首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is generally recognized that roads can adversely affect local animal populations but little is known how roads affect bats. In particular, no study compared the response of bats that differ in foraging ecology to motorways that cut through the breeding habitat. As bats are key species in conservation, such data are urgently needed for designing management plans. Using radio-telemetry, mist netting, and mark-recapture data we investigated the effects of a motorway with heavy traffic on the habitat use of two threatened forest-living bats. We compared barbastelle bats (Barbastella barbastellus), which forage in open space, to Bechstein’s bats (Myotis bechsteinii), which glean prey from the vegetation. Five of six radio-tracked barbastelle bats crossed the motorway during foraging and roost switching, flying through underpasses and directly over the motorway. In contrast, only three of 34 radio-tracked Bechstein’s bats crossed the motorway during foraging, all three using an underpass. Bechstein’s bats, unlike barbastelle bats, never crossed the motorway during roost switching. Moreover, only in Bechstein’s bats individuals foraging close to the motorway had smaller foraging areas than individuals foraging further away, whereas other forest edges had no such effect. Our data show that motorways can restrict habitat accessibility for bats but the effect seems to depend on the species’ foraging ecology and wing morphology. We suggest that motorways have stronger barrier effects on bats that forage close to surfaces than on bats that forage in open space, and discuss the implications of our findings for bat conservation during road construction.  相似文献   

2.
Although spatial scale is important for understanding ecological processes and guiding conservation planning, studies combining a range of scales are rare. Habitat suitability modelling has been used traditionally to study broad-scale patterns of species distribution but can also be applied to address conservation needs at finer scales. We studied the ability of presence-only species distribution modelling to predict patterns of habitat selection at broad and fine spatial scales for one of the rarest mammals in the UK, the grey long-eared bat (Plecotus austriacus). Models were constructed with Maxent using broad-scale distribution data from across the UK (excluding Northern Ireland) and fine-scale radio-tracking data from bats at one colony. Fine-scale model predictions were evaluated with radio-tracking locations from bats from a distant colony, and compared with results of traditional radio-tracking data analysis methods (compositional analysis of habitat selection). Broad-scale models indicated that winter temperature, summer precipitation and land cover were the most important variables limiting the distribution of the grey long-eared bat in the UK. Fine-scale models predicted that proximity to unimproved grasslands and distance to suburban areas determine foraging habitat suitability around maternity colonies, while compositional analysis also identified unimproved grasslands as the most preferred foraging habitat type. This strong association with unimproved lowland grasslands highlights the potential importance of changes in agricultural practices in the past century for wildlife conservation. Hence, multi-scale models offer an important tool for identifying conservation requirements at the fine landscape level that can guide national-level conservation management practices.  相似文献   

3.
Generalist predators play a key role in agriculturally and environmentally sustainable systems of pest control. A detailed knowledge on their ecology, however, is needed to improve management practices to maximize their service of pest control. The present study examines the habitat use and activity patterns of larval and adult Cantharis beetles that are abundant predators in arable land. Laboratory experiments revealed that sixth instar larvae of Cantharis fusca and Cantharis livida significantly preferred high relative humidity levels of 85–90% to lower ones. This can explain their preference for meadows over fields due to the more favorable microclimatic conditions in the former habitats. Surface activity of sixth instar Cantharis larvae during autumn, winter and early spring occurred at soil temperatures above 0 °C. However, no correlation between surface activity and soil temperature, air temperature or relative humidity was found above 0 °C. Catches of sixth instar Cantharis larvae within fenced pitfall traps were higher in a meadow (Mean ± S.D.; 13.8 ± 7.63 individuals m−2) than in a field (4.60 ± 2.89 individuals m−2). Mark-recapture density estimations for sixth instar larvae indicated mean densities of 25.9 ± 5.63 (field) and 42.8 ± 16.0 individuals m−2 (meadow). The same pattern was found for adult emergence rates in the field (0.17 ± 0.39 adults m−2) and meadow (1.83 ± 1.17 adults m−2) as well as for adult densities in the vegetation (field 4.89 ± 3.62 adults 60 m−2; meadow 12.5 ± 11.2 adults 60 m−2). It is concluded that especially in winter elements that provide plant cover should be incorporated in arable fields to enhance larval cantharid population densities and to attract them from their prime grassland habitats into arable sites.  相似文献   

4.
Protection of roosting habitat is essential to the conservation of bats in human-dominated landscapes. To help define bat roosting needs in suburban settings, we used radio telemetry to locate day roosts of a common North American species (Myotis yumanensis) within a residential area in California. Between June and August 2000, we tracked 16 bats to 20 roosts in two buildings and 18 trees. We used multiple logistic regression to assess roost selectivity at multiple spatial scales. Of 15 tree, plot, and site characteristics considered, only three helped distinguish roosts from random comparisons: tree diameter, distance to water, and forest cover. Myotis yumanensis preferred large trees (mean diameter 115 cm), and roosted only in the five species of largest mean diameter (Sequoia sempervirens, Pseudotsuga menziesii, Quercus agrifolia, Quercus lobata, and Acer macrophyllum). At the site level, these bats selected roosts that were close to water and had substantial forest cover in the surrounding 100-m radius. Unlike other North American bats, they often roosted in live trees (89% live). Relatively high roost fidelity (mean 4.8 days) and large travel distances between consecutive roosts (mean 1130 m) and between capture sites and roosts (mean 2007 m) may indicate a greater degree of roost limitation at this site versus other research sites. We recommend the preservation of large trees and forested parkland, particularly along stream corridors, to help maintain bat populations in urbanizing landscapes.  相似文献   

5.
In this paper we summarize the current knowledge on earthworm biodiversity in the State of Paraná, Brazil. Up to the present, 54 species of earthworms are known from the State, belonging to seven families and 19 genera. Native species (N = 34), dominated over exotics (N = 20). The most widespread exotics were Pontoscolex corethrurus (Glossoscolecidae) and several Amynthas spp. (Megascolecidae) and Dichogaster spp. (Acanthodrilidae), generally associated with anthropogenic sites. Of the native species, most (17 spp.) were in the genus Glossoscolex, frequently encountered in chronically wet soils. Further work is warranted, particularly more sampling efforts, but also ecological studies, given the potential biodiversity and agro-ecological importance of earthworms in Paraná.  相似文献   

6.
It is well known that earthworm populations tend to increase under no-tillage (NT) practices, but abundances tend to be highly variable. In the present study, data from the literature together with those on earthworm populations sampled in six watersheds in SW Paraná State, Brazil, were used to build a classification of the biological soil quality of NT systems based on earthworm density and species richness. Earthworms were collected in 34 farms with NT aging from 3 to 27 yr, in February 2010, using an adaptation of the TSBF (Tropical Soil Biology and Fertility) Program method (hand sorting of five 20 cm × 20 cm holes to 20 cm depth). Six forest sites were also sampled in order to compare abundances and species richness with the NT systems. Species richness in the 34 NT sites and in the 6 forests ranged from 1 to 6 species. Most earthworms encountered were exotics belonging to the genus Dichogaster (D. saliens, D. gracilis, D. bolaui and D. affinis) and native Ocnerodrilidae (mainly Belladrilus sp.), all of small individual size. In a few sites, individuals of the Glossoscolecidae (P. corethrurus, Glossoscolex sp., Fimoscolex sp.) and Megascolecidae (Amynthas gracilis) families were also encountered, in low densities. Urobenus brasiliensis (Glossoscolecidae) were found only in the forest fragments. In the NT farms, earthworm abundance ranged from 5 to 605 ind m−2 and in the forest sites, from 10 to 285 ind m−2. The ranking of the NT soil biological quality, based on earthworm abundance and species richness was: poor, with <25 individuals per m−2 and 1 sp.; moderate, with ≥25–100 individuals per m−2 and 2–3 sp.; good, with >100–200 individuals per m−2 and 4–5 sp.; excellent, with >200 individuals per m−2 and >6 sp. About 60% of the 34 farms fell into the poor to moderate categories based on this classification, so further improvements to the NT farm's management system are needed to enhance earthworm populations. Nevertheless, further validation of this ranking system is necessary to allow for its wider-spread use.  相似文献   

7.
Designing conservation strategies that protect wide-ranging marine species is a significant challenge, but integrating regional telemetry datasets and synthesizing modeled movements and behavior offer promise for uncovering distinct at-sea areas that are important habitats for imperiled marine species. Movement paths of 10 satellite-tracked female loggerheads (Caretta caretta) from three separate subpopulations in the Gulf of Mexico, USA, revealed migration to discrete foraging sites in two common areas at-sea in 2008, 2009, and 2010. Foraging sites were 102–904 km away from nesting and tagging sites, and located off southwest Florida and the northern Yucatan Peninsula, Mexico. Within 3–35 days, turtles migrated to foraging sites where they all displayed high site fidelity over time. Core-use foraging areas were 13.0–335.2 km2 in size, in water <50 m deep, within a mean distance to nearest coastline of 58.5 km, and in areas of relatively high net primary productivity. The existence of shared regional foraging sites highlights an opportunity for marine conservation strategies to protect important at-sea habitats for these imperiled marine turtles, in both USA and international waters. Until now, knowledge of important at-sea foraging areas for adult loggerheads in the Gulf of Mexico has been limited. To better understand the spatial distribution of marine turtles that have complex life-histories, we propose further integration of disparate tracking data-sets at the oceanic scale along with modeling of movements to identify critical at-sea foraging habitats where individuals may be resident during non-nesting periods.  相似文献   

8.
Describing the biotic and abiotic processes that are responsible for the formation of spatial patterns in predators and their prey is crucial for improving our understanding of food–web interactions. We studied the spatial distribution of four abundant spider species and three common groups of epedaphic Collembola prey in a beech-dominated (Fagus sylvatica) forest floor habitat and related the observed patterns to environmental heterogeneity, overall predator activity (all ground beetles and spiders) and prey availability (all Collembola) at the local scale. Spiders and epedaphic Collembola were sampled over 392 days in a spatially explicit design based on a regular grid of 25 pitfall traps (inter-trap distance 100 m). Environmental heterogeneity was characterized by cover of moss and litter as well as the amount of dead wood at each trap location. We first used the index of dispersion to characterize the spatial distribution of spider species and Collembola and then related the observed patterns to environmental heterogeneity, predator and prey availability while testing for spatial autocorrelation within the same models. All taxa were significantly more aggregated than expected from the assumption of random distribution. The distribution of spider species was positively (Coelotes terrestris) or negatively (Tenuiphantes zimmermanni and Tapinocyba insecta) related to the cover of moss and negatively related to litter cover (C. terrestris) or the local availability of prey (T. insecta). The distribution of Collembola was negatively related to local litter cover (Lepidocyrtus spp.) and positively related to the amount of medium deadwood pieces (all other Entomobryidae). Our study suggests that none of the spider species preferred areas of low overall predator activity density. Moreover, it does not indicate association of spider species to prey-rich areas at the analyzed scale of 100 m. It further highlights the importance of environmental heterogeneity, as different habitat properties differentially affected the local activity density of spiders and Collembola and thus considerably contributed to the understanding of distribution patterns.  相似文献   

9.
Large flying-foxes in insular Southeast Asia are the most threatened of the Old World fruit bats due to high levels of deforestation and hunting and effectively little local conservation commitment. The forest at Subic Bay, Philippines, supports a rare, large colony of vulnerable Philippine giant fruit bats (Pteropus vampyrus lanensis) and endangered and endemic golden-crowned flying-foxes (Acerodon jubatus). These large flying-foxes are optimal for conservation focus, because in addition to being keystone, flagship, and umbrella species, the bats are important to Subic Bay’s economy and its indigenous cultures. Habitat selection information streamlines management’s efforts to protect and conserve these popular but threatened animals. We used radio telemetry to describe the bats’ nighttime use of habitat on two ecological scales: vegetation and microhabitat. The fruit bats used the entire 14,000 ha study area, including all of Subic Bay Watershed Reserve, as well as neighboring forests just outside the protected area boundaries. Their recorded foraging locations ranged between 0.4 and 12 km from the roost. We compared the bats’ use to the availability of vegetative habitat types, riparian areas, and bat trees. The fruit bats’ locations showed a preference for undisturbed forest types and selection against disturbed and agricultural areas. Bat locations also showed selection for particular fruiting/flowering bat trees. The bats showed strong preference for riparian areas; locations were in riparian areas over four times more than expected. From these results we recommend that management focus flying-fox conservation efforts on undisturbed forest and riparian areas.  相似文献   

10.
Harvesting, consumption and trade of bushmeat are important causes of both biodiversity loss and potential zoonotic disease emergence. In order to identify possible ways to mitigate these threats, it is essential to improve our understanding of the mechanisms by which bushmeat gets from the site of capture to the consumer’s table. In this paper we highlight the previously unrecognized scale of hunting of the African straw-colored fruit bat, Eidolon helvum, a species which is important in both ecological and public health contexts, and describe the commodity chain in southern Ghana for its trade. Based on interviews with 551 Ghanaians, including bat hunters, vendors and consumers, we estimate that a minimum of 128,000 E. helvum bats are sold each year through a commodity chain stretching up to 400 km and involving multiple vendors. Unlike the general bushmeat trade in Ghana, where animals are sold in both specialized bushmeat markets and in restaurants, E. helvum is sold primarily in marketplaces; many bats are also kept by hunters for personal consumption. The offtake estimated in this paper raises serious conservation concerns, while the commodity chain identified in this study may offer possible points for management intervention. The separation of the E. helvum commodity chain from that of other bushmeat highlights the need for species-specific research in this area, particularly for bats, whose status as bushmeat is largely unknown.  相似文献   

11.
We actively sampled the bat community at 63 sites using detection and non-detection metrics on the Fernow Experimental Forest (FEF) in the central Appalachians of West Virginia using Anabat acoustical equipment May-June 2001-2003 to relate species presence to simple habitat measures such as proximity to riparian areas, forest canopy cover, forest canopy gap width, and forest canopy height. We acoustically detected eight species on the FEF, including the endangered Myotis sodalis. The presence of Lasiurus cinereus, M. lucifugus, M. sodalis, and Pipistrellus subflavus was associated more with riparian areas than upland areas. Both univariate comparisons and multiple logistic regression modeling showed that the probability that clutter-adapted foraging species such as M. septentrionalis and M. sodalis would be detected was greater as forest canopy cover increased or forest canopy gap size decreased, whereas the opposite was true for open-adapted foraging species such as Eptesicus fuscus and L. cinereus. The overall proportion of unidentifiable bat echolocation sequences to those identified to species was related to upland sites with increasing forest canopy cover indicating some sampling bias between cluttered and uncluttered habitats. However, given sufficient sample points, bat community surveys using acoustical detection show the ability to quickly develop generalized habitat associations for rugged areas such as the central Appalachians where traditional mist-net survey efforts often are logistically difficult and are lacking in scope. Moreover, these acoustical surveys also could lend themselves to species-specific predictive mapping of foraging habitat as well as allowing researchers to formulate testable hypotheses about detailed bat habitat relationships to be definitively tested with radio-telemetry techniques.  相似文献   

12.
Cover crops have traditionally been used to reduce soil erosion and build soil quality, but more recently cover crops are being used as an effective tool in organic weed management. Many studies have demonstrated microbial community response to individual cover crop species, but the effects of mixed species cover crop communities have received less attention. Moreover, the relationship between arable weeds and soil microbial communities is not well understood. The objective of this study was to determine the relative influence of cover crop diversity, early-season weed communities, and tillage on soil microbial community structure in an organic cropping system through the extraction of fatty acid methyl esters (FAMEs). A field experiment was conducted between 2009 and 2011 near Mead, NE where spring-sown mixtures of zero (control), two, and eight cover crop species were included in a sunflower–soybean–corn crop rotation. A mixture of four weed species was planted in all experimental units (excluding the no-cover control), and also included as an individual treatment. Cover crops and weeds were planted in late-March, then terminated in late-May using a field disk or sweep plow undercutter, and main crops were planted within one week of termination. Three (2009) or four (2010–11) soil cores were taken to a depth of 20 cm in all experimental units at 45, 32, and 25 days following cover crop termination in 2009, 2010, and 2011, respectively. Total FAMEs pooled across 2009 and 2010 were greatest in the two species mixture–undercutter treatment combination (140.8 ± 3.9 nmol g−1) followed by the eight species mixture–undercutter treatment combination (132.4 ± 3.9 nmol g−1). Abundance of five (2009 and 2010) and seventeen (2011) FAME biomarkers was reduced in the weedy treatment relative to both cover-cropped treatments and the no-cover control. In 2009 and 2010, termination with the undercutter reduced abundance of most actinomycete biomarkers while termination with the field disk reduced abundance of C18:1(cis11) and iC16:0. Canonical discriminant analysis of the microbial community successfully segregated most cover crop mixture by termination method treatment combinations in 2009 and 2010. Microbial communities were most strongly influenced by the presence and type of early-spring plant communities, as weeds exerted a strong negative influence on abundance of many key microbial biomarkers, including the AMF markers C16:1(cis11) and C18:1(cis11). Weeds may alter soil microbial community structure as a means of increasing competitive success in arable soils, but this relationship requires further investigation.  相似文献   

13.
《Applied soil ecology》1999,11(2-3):189-197
Senescent leaves of Miscanthus sinensis contained 36% soluble polysaccharides, 26% cellulose and had a C/N ratio of 45. In 11 wild flower species contents of soluble polysaccharides (21–30%), cellulose (3–16%) and C/N ratio (13–31) were lower. Decomposing leaves of M. sinensis lost weight at a rate of 0.002 day−1, increased the C/N ratio from 45 to about 100, the bacterial biomass from 0.4 to 1 μg C mg−1 dry weight, and decreased the tensile strength from 35 to 10 N. The withdrawal rate of Lumbricus terrestris with senescent leaves of M. sinensis was 30 mg g−1 week−1; the feeding rate was lower. With most senescent wild flowers withdrawal and feeding rates were higher. During decomposition of M. sinensis withdrawal rates increased to about 90, and feeding rates to about 30 mg g−1 week−1. The rates were not related to soluble polysaccharides, cellulose, acid-insoluble residue, C/N ratio and the presence of trichomes on the leaves. The abundance of L. terrestris decreased in a meadow turned into a field of M. sinensis from 55 to 26 earthworms m−2 and increased in a rotational maize field turned into wild flower strips from 28 to 46 earthworms m−2. The species richness of earthworms decreased with M. sinensis from 7.2 to 4.7 and increased with wild flowers from 4.7 to 6.7 species per sampling unit.  相似文献   

14.
Red Lists are used to assess the extinction risk of species based on quantitative IUCN criteria. For the compilation of a new Red List of butterflies in Flanders (north Belgium), we collated ca 800,000 distribution records and applied the IUCN Red List criteria to this small region (ca 135,00 km2). We also explored the effect of spatial resolution on the outcome of the Red List assessment by alternatively using 1 × 1 km2 and 5 × 5 km2 grid cells for geographic range size and trend calculations. We determined conservation hot spots in Flanders based on the Red List status of the species composition in each grid cell. The new Red List classified 20 butterflies (out of 68 resident species) as Regionally Extinct, six as Critically Endangered, five as Endangered, seven as Vulnerable and seven as Near Threatened. The remaining 23 species were classified as Least Concern. Using coarse instead of fine grain grid cells would have classified ten species in a lower Red List category. Compared with the previous Red List, nine species were classified in a lower and 12 in a higher threat category. In total, 218 1 × 1 km2 grid cells were considered as (very) high butterfly conservation priority sites. The application of the new IUCN criteria in a small region such as Flanders resulted in a Red List that offered challenging opportunities for the conservation of butterflies in particular and biodiversity in general.  相似文献   

15.
Because particular life history traits affect species vulnerability to development pressures, cross-species summaries of life history traits are useful for generating management guidelines. Conservation of aquatic turtles, many members of which are regionally or globally imperiled, requires knowing the extent of upland habitat used for nesting. Therefore, we compiled distances that nests and gravid females had been observed from wetlands. Based on records of > 8000 nests and gravid female records compiled for 31 species in the United States and Canada, the distances that encompass 95% of nests vary dramatically among genera and populations, from just 8 m for Malaclemys to nearly 1400 m for Trachemys. Widths of core areas to encompass varying fractions of nesting populations (based on mean maxima across all genera) were estimated as: 50% coverage = 93 m, 75% = 154 m, 90% = 198 m, 95% = 232 m, 100% = 942 m. Approximately 6–98 m is required to encompass each consecutive 10% segment of a nesting population up to 90% coverage; thereafter, ca. 424 m is required to encompass the remaining 10%. Many genera require modest terrestrial areas (<200 m zones) for 95% nest coverage (Actinemys, Apalone, Chelydra, Chrysemys, Clemmys, Glyptemys, Graptemys, Macrochelys, Malaclemys, Pseudemys, Sternotherus), whereas other genera require larger zones (Deirochelys, Emydoidea, Kinosternon, Trachemys). Our results represent planning targets for conserving sufficient areas of uplands around wetlands to ensure protection of turtle nesting sites, migrating adult female turtles, and dispersing turtle hatchlings.  相似文献   

16.
To manage America’s 991,479 km2 (245 million acres) of public BLM lands for such mixed uses as natural resource extraction, wildlife, and recreation requires knowledge about effects of habitat alterations. Two of North America’s largest natural gas fields occur in the southern region of the Greater Yellowstone Ecosystem (Wyoming), an area that contains >100,000 wintering ungulates. During a 5-year period (2005–2009), we concentrated on patterns of habitat selection of pronghorn (Antilocapra americana) to understand how winter weather and increasing habitat loss due to gas field development impact habitat selection. Since this population is held below a food ceiling (i.e., carrying capacity) by human harvest, we expected few habitat constraints on animal movements – hence we examined fine-scale habitat use in relationship to progressive energy footprints. We used mixed-effects resource selection function models on 125 GPS-collared female pronghorn, and analyzed a comprehensive set of factors that included habitat (e.g., slope, plant cover type) and variables examining the impact of gas field infrastructure and human activity (e.g., distance to nearest road and well pad, amount of habitat loss due to conversion to a road or well pad) inside gas fields. Our RSF models demonstrate: (1) a fivefold sequential decrease in habitat patches predicted to be of high use and (2) sequential fine-scale abandonment by pronghorn of areas with the greatest habitat loss and greatest industrial footprint. The ability to detect behavioral impacts may be a better sentinel and earlier warning for burgeoning impacts of resource extraction on wildlife populations than studies focused solely on demography. Nevertheless disentangling cause and effect through the use of behavior warrants further investigation.  相似文献   

17.
18.
《Applied soil ecology》2007,35(1):140-153
This study explored the relationship between landscape-level factors (land use type) and the diversity of soil mites (Acari: Oribatida, Mesostigmata) at a within-site scale, using diversity measures including point diversity (local species diversity within a single sampling point), patterns of species turnover among the sampling points, and alpha diversity (total species richness in a habitat). The land use types included corn fields, intensive short-rotation forestry plantations, two types of abandoned agricultural fields, and hardwood forests.Land use type was identified as a significant factor influencing both small-scale (within individual soil cores) and site-scale diversity of Oribatida, which increased in the order “corn  willow  abandoned fields  forests”. There was no statistical relationship between land use type and abundance or diversity of Mesostigmata.Using a bootstrapping method to generate “random” communities, we found that all land use types had significantly more diverse patterns of species abundance than was expected by chance. On the other hand, the patterns of presence/absence of species were less diverse than expected by chance. Local site factors were significant in driving the patterns of diversity of soil mites at the site scale; land use type was less important. The overall structure of Oribatida and Mesostigmata assemblages was significantly related to land use type. We conclude that soil communities respond to land management on both local scales and habitat-wide scales.  相似文献   

19.
The species Chromolaena odorata (Asteraceae) is a notorious invasive shrub spreading throughout West and Central Africa and as such, there is a need to determine its environmental impact, particularly on soil biodiversity and functioning. Indeed, soil organisms such as earthworms are known to strongly influence soil properties and biogeochemical cycles. This study, conducted in Central Côte d’Ivoire, aims to investigate the temporal dynamics of earthworm communities in C. odorata fallows of different ages and to identify associated indicators and persistent species. Three distinct classes of fallows identified by local farmers, were considered: young (1–3 years, C1), medium-aged (4–8 years, C2) and old (>9 years, C3). Each of the classes included four plot replicates where earthworms were sampled using the Tropical Soil Biology and Fertility (TSBF) 25 cm × 25 cm × 30 cm soil monolith method. The study of earthworm communities was focused on density, biomass, diversity and complementarity. Indicator values (IndVals) were used to identify indicator species of the classes of fallows. The shrub exerted a mixed influence on earthworms depending on the functional group, with litter feeders and polyhumics declining over time as a result of a reduction of the litter availability on the soil surface. The species richness was significantly greater in C1 than in the other classes although the Shannon–Weaver's index did not vary significantly. However, a cluster analysis performed on densities highlighted marked differences between C2 and the two other classes in terms of community composition. Indicator species were found for C1 and C2. The geophagous Millsonia omodeoi has emerged as a persistent species as its density and biomass steadily increased so that it became the dominant species in old fallows. The roles of litters and soil parameters in influencing earthworm communities are discussed.  相似文献   

20.
The distribution and abundance of cave-dwelling bats were investigated in the Thrace region of northwest Turkey. Data were collected in two periods, January-March and April-May 2001, from 32 underground sites, 25 of which had not been surveyed previously. Approximately 76,000 bats representing 13 species were recorded. The most abundant species were Miniopterus schreibersii, Rhinolophus euryale, Myotis myotis/blythii, Myotis capaccinii, and Rhinolophus ferrumequinum. The roosts were evaluated for their conservation importance. The most important sites in Turkish Thrace are Dupnisa and Koyunbaba. The Dupnisa Cave serves as a hibernaculum to approximately 28,000 bats representing five species. The Koyunbaba Cave is a nursery roost to approximately 23,000 bats of six species. Presently, none of the caves in the region has adequate protection and some bat populations are under serious threat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号