximum temperature (Tmax) and precipitation (P) from 112 stations across Central Oregon. We compared a number of increasingly complex geostatistical models based on Kriging with a baseline inverse distance weighting algorithm. We varied the number of interpolation data used in both space and time and assessed the impact on interpolation skill. Furthermore, we assessed the error and bias reduction resulting from aggregating estimates over increasingly large temporal supports. We hypothesised that incorporating temporal information would decrease errors, and that error and bias would be reduced when considering estimates aggregated over longer time periods. We found that, contrary to our expectations, incorporation of information on temporal autocorrelation decreased interpolation skill by ~5% for Tmin and Tmax. However, inclusion of temporal autocorrelation improved results for P by ~10%. Increasing the temporal aggregation of estimates was shown to decrease error by up to 50% and bias by up to 30% (daily vs. annual support). These results indicate that instantaneous error may be diluted for phase lagged or integrating elements of the state vector, such as soil moisture, when implementing such surfaces in modelling applications. Results were more successful for temperature than precipitation (daily % error for jack-knife estimates of Tmin = 52, Tmax = 13, P = 97), reflecting the stochastic nature of precipitation, and problems with non-linearity for the Kriging algorithm.  相似文献   

19.
《Geoderma》2007,137(3-4):432-443
The extractability and solid-phase fractionation of manganese (Mn) and zinc (Zn) in acid-to-neutral agricultural soils from Central Spain was evaluated by sampling and analysing twenty-nine representative soils and by greenhouse cropping eleven of them with spring barley (Hordeum vulgare, L.). All soil samples were extracted with three chemical extractants commonly used for soil fertility evaluation (0.43 M HOAc, DTPA and Mehlich-3). The soil samples were also operationally determined in six steps with the following extractants: 1 M Mg(NO3)2 extractable (WSEX, water soluble plus exchangeable), 0.7 M NaOCl extractable (OC, organically complexed), 0.1 M NH2OH·HCl extractable (MnOX, Mn-oxide), 0.2 M (NH4)2C2O4 + 0.2 M H2C2O4 extractable (AFeOX, amorphous Fe-oxide), 0.2 M (NH4)2C2O4 + 0.2 M H2C2O4 + 0.1 M ascorbic acid extractable (CFeOX, crystalline Fe-oxide), and HCl, HNO3, and HF in mixture (RES, residual). Soil-extractable amounts for the three single extractants were highly correlated with each other for both metals. Distributions among metal fractions showed that Mn was mainly found in the MnOX fraction (30.9%, ranging from 13.0 to 51.2%), whereas Zn was predominantly found in the RES fraction (44.3%, ranging from 26.4 to 56.8%). The proportion of Mn fractions extracted from the soils was in the order as follows: CFeOX  WSEX = OC  AFeOX = RES < MnOX, whereas Zn was in the order: WSEX  OC  AFeOX < MnOX < CFeOX < RES. The soil properties that correlated best with the distribution of Mn and Zn forms in these soils were soil organic matter and pH. The “availability factor” values [AF = (WSEX + OC) 100 / total metal], were higher for Mn than for Zn in these soils. Plant metal concentrations (Y) and soil-extractable and sequential extracted fractions showed few significant correlations. However, it was possible to significantly predict the phytoavailability of Mn and Zn for barley using a series of empirical equations involving extractable metals, solid-phase fractions and soil properties as components. The R2 values of the best-fit regression models ranging from 0.50 [Y-Zn = 19.3 + 6.32 (WSEX + OC)-Zn] to 0.92 [Y-Zn = 57.3 + 0.23 P  8.56 pH + 20.6 DTPA-Zn].  相似文献   

20.
Application of earthworm in soil re-cultivation and re-creation in post-industrial ecosystems make a big challenge for temporal applied zoology. The sediments of the Krakow Soda Works “Solvay” have undergone land reclamation in different ways: older sediments traps were left without any re-cultivation practices; meanwhile the newest ones were reclaimed using standard method (new soil cover planted with combination of grass and leguminous plants). The effect of different treatments on community and population structure of earthworm was estimated during consecutive years 1999–2000. Six localities differing in time of establishment, reclamation processes, vegetation type and soil properties were chosen. Nine species were recorded, among which Aporrectodea caliginosa occurred in all localities, being also the most abundant. Two other species, Lumbricus rubellus and Dendrobaena octaedra, which are epigeic species, become most important in forest assemblages and were characteristic for communities of older succession processes. Abundance of adult forms as well as total biomass were significantly affected by soil depth (r = 0.75, P < 0.05, r = 0.917, P < 0.001, respectively). Species richness however was connected with higher amount of macroelements and average plant height. Shannon diversity index and its evenness negatively correlated only with forestation (r = –0.67, P < 0.05, r = –0.68, P < 0.05, respectively). Niche overlap (α Pianka) for all analysed species extracted two groups differing in environmental requirements. First contained epigeic earthworms, closely related to plant succession (PCA results), the other one grouped endogeic and anecique species correlated significantly with soil depth and plant density. Community structure of earthworms do not reflects succession changes in post-industrial habitats, but is strongly affected by microhabitat factors in local scale (mainly soil depth and plant density).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号