首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Phosphate rock (PR) is an alternative fertilizer to increase the P content of P-deficient weathered soils. We evaluated the effects of fertilizer form on indicators of biological cycling of P using an on-farm trial on a Rhodic Kandiudox in western Kenya. Treatment plots were sampled after 13 cropping seasons of P applications as Minjingu phosphate rock (PR) or as triple super phosphate (?TSP) (50 kg P ha?1 season?1), as well as a P-unfertilized control (0 kg P ha?1 season?1). Soils (0–15 and 15–30 cm) were analyzed for microbial biomass P (Pmic), activities of acid phosphomonoesterase, alkaline phosphomonoesterase, and phosphodiesterase, and sequentially extractable P fractions. P additions as Minjingu PR yielded 299% greater Pmic than TSP at 0–15-cm depth despite similar labile P concentrations in the two P fertilization treatments and stimulated activities of acid phosphomonoesterase (+39%). When added in the soluble form of TSP, a greater percentage of total soil P was present in mineral-bound forms (+33% Fe- and Al-associated P). Higher soil pH under Minjingu PR (pH 5.35) versus TSP (pH 5.02) and the P-unfertilized treatment (pH 4.69) at 0–15-cm depth reflected a liming effect of Minjingu PR. The form of P fertilizer can influence biological P cycling in weathered soils, potentially improving P availability under Minjingu PR relative to TSP via enhanced microbial biomass P and enzymatic drivers of P cycling.  相似文献   

2.
Experiments were conducted during 1996–1998 in screen house and in the field in the humid forest zone of Côte d’Ivoire, to evaluate the effects of phosphorus (P) from phosphate rock (PR) on the performance of the root nodulating legume Crotalaria micans grown for 8 weeks. The experimental soils were acid Ultisols with <4 mg/kg extractable Bray-1 P. Tilemsi PR from Mali and triple superphosphate (TSP) were applied at 60 kg P ha?1 (screen house) and 90 kg P ha?1 (field) to the legume. Legume N-fixed (BNF) was estimated by the 15N-isotope dilution and δ 15N natural abundance methods, using Cassia obtusifolia L. as a non-fixing legume reference plant. Without P supply, and under the field conditions, C. micans produced less than 1 tonne of biomass and accumulated 29 kg N/ha. The application of PR-P enhanced legume N by about fourfold over the unfertilised control. There was no significant difference between the effects of TSP and PR. Phosphorus application mainly affected the total amount of N accumulated rather than the percentage derived from the atmosphere (%N dfa) per se. Furthermore, the cumulative effects of PR-P on the performance of C. micans greatly improved with time in the screen house. This study confirms that Tilemsi PR is an agronomically effective source of P for short-duration legume green manure (GM) even in the first year of its application to acid P-deficient soils in the West African humid zone.  相似文献   

3.
The geochemical reactivity of single superphosphate (SSP), triple superphosphate (TSP), phosphate rock (PR), partially acidulated phosphate rock (PAPR) and potassium dihydrogen phosphate (KH2PO4) was evaluated in an incubation trial. The soil was Anthrosols, Ap horizon (Sandy loam). Solubility equilibrium of phosphates was calculated by phosphate (PPot = logH2PO4 – pH) and calcium (CaPot = logCa + 2pH) potentials. Next, activity ratio (AR°) and Woodruff potential (ΔF) were considered for estimating phosphate dynamics in the soil. Data showed that phosphate potentials stressed on significant solubility process and varied accordingly to the rates of the fertilizers: ?5.50, ?4.81, ?4.47 and ?4.09 for 0, 50, 100 and 150 kg P ha?1. The values of the Woodruff potential (ΔF) varied widely from ?1929 to 8573 cal mol?1, i.e., from marginal supplying power in the case of the control treatment to very high supplying power for the TSP (Triple superphosphate). These findings are of practical value for the following reasons: TSP and KH2PO4 are recommended for quick and high P supply to plants; SSP and PAPR for moderate supply and finally PR for slow and low supply. Phosphorus efficiency should be treated with priority particularly for areas with intensive cropping and susceptibility to runoffs.  相似文献   

4.
The relatively low solubility and availability of phosphorus (P) from indigenous phosphate rock could be enhanced by legumes in the acid soils of humid forest agroecosystems. Crotalaria micans L. was grown in a screenhouse without P or with P from triple superphosphate (TSP) and Malian Tilemsi Rock P. The P response of 20 cover crops was field‐evaluated using TSP and Rock P. In both experiments, the fertilized cover crops were followed by upland rice without mineral N or P application. Mean rice grain yield and agronomic residual P‐use efficiency were similar for both P sources. In the field, 1‐year fallow treatment of Canavalia ensiformis (velvet bean) supplied with Mali Rock P gave the highest rice grain yield of 3.1 Mg ha?1, more than 180% that of 2‐year continuous unfertilized rice (cv. ‘WAB 56‐50’). Among continuous rice plots, ‘NERICA 2’ (interspecific rice) supplied with Rock P produced the highest yield (2.0 Mg ha?1), suggesting that ‘NERICA 2’ might have greater potential to solubilize rock P. Results indicate that when combined with an appropriate legume, indigenous rock‐P can release sufficient P to meet the P requirement of the legume and a following upland rice crop in rotation.  相似文献   

5.
This study investigated phosphorus (P) dynamics and kinetics in calcareous soil under inorganic, organic, and integrated (inorganic+organic) fertilizer systems during two growing seasons of maize in two soil depths (0–0.15 and 0.15–0.30 m). A field experiment was conducted with 150, 300, and 400 kg ha?1 triple superphosphate (TSP), 7.5 and 15.0 ton ha?1 (on dry matter basis) farmyard manure (FYM), and integrated systems. In order to analyze Olsen P, soil samples were collected in 30-day-intervals after planting. The results showed that at the end of the two growing seasons of maize, the lowest magnitudes of Olsen P0–0.15 m were 6.0, 6.8, 7.4, and 7.6 mg kg?1 for the control, 7.5 FYM, 15 FYM, and 150 TSP, respectively. The highest magnitudes of Olsen P0–0.15 m were 12.4, 11.5, 11.4, and 11.1 mg kg?1 for 300 TSP+15 FYM, 400 TSP+7.5 FYM, 400 TSP+15 FYM, and 300 TSP+7.5 FYM, respectively. The same trends were observed for Olsen P0.15–0.30 m. Heterogeneous diffusion model demonstrated that Elovich equation could best describe the experimental data (mean; R2 = 0.98, SE = 0.29). The highest P supply rates (PSR) were 4.73, 3.91, and 3.86 mg kg?1day?1 (days after application) for 400 TSP, 400 TSP+15 FYM, and 300 TSP, respectively. The models of P supply capacity of soil could estimate P supply of soil under different fertilizer systems (R2 = 0.84–0.95). The present study improved the understanding of the capacity and rate of P supply by considering P uptake by grain maize. Fertilizer recommendations depend on the accessibility of fertilizer types suggested to help choose the best fertilizer systems.  相似文献   

6.
Increasing soil phosphorus and organic matter content for crop production while reducing the cost of production are required to facilitate the achievement of green revolution in Africa. Field and pot experiments were laid out during 2012 and 2013 to assess the effects of combined application of Kodjari phosphate rock (PR) and water soluble phosphorus on sorghum yields, P uptake and Lixisol characteristics in the centre west of Burkina Faso. Five P fertilizers treatments (zero P, 100% TSP (triple super phosphate), 100% PR, 50% PR + 50% TSP, 75% PR + 25% TSP) and two cow manure treatments (zero, 5 t ha?1) were tested. In field experiment, 50% PR + 50% TSP was as effective as 100% TSP in increasing sorghum yield above the control by 30% in 2012 and 50% in 2013 and P uptake by 30% in both years. Manure had an additive effect on phosphorus fertilizers in increasing sorghum yields and P uptake. In pot experiment, increases of Ca uptake, soil pH and microbial P were observed with the application of 50% PR + 50% TSP. Our results suggest that formulation of fertilizer combining phosphate rock and mineral P would improve sorghum yields and income of smallholders.  相似文献   

7.
Abstract

The experiment was conducted at Kulumsa, South East Ethiopia, using four levels of nitrogen (N) (0, 50,100 and 150?kg N ha?1) and four levels of phosphorus (P) (0, 35, 70 and 105?kg P2O5 ha?1) fertilizers arranged in 4?×?4 factorial arrangements in randomized complete block design with three replications. The available P was increased after harvest due to the application of N and P fertilizer at the rates of 100 or 150?kg N ha?1 and 70 or 105?kg P2O5 ha?1. More specifically, nutrients concentration and nutrient uptake were significantly (p?<?.01) varied among treatment combinations and nutrient use efficiency was declined by increasing N and P after optimum rates. The higher physiological efficiency of N (53.47?kg kg?1) and P (580.41?kg kg?1) and the highest apparent recovery of N (19.62%) and P (2.47%) was recorded from application of 50?kg N ha?1 and P at 70?kg P2O5 ha?1 and the highest agronomic efficiency of N (10.78?kg kg?1) and P (15.25?kg kg?1) was recorded from N at the rate of 50?kg N ha?1 and P at 35?kg P2O5 ha?1, respectively. The combination of N at 100?kg N ha?1 and P at 70?kg P2O5 ha?1 was promising combination that generated highest net benefit 488,878.5 ETB (Ethiopian birr) ha?1 with the highest marginal rate of return (36638%) and gave the highest seed yield (1858.82?kg ha?1) with yield increment of about 57.72% over the control.  相似文献   

8.
A study was conducted at Hyderabad during 2009–11 to determine phosphorus (P) dose for ricerice and rice–sunflower. Available P increased when 100% recommended P dose (RDP) was applied. P applied to rice gave at par yield under 100 or 75% RDP. In rice–rice, grain yield of 5668 and 5775 kg ha?1 in kharif (5654 and 5760 kg ha?1 in rabi) were attained with P@75 and 100% RDP. Kharif P residual effect in rabi affected rice yield. P@100/75% RDP in kharif and rabi gave grain of 5916/5973 and straw 6230/6673 kg ha?1. P applied to sunflower revealed that yield was similar with 100 or 75% RDP. Sunflower yield was at par with P@100 or 75% RDP. 25% RDP in rice and sunflower may be reduced to attain similar yield of 100% RDP. In rice–rice, grain yield attained by 100% RDP in both seasons was 11.42t ha?1 yr?1, while 75% RDP gave yield of 11.45t ha?1yr?1.  相似文献   

9.
A field experiment with peppermint (Mentha piperita L.) was conducted in a sandy loam (Typic ustifluvent) soil during 2007 and 2008 at Lucknow, India. Ten treatments consisting of control (no synthetic or organic nitrogen fertilization), synthetic nitrogen fertilization (SN) 75, 150 and 225 kg ha?1 alone, vermicompost (VC) 3 t + 37.5 kg SN ha?1, VC 6 t + 75 kg SN ha?1 and VC 9 t + 112.5 kg SN ha?1 and intercropping of one, two and three rows of cowpea for green manuring in combination with 50, 100 and 150 kg SN ha?1, respectively, were evaluated in a randomized block design. Integrated use of VC 9 t with 112.5 kg SN ha?1 produced maximum essential oil (94.3 kg ha?1), increased the herb and essential oil yields by 104 and 89%, respectively, over control and reduced SN use by 50%, without affecting the quality of essential oil. Application of VC and intercropping of cowpea for green manuring significantly improved the organic carbon, available N, P and K content in soil over SN alone. To get sustainable production of peppermint, application of VC 9 t ha?1 along with 112.5 kg N ha?1 through synthetic fertilizer is recommended for light textured sandy loam soils.  相似文献   

10.
Leaf color chart (LCC) guides fertilizer nitrogen (N) application to rice as per requirement of the crop on the basis of a critical leaf color. Two field experiments were conducted to evaluate the effect of silicon (Si) and LCC based N management in aerobic rice. Following LCC-based N management, from 60 to 90 kg N ha?1 and 75 to 100 kg N ha?1 with 10–40% and 25–30% less fertilizer N was used without any reduction in yield as compared to the package of practices of 100 (50 kg N ha?1 as basal + two split of 25 kg N ha?1) kg N ha?1 respectively, during both the seasons. The highest grain yield was noticed with 90 kg N ha?1 (30 kg N ha?1 as basal + LCC-3) and 100 kg N ha?1 (50 kg N ha?1 as basal + two split of 25 kg N ha?1) along with the application of calcium silicate (CaSiO3) at 2 t ha?1 as sources of Si and on par with 60 kg N ha?1 (no basal + LCC-3) and 75 kg N ha?1 (30 kg N ha?1 as basal + LCC-3), respectively, during the season in 2008 and 2009. Higher fertilizer N use efficiency was recorded with Si and need-based N management using LCC-3 rather than recommended dose of fertilizer N.  相似文献   

11.
ABSTRACT

Long-term fertilization tests evaluated rice (Oryza sativa) productivity in relation to application of nitrogen (N)-phosphorus (P)-potassium (K) (120-34.9-66.7 kg ha? 1, respectively) during 1967–1972 and N-P-K (150-43.7-83.3 kg ha? 1, respectively) during 1973–2000. The comparison treatments (NP, PK, and NK) and the control (not fertilized) were selected for calculating nutrient efficiency. Rice grain yield increased at a 17.78 kg ha? 1 yr? 1 in the control, mainly due to development of improved cultivars. Phosphorus management was found to be important for indigenous fertility and rice productivity in this paddy soil. Yield increased significantly with P fertilization. Without N fertilization (PK), rice productivity increased 56.85 kg ha? 1 yr? 1 from 62% of NPK at the initial stage to 74% after passing 34 years, which might be affected by increasing biological N fixation with P accumulation in soil. In NK treatment, rice yield increased at a relatively low rate (37.82 kg hr? 1 yr? 1) from the same rice productivity with that of NPK in 1967 to 91% after 34 years. In comparison, yield increased at a high rate (62.82 kg hr? 1 yr? 1) without K fertilization (NP) from ca. 90% of NPK and might exceed the yield of NPK after 64 years of long-term fertilization. Therefore, K fertilization level might be readjusted after long-term fertilizing in paddy soil.  相似文献   

12.
Wheat cultivars (‘AC Barrie’, ‘Brook Field’, ‘Hoffman’, and ‘Norwell’) with different protein concentrations were compared under four nitrogen (N) levels (0, 50, 100 and 150 kg ha?1) in an environment-controlled greenhouse, and the same experiment with an additional N level (200 kg N ha?1) was repeated in the field in 2007. In the greenhouse experiment, application of 100 kg N ha?1 resulted in significantly greater grain yield due mainly to higher number of grains per spike and heavier mean grain weight; in the field study, the 150 kg N ha?1 treatment produced the greatest yield (P<0.01) primarily due to more number of grains per spike. Crude grain protein percentage was increased significantly with each increment of N up to the highest level; however, protein yield (kg ha?1) increased significantly with fertilizer up to 150 kg N ha?1. Leaf chlorophyll contents were increased linearly with increment of N levels up to 150 kg ha?1 both in the greenhouse and field trials while leaf area indices continued to increase up to the highest application rate (200 kg N ha?1). Canopy reflectance, expressed as normalized difference vegetation index (NDVI), attained maximum value with 150 kg N ha?1 in the field experiment. Among the varieties tested, “Hoffman” out-yielded other three varieties due to heavier grain weight. Although highest grain and/or plant crude protein content were recorded in ‘AC Barrie’, it was the variety ‘Hoffman’ that produced the highest total protein (kg ha?1) with largest NDVI and leaf area index (LAI) values.  相似文献   

13.
Abstract

A field experiment was conducted in Hangzhou, Zhejiang Province, P.R. of China in 1999 to investigate the quantitative caloric energy characteristics of two rice cultivars (Oryza sativa L.), early crop rice Jia yu 948 and late crop rice Jia yu 93390 were grown in different nitrogen levels and climate conditions. The two cultivars were grown with 0, 80, 120, 160, and 200 kg ha?1 of nitrogen fertilizer and in ample water and farming management activities. Analysis of caloric energy showed that significant differences occurred among treatments and plant organs in both rice cultivars. However, no significant differences occurred among same organs under different nitrogen treatments in both cultivars except for the panicles. The mean caloric energy of both cultivars increased with nitrogen fertilizer application. However, no optimal level of nitrogen fertilizer treatment with caloric energy was established, as there was still an increase in caloric energy even at 200 kg N ha?1 fertilizer treatment. Cultivar Jia yu 948 had a higher mean caloric energy of 4172 cal g?1 compared to 4117 cal g?1 of cultivar Jia yu 93390. There were significant differences in caloric energy among the plant organs. The ascending order of energy distribution was as follows; root, stem, husk, leaf, grains, and panicles. Of great interest is the relatively high amount of energy invested in the husks. This amount was similar to that of the leaf. There was a linear relationship between caloric energy and nitrogen application levels. The basic rice caloric values are 4058 cal g?1, an increase in 1 kg N ha?1 of nitrogen (pure) resulted in an increase of 0.41 cal g?1 and 0.29 cal g?1 of dry weight in the cultivar Jia yu 948 and cultivar Jia yu 93390 respectively. Thus Jia yu 948 had a better utilization efficiency of nitrogen nutrient than Jia yu 93390 considering the caloric value increase.  相似文献   

14.
Field experiment was conducted to investigate the impact of phosphorus (P) and beneficial microorganism (BM) on the yield and yield components wheat (Triticum aestivum L., cv. Siren-2010). The experiment was conducted under full (five irrigations) and limited (two) irrigation conditions at the Research Farm of The University of Agriculture Peshawar during winter 2012–13. The experiment under both full and limited irrigated conditions was laid out in randomized complete block design using three replications. The results showed that irrigated plots produced more spikes m?2 (254), grains spike?1 (55.5), heavier thousand grains weight (39.4 g), and higher grain yield (3612 kg ha?1 than limited irrigated condition. Application of P at the highest rate (90 kg P ha?1) produced more spikes m?2 (260) and grains spike?1 (52.4), and increased maximum thousand grain weight (39.1 g) and grain yield (3617 kg ha?1). Application of BM at the highest rate (30 L ha?1) resulted in maximum number of spikes m?2 (257) and grains spike?1(51.7), highest thousand grains weight (39.1 g) and grain yield (3765 kg ha?1). The results confirmed that under full irrigated condition the increase in both P and BM levels (90 kg P ha?1 and 30 L ha?1, respectively) and under limited irrigated condition the intermediate levels of both P and BM (60 kg P ha?1 and 20 L ha?1, respectively) could increase wheat productivity under semi-arid conditions.  相似文献   

15.
In the present study, seven fertilizer treatments [T1, 50% NPK; T2, 100% NPK (Recommended dose of fertilizer, 200–65.4–124.5 kg N-P-K ha?1); T3, 150% NPK; T4, 100% PK; T5, 100% NK; T6, 100% NP and T7, control (zero NPK)] with four replications were assessed in the new alluvial soil zone (Entisols) of West Bengal, India. The objectives of the study were to generate information on potato productivity, profitability, indigenous nutrient supply and net gain/loss of NPK in post-harvest soil. Plants grown under higher NPK supply resulted in higher tuber yield and there were significant (p ≤ 0.05) reductions in total yield with nutrient omissions. Nutrient?limited yields were 19.78, 2.83 and 1.77 t ha?1 for N, P and K, considering total tuber yield (28.24 t ha?1) obtained under 100% NPK as targeted yield. Indigenous nutrient supply of N, P and K were estimated at 24.1, 22.34 and 110.22 kg ha?1, respectively that indicates higher K?supplying capacity of experimental soil as compared to N and P. Net income (US$1349 ha?1 year?1) and B:C ratio (1.91) was highest with 100% NPK, and further addition of NPK (150%) resulted in decrease on net return (US$1193 ha?1 year?1) and B:C ratio (1.73).  相似文献   

16.
The high cost of conventional, water‐soluble phosphorus (P) fertilizers limits their use by resource‐poor farmers in sub‐Saharan Africa. Phosphate rocks are a low‐cost alternative. We evaluated the effectiveness and residual effects of Egyptian phosphate rock (EPR) and Togo phosphate rock (TPR) relative to triple superphosphate (TSP) applied at 0, 20, 40, 80, and 160 kg P ha‐1 to annual Trifolium species grown in a P‐deficient Vertisol. The fertilizers were applied once and their effects were followed on seven consecutive annual clover crops. Clover responded to P at all the rates used. Significant (P<0.05) responses to P at the low 20–40 kg P ha‐1 rates were registered up to the fifth crop after application of P, and responses to higher rates of 80–160 kg P ha‐1 were significant up to the seventh crop. Critical evaluation of residual effects by comparing the response of clover to these fertilizers with response to fresh applications of TSP in the second and third crops confirmed these observations. Over all the seven crops, EPR was 82% as effective as TSP in increasing clover DM and 83% as effective in increasing P uptake. Its substitution rates were 67% for DM yields and 69% for P uptake. For TPR, the relative responses were 54% and 52% for DM yield and P uptake, respectively, and the corresponding substitution rates were 29% and 27%. In separate experiments, the effects of mixing these phosphate rocks with triple superphosphate (TSP) in various proportions (at 60 kg P ha‐1) were also investigated. The highest response of clover was observed with TSP applied alone, but the phosphate rocks applied alone also significantly increased yields compared with the controls without applied P. Mixtures of TPR and TSP increased yields only slightly over pure TPR, and mixtures of EPR and TSP had no effect on yields compared with pure EPR, presumably because EPR is more reactive than TPR. It was concluded that EPR is highly effective in these soils, but the effectiveness of TPR is low. The highly reactive EPR could be used to elevate the P status of the P‐deficient Vertisols and increase feed availability and livestock productivity in the Ethiopian highlands. Mixing of these phosphate rocks with TSP cannot be recommended.  相似文献   

17.
ABSTRACT

The aim of this research is to assess the effect of the interaction between phosphorus and nitrogen (P × N) in organomineral fertilizer in the nutrition of plants cultivated in a Typic Hapludox. It was used a completely randomized design in a 5 × 5 factorial scheme with four replications. The treatments corresponded to the equivalent of five doses of P (0, 20, 40, 60, and 80 kg ha?1 of P) in interaction with five doses of N (0, 50, 100, 150, and 200 kg ha?1 of N). Three sequential crops of millet were carried out with 40 days of growth each, whose aerial part of the plants was harvested in order to determine the dry biomass and the contents of N and P. After each crop, soil samples were collected from the pot for determination of the forms of P and N. It may be inferred that simultaneous application of N and P into the fertilization does not promote significant changes in the dynamics of N in the soil, but the effect of the interaction is changed over the crop time in the plant. In soil the application of organomineral fertilizers did not show effect of the interaction between P × N on the forms of organic N, inorganic and organic P, except for a difference in the available P, which is the dose of 20P × 200N kg ha?1 with greater efficiency. In the plant, there was interaction between P × N in organomineral fertilizer on the dry biomass of the aerial part of millet from the dose of 20P × 100N, focusing on the dose of 50P × 150N kg ha?1, while the accumulation of P and N starts from the dose of 40P × 100N and 40P × 50N kg ha?1 with an increase (synergy) in both nutrients up to the dose of 80P × 200N kg ha?1.  相似文献   

18.
The objective of this study was to evaluate the response of common bean plants to phosphorus (P) applied to the leaves at different growth stages, as a complement to phosphate fertilization at sowing. The experiment followed the 2 × 7-factor randomized block design (RBD) with four replicates. The first factor was fertilization with P at the base with 60 and 120 kg ha?1 of phosphorus pentoxide (P2O5). The second factor was the times and doses of P applied to the leaves: 0.5 or 1 kg ha?1 of P2O5, at the V3 phenological stage; parceled in the following manner: 20% in V3, another 40% in R5 and 40% in R6, or 50% in R5 and 50% in R6; and one treatment with no P2O5 application to the leaves. P-based foliar fertilization increased P content in the grains of plants grown in soils with greater P availability. The lower common bean biomass production under scarce P availability was minimized by the foliar fertilization, as well as its productivity when 1 kg ha?1 of P2O5 was applied to the leaves, 50% in the R5 phenological stage and 50% in R6. The highest productivity was obtained with the application of 0.5 kg ha?1 of P2O5 to the leaves in the V3 phenological stage with the 120 kg ha?1 dose at the base.  相似文献   

19.
An experiment was conducted at Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India during 2001–2003 to study the effect of levels of fertility and straw mulch on a rapeseed (Brassica campestris var yellow sarson)–greengram (Vigna radiata)–rice (Oryza sativa) cropping system under a rainfed upland ecosystem. The experiment was laid out in a split-plot design having 14 treatment combinations of organic and inorganic nutrients along with straw mulch in three replicates. The results revealed that conjunctive use of organic and inorganic nutrients as well as paddy straw mulch resulted higher yield in both rapeseed and greengram, and the residual effects of different levels of fertilization and mulching also gave rise to higher grain yield in the succeeding rice crop. The uptake of nutrients, by the cropping system as a whole, to the tune of 204.29 and 183.00 kg ha?1 of N, 72.84 and 74.07 kg ha?1 of P and 179.95 and 175.41 kg ha?1 of K took place, with the treatment receiving 10 t ha?1 of farmyard manure (FYM) applied (to rapeseed) along with 50% recommended dose (RD) of NPK to all the crops in the sequence in two consecutive years, respectively. The same treatment resulted in a higher percentage of porosity vis-à-vis lower bulk density. Soil physico-chemical properties were superior in mulch-treated plots compared with no mulch treatment. Application of organic and inorganic nutrients along with proper moisture conservation practices can enhance the yields maintaining a good soil health.  相似文献   

20.
Optimization of phosphorus (P) fertilization is important for balancing soil fertility especially in vertisol to support economic crop production. The objective of the study was to determine the impact of P fertilization (1998 to 2014) on crop yield and nutrient uptake, and soil fertility under continuous annually tilled corn (Zea mays L.)-wheat (Triticum aestivum L.) system in semi-arid Mediterranean conditions. The study was conducted on Arik clay (isohyperthermic, fine clay Typic Haploxerert) using randomized complete block design with four replications for each treatment at the research farm of the Dept. of Soil Science and Plant Nutrition, Çukurova University, Adana, Turkey. P fertilizer at 0, 50, 100, 200 kg P2O5 ha?1 as triple superphosphate (TSP), respectively was applied a week before planting corn. Results showed that increasing P fertilization rates significantly decreased the number of mycorrhizal spores associated with corn roots. Similarly, a 10% decrease in corn root mycorrhizal colonization was observed with 200 kg P2O5 ha?1 fertilization. In the control treatment, corn yield was 4.3 Mg ha?1 as compared to 5.6, 5.7 and 6.1 Mg ha?1 in 50, 100 and 200 kg of P2O5/ha, respectively. The relationship between P fertilization and relative yield showed that more than 95% of the corn yield was produced when P applied at 100 kg P2O5 ha?1. While P fertilization significantly increased the leaf N, P, and K contents but decreased the leaf Zn, Fe and Mn contents, as compared with the control. However, P fertilization did not consistently affect the grain N and P contents. Both physiological efficiency- and agronomic efficiency of P fertilization have shown a significant non-linear increase than that of the control. Total organic C (TOC) and total N (TN) concentrations were more than 34 and 26% higher in 100 and 200 kg P2O5 ha?1rates as compared with the control. Likewise, available P (AP), manganese (Mn) and zinc (Zn) concentrations increased with an increase in P fertilization rates. The AP, Mn and Zn contents significantly stratified by P fertilization. Our results suggested that 100 kg P2O5 ha?1 is optimum to sustain Vertisol fertility for supporting economic corn production in the Mediterranean climates of Turkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号